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Abstract

Motivated by evidence in psycholinguistics and cognition, we propose a hierarchical distributed
semantic model (DSM) that consists of low-dimensional manifolds built on semantic neighbor-
hoods. Each semantic neighborhood is sparsely encoded and mapped into a low-dimensional
space. Global operations are decomposed into local operations in multiple sub-spaces; results
from these local operations are fused to come up with semantic relatedness estimates. Manifold
DSM are constructed starting from a pairwise word-level semantic similarity matrix. The pro-
posed model is evaluated on semantic similarity estimation task significantly improving on the
state-of-the-art.

1 Introduction
The estimation of semantic similarity between words, sentences and documents is a fundamental problem
for many research disciplines including computational linguistics (Malandrakis et al., 2011), semantic
web (Corby et al., 2006), cognitive science and artificial intelligence (Resnik, 2011; Budanitsky and
Hirst, 2001). In this paper, we study the geometrical structure of the lexical space in order to extract se-
mantic relations among words. In (Karlgren et al., 2008), the high-dimensional lexical space is assumed
to consist of manifolds of very low dimensionality that are embedded in this high dimensional space.
The manifold hypothesis is compatible with evidence from psycholinguistics and cognitive science. In
(Tenenbaum et al., 2011), the question “How does the mind work?” is answered as follows: cognitive
organization is based on domains with similar items connected to each other and lexical information
is represented hierarchically, i.e., a domain that consists of similar lexical entries may be represented
by a more abstract concept. An example of such a domain is {blue, red, yellow, pink, ...} that corre-
sponds by the concept of color. An inspiring analysis about the geometry of thought, as well as cognitive
evidence for the low-dimensional manifold assumption can be found in (Gardenfors, 2000), e.g., the
domain of color is argued to be cognitively represented as an one-dimensional manifold. Following the
low-dimensional manifold hypothesis we propose to extend distributional semantic models (DSMs) into
a hierarchical model of domains (or concepts) that contain semantically similar words. Global operations
on the lexical space are decomposed into local operations on the low-dimensional domain sub-manifolds.
Our goal is to exploit this hierarchical low-rank model to estimate relations between words, such as se-
mantic similarity.

There has been much research interest on devising data-driven approaches for estimating semantic
similarity between words. DSMs (Baroni and Lenci, 2010) are based on the distributional hypothesis
of meaning (Harris, 1954) assuming that semantic similarity between words is a function of the overlap
of their linguistic contexts. DSMs are typically constructed from co-occurrence statistics of word tuples
that are extracted on existing corpora or on corpora specifically harvested from the web. In (Iosif and
Potamianos, 2013), general-purpose, language-agnostic algorithms were proposed for estimating seman-
tic similarity using no linguistic resources other than a corpus created via web queries. The key idea of
this work was the construction of semantic networks and semantic neighborhoods that capture smooth
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co-occurrence and context similarity statistics. The majority of DSMs adopt high-dimensional represen-
tations, while the underlying space geometry is not explicitly taken into consideration during the design
of algorithms aimed for performing several semantic tasks.

We propose the construction of a low-dimensional manifold DSM consting of four steps: 1) identify
the domains that correspond to the low-dimensional manifolds, 2) run the dimensionality reduction al-
gorithm for each domain, 3) construct a DSM for each domain, and 4) combine the manifold DSMs to
come up with global measures of lexical relations. A variety of algorithms can be found in the literature
for projecting a set of tokens into low dimensional sub-spaces, given a token similarity or dissimilarity
matrix. Depending on the nature of the dataset, these projection algorithms may or may not preserve
the local geometries of the original dataset. Most dimensionality reduction algorithms make the implicit
assumption that the underlying space is metric, e.g., Multidimensional Scaling (MDS) (Torgerson, 1952)
or Principal Component Analysis (PCA) (Jolliffe, 2005) or the ones using non-negative matrix factor-
ization (Tsuge et al., 2001) and typically fail to capture the geometry of manifolds embedded in high
dimensional spaces. A variety of dimensionality reduction algorithms have been developed that respect
the local geometry. Some examples are the Isomap algorithm (Tenenbaum et al., 2000) that performs
the projection based on a weighted neighborhood graph, Local Linear Embedings (LLE) (Roweis and
Saul, 2000) that assigns neighbors to each data point, Random Projections (Baraniuk and Wakin, 2009),
(Li et al., 2006) that preserves the manifold geometry by executing random linear projections and oth-
ers (Hessian Eigenmaps (HLLE) (Donoho and Grimes, 2003); Maximum Variance Unfolding (MVU)
(Wang, 2011)). The manifold hypothesis has also been studied by the representation learning commu-
nity where the local geometry is disentangled from the global geometry mainly by using neighborhood
graphs (Weston et al., 2012) or coding schemes (Yu et al., 2009). For a review see (Bengio et al., 2013).

A fundamental problem with all aforementioned methods when applied to lexical semantic spaces is
that they do not account for ambiguous tokens, i.e., word senses. The main assumption of dimensionality
reduction and manifold unfolding algorithms is that each token (word) belongs to a single sub-manifold.
This in fact is not true for polysemous words, for example the word ‘green’ could belong both to the
domain colors, as well as to the domain plants. In essence, lexical semantic spaces are manifolds that
have singularities: the manifold collapses in the neighborhood of polysemous words that can be thought
of semantic black holes that can instantaneously transfer you from one domain to another. Our proposed
solution to this problem is to allow words to live in multiple sub-manifolds.

The algorithms proposed in this paper build on recent research work on distributional semantic models
and manifold representational learning. Manifold DSMs can be trained directly from a corpus and do
not require a-priori knowledge or any human-annotated resources (just like DSMs). We show that the
proposed low-dimensional, sparse and hierarchical manifold representation significantly improves on the
state-of-the-art for the problem of semantic similarity estimation.

2 Metrics of Semantic Similarity
Semantic similarity metrics can be broadly divided into the following types: (i) metrics that rely on
knowledge resources (e.g., WordNet), and (ii) corpus-based that do not require any external knowledge
source. Corpus-based metrics are formalized as Distributional Semantic Models (DSMs) (Baroni and
Lenci, 2010) based on the distributional hypothesis of meaning (Harris, 1954). DSMs can be distin-
guished into (i) unstructured: use bag-of-words model (Iosif and Potamianos, 2010) and (ii) structured:
exploitation of syntactic relationships between words (Grefenstette, 1994; Baroni and Lenci, 2010). The
vector space model (VSM) constitutes the main implementation for both unstructured and structured
DSMs. Cosine similarity constitutes a measurement of word similarity that is widely used on top of
the VSM. The similarity between two words is estimated as the cosine of their respective vectors whose
elements correspond to corpus-based co-occurrence statistics. In essence, the similarity between words
is computed via second-order co-occurrences.

Direct (i.e., first-order) co-occurrences can be also used for the estimation of semantic similarity (Bol-
legala et al., 2007; Gracia et al., 2006). The exploitation of first-order co-occurrence statistics constitutes
the simplest form of unstructured DSMs. A key parameter for such models is the definition of the context
in which the words of interest co-occur: from entire documents (Bollegala et al., 2007) to paragraphs
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(Véronis, 2004) and sentences (Iosif and Potamianos, 2013). The effect of co-occurrence context for
the task of similarity computation between nouns is discussed in (Iosif and Potamianos, 2013). The
underlying assumption is that two words that co-occur in a specified context are semantically related.

3 Collapsed Manifold Hypothesis, Low-Dimensionality and Sparsity
The intuition behind this work is that although the lexical semantic space proper is high-dimensional, it
is organized in such a way that interesting semantic relations can be exported from manifolds of much
lower dimensionality embedded in this high dimensional space (Karlgren et al., 2008). We assume that
(at least some of) these sub-manifolds contain semantically similar words (or word senses). For example,
a potential sub-manifold in the lexical space could be the one that contains the colors (e.g., red, blue,
green). But in fact many words, such as book, green, fruit, are expected to belong simultaneously in
semantically different manifolds because they have multiple meanings.

A simple way to bootstrap the manifold recreation process is to build a domain around each word,
i.e., the semantic neighborhood of each word defines a domain. For example, in Figure 1 we show
the semantic neighborhood of fruit. The connections between words indicate high semantic similarity,
i.e., this is a pruned semantic similarity graph of all words in the semantic neighborhood of the word
‘fruit’. It is clear from this example that in a typical neighborhood there exist word pairs that should be
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Figure 1: Visualization of the semantic neighborhood of the word ‘fruit’.

‘connected’ to each other because they have close semantic relation, like {flower, plant} and others that
should not be ‘connected’ because they are semantically apart, like {garden, salt}. A sparse encoding of
the semantic similarity relations in a neighborhood is needed in order to achieve (via multi-dimensional
scaling) a parsimonious representation with good geometric properties1.

The graph connectivity or sparseness matrix identifies the word pairs that should be encoded in a
neighborhood is defined as S̃ ∈ {0, 1}n×n, where value S̃(i, j) = 1 indicates that the ith, jth word
pair is encoded, while S̃(i, j) = 0 indicates that the pair is ignored (n is the number of words and
i, j = 1, .., n in the neighborhood). We define the degree of sparseness of matrix S̃ as the percentage of
0’s in the matrix.

4 Dimensionality Reduction
In this section, the Sparse Projection (SP) algorithm is described (see also Algorithm 1). SP is the core
algorithm for constructing manifold DSMs presented in Section 5. SP is a dimensionality reduction
algorithm that projects a set of n words into a vector space of d dimensions. The input to the algorithm
is a dissimilarity or semantic distance matrix P ∈ Rn×n, where element P(i, j) encodes the degree
of dissimilarity between words wi and wj . The output of SP are the d-dimensional coordinate vectors
of the n projected words that form a matrix X ∈ Rn×d. Each row xi ∈ R1×d of matrix X ∈ Rn×d

corresponds to the coordinates of the ith word wi. Once X is estimated the dissimilarity matrix is
recomputed and updated to new values, as discussed next. Each paragraph that follows corresponds to a
module in Algorithm 1.

1Compare for example with Isomap (Tenenbaum et al., 2000) were a short- and long-distance metric is used. When using
sparse encoding the long-distance metric is set to a very large fixed number (similarity set to 0). In both cases, the underlying
manifold is unfolded and low-dimensional representation with (close to) metric properties are discovered.
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Semantic Distance Re-estimation: Given the matrix X ∈ Rn×d containing the vector projections of
words in the d-dimensional space, the dissimilarity matrix is re-estimated using the Euclidean distance2.
Let P̂ ∈ Rn×n be the matrix with the new dissimilarity scores then the new dissimilarity score between
words wi and wj is simply: P̂(i, j) = ‖xi − xj‖2, where xi, xj are the vectors corresponding to words
wi, wj respectively, i, j = 1, .., n and ‖.‖2 is the Euclidean norm.

Connectivity Graph and Sparsity: As discussed in Section 3, given a set of words only a small
subset of lexical relations should be explicitly encoded between pairs of these words. Therefore,
the SP algorithm should only take into account strongly related word pairs and ignore the rest. This
is the main difference between our approach compared to the generic MDS algorithm proposed in
(Torgerson, 1952). In order to apply the sparseness constraint, we first construct the connectivity
matrix S̃ ∈ {0, 1}n×n. Word pairs (wi, wj) with small similarity values (or equivalently large semantic
distance) are penalized: zero values are assigned to their corresponding position (i, j) in S̃ matrix. In
essence, the matrix S̃ is obtained by hard {0, 1} thresholding on the dissimilarity matrix P: all values
that are under a threshold are set to 0, while all values equal or greater to the threshold are set to 1.
Let n be the number of words under investigation, then the number of word pairs is p = n·(n−1)

2 . The
degree of sparseness is defined as the number of unordered word pairs (wi, wj), i 6= j where S̃(i, j) = 0
normalized over the total number of pairs p 3.

Error Criterion: The algorithm employs a local and a global error criterion defined as follows:
1. The local error corresponds to the projection error for each individual word wi e ∈ Rn×1, where

i = 1...n and is defined as the sum of the dissimilarity matrix errors before and after projection
computed only for the words that are ‘connected’ to wi, as follows:

ei =
n∑

j=1

S̃(i, j) ·
(
P̂(i, j)−P(i, j)

)2
(1)

2. The global error of the projection is simply the sum over local errors for all words: etot =
∑n

i=1 ei

Algorithm 1 Sparse projection (SP)

Require: v // Vocabulary: vector of n words
Require: P // n×n dissimilarity matrix

1: S̃← ComputeConnectivityMatrix(S)
2: for each word wi ∈ v do
3: Xi ← RandomInitialization(Xi)
4: end for
5: k = 0 // Iteration counter: initialization
6: ek

tot = inf // Global error: initialization
7: repeat
8: k = k + 1
9: for each word wi ∈ v do

10: for each direction z do
11: X←MoveWordToDirection(wi, z)

12: ez
i ← ComputeLocalError(S̃,P,X,i)

13: end for
14: ẑi ← FindDirectionOfMinLocalError(ez

i )
15: X = MoveWordToDirection(wi, ẑi)
16: end for
17: ek

tot ← UpdateGlobalError(S̃,P,X)
18: until ek−1

tot < ek
tot // Stopping condition

19: P̂← SemanticDistanceReestimation(X)
20: P̃← SparseDistanceNormalizedRanges(P̂,S̃)
21: return X // n×d matrix with coordinates;
22: return S̃ // n×n matrix with connections;
23: return P̂ // n×n updated dissimilarity matrix;
24: return P̃ // n×n sparse-normalized distances;

Random Walk SP: In function MoveWordToDirection(·) of Algorithm 1, the pseudo-variable direction
z refers to a standard set of perturbations of each word in the d-dimensional space. For example, if the
dimension of the projection is d = 2 then the coordinates of each word are modeled as (k1, k2), where
k1, k2 ∈ R. A potential set of perturbations are the following: (k1, k2 + s), (k1, k2 − s), (k1 + s, k2)
and (k1 − s, k2), where s is the perturbation step parameter of the algorithm. For coordinates systems
normalized in [0, 1]d we chose a value of s equal to 0.1. Good convergence properties to global maxima
have been experimentally shown for this algorithm for multiple runs on (noisy) randomly generated data.

2Other metrics, e.g., cosine similarity, have also been tested out but results are not shown here due to lack of space. Euclidean
distance performed somewhat better that cosine similarity for the semantic similarity estimation task.

3The SP algorithm with 0% degree of sparseness is equivalent to the MDS algorithm.
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Sparse Semantic Distance Normalized Ranges: This function normalizes all the distance scores of P̂
in a range of values, [0 r1], where r1 ∈ R+ is an arbitrary positive constant and also it imposes the
sparsity constraint as follows: if S̃(i, j) = 0 then P̃(i, j) = r1. If S̃(i, j) = 1 then P̃(i, j) = r2 · P̂(i,j)

r3
,

where r3 is the maximum distance over all ‘connected’ pairs, i.e. r3 , max{P̂ � S̃}, with � denoting
the Hadamard product, and r2 ∈ R+ can be either equal to r1 or slightly smaller than r1. The assignment
of r2 < r1 aims to differentiate the ‘unconnected’ pairs from the ‘connected’ but dissimilar ones 4.

5 Low-Dimensional Manifold DSMs

The end-to-end low-dimensional manifold DSM (LDMS) system is depicted in Figure 2. Note that
v1, v2, ..., v|V| ∈ V are the domains or sub-manifolds of the LDMS, for each domain vi a separate DSM
is built. V is the set of domains (concept vocabulary) and |V| denotes to the cardinality of V. The input

Figure 2: LDMS system.

to LDMS is a (global) similarity matrix S ∈ Rn×n, where n is the total number of tokens (words) in
the LDMS model. Note that S can be estimated using any of the baseline semantic similarity metrics5

presented in Section 2. Since the SP algorithm uses as input a dissimilarity or semantic distance matrix,
the pairwise word similarity matrix S ∈ Rn×n is transformed to a semantic distance (or dissimilarity)
matrix P ∈ Rn×n as: P(i, j) = c1 · e−c2·S(i,j) where c1, c2 ∈ R are constants and the i, j indexes run
from 1 to n. In this work, we used c1 =c2 =20. The transformation defined by (5) was selected in order
to non-linearly scale and increase the relative distance of dissimilar words compared to similar ones6.

The steps followed by the LDMS system are the following:
1. Domain Selection: The domains v1, v2, ..., v|V| are created as follows: for each word wi in our

model we create a corresponding domain vi that consists of all the words that are semantically
similar to wi, i.e., the ith domain is the semantic neighborhood of word wi. Thus in our model
the vocabulary size is equal to the domain set cardinality, i.e., n = |V|. Domain vi is created by
selecting the top N most semantically similar words to wi based on the (global) similarity matrix
S ∈ Rn×n. We have experimented with various domain sizes N ranging between 20 and 200
neighbors; note that each word in the LDMS may belong to multiple domains.

2. Sparse Projections on Domains: Following the selection of domain vi ∈ V the (local) dissimilarity
matrix for each domain Pvi ∈ RN×N is defined as a submatrix of P ∈ Rn×n. Then, the SP
algorithm is applied to each domain separately, resulting in i = 1, .., |V| re-estimated bounded
semantic distance matrices P̃vi .

3. Fusion: To reach a decision on the strength of the semantic relation between words wi and wj the
semantic distance matrices from each domain P̃vi must be combined. Only domains were both
words wi and wj appear are relevant in this fusion process. This procedure is described next.

4We experimented with various values for r1 and r2 achieving comparable performance; we selected r2 ≈ 0.9r1 that had
slightly better performance. The value of r1 can be chosen arbitrary, the results reported here were obtained for r1 = 20 and
r2 = 18.

5Here, the Google-based Semantic Relatedness was employed using a corpus of web-harvested document snippets.
6Similar nonlinear scaling function from similarity to distance can be found in the literature, e.g., (Borg, 2005)
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5.1 Fusion
Motivation: Given a set of words L = {w1, w2, ...wn} we assume that their corresponding set of word
senses7 is M = {s11, s12, .., s1n1 , .., .., sn1, sn2, .., snnn}. The set of senses is defined as M = ∪n

i=1Mi,
where Mi = {si1, si2, ..., sini} is the set of senses for word wi. Let S(.) be a metric of semantic similar-
ity, e.g., the metric defined in Section 2, which is symmetric, i.e., S(x, y) ≡ S(y, x). The notations Sw(.)
and Ss(.) are used in order to distinguish the similarity at word and sense level, respectively. According to
the maximum sense similarity assumption (Resnik, 1995), the similarity between wi and wj , Sw(wi, wj),
is defined as the pairwise maximum similarity between their corresponding senses Ss(sik, sjl):

Sw(wi, wj) ≡ Ss(sik, sjl), where (k, l) = argmax
(p∈Mi,r∈Mj)

Ss(sip, sjr).

Note that the maximum pairwise similarity metric (or equivalently the minimum pairwise distance
metric) is also known as the “common sense” set similarity (or distance) employed by human cognition
when evaluating the similarity (or distance) between two sets.
Fusion of local dissimilarity scores: Next we describe a domain fusion model that follows the min-
imum pairwise distance (dissimilarity) principle motivated by human cognition. The steps for the re-
computation of the (global) dissimilarity between words wi and wj are:

1. Search for all the domains where wi and wj co-exist.
2. Let U ⊂ V be the subset of domains from the previous step. The distances between words wi and

wj are retrieved from domain dissimilarity matrices P̃u for all u ∈ U . The distances are stored into
vector d ∈ R|U |×1.

3. Motivated by the maximum sense similarity assumption (see above) the dissimilarity between wi

and wj is defined as8:
P̂(i, j) = min

k=1..|U |
{dk} (2)

4. If words wi and wj do not co-exist in any domain then r1 is assigned as their dissimilarity score,
where r1 is the upper bound of P̃u matrices as defined in the previous section.

For example, let one pair of words (w1, w2) co-exists in |U | = 3 different domains with corresponding
local distances d = [9 20 11] then the global distance of (w1, w2) is 9.

6 Evaluation
In this section, we evaluate the performance of the proposed approach with respect to the task of simi-
larity judgment between nouns. Results are reported with respect to several domain/neighborhood sizes,
sparse percentages and domain dimensions.

The performance of similarity metrics were evaluated against human ratings from three standard
datasets of noun pairs, namely WS353 (Finkelstein et al., 2001), RG (Rubenstein and Goodenough,
1965) MC (Miller and Charles, 1991). The first and the second datasets consist of the subset of 272 and
57 pairs, respectively, that are also included in SemCor39 corpus, while the third dataset consists of 28
noun pairs. The Pearson’s correlation coefficient was selected as evaluation metric to compare estimated
similarities against the ground truth.

The similarity matrix computed using the Google-based Semantic Relatedness (Gracia et al., 2006)
was used as baseline, as well as to bootstrap the LDMS global similarity matrix S, for a list of 8752 nouns
extracted from the SemCor3 corpus 10. The performance of the proposed LDMS approach is presented
in Table 1. In addition, the performance of other unsupervised similarity estimation algorithms are
reported for comparison purposes: 1) SEMNET is an alternative implementation of unstructured DSMs
based on the idea of semantic neighborhoods and networks (Iosif and Potamianos, 2013) 2) WikiRelate!
includes various taxonomy-based metrics that are typically applied to the WordNet hierarchy; the basic

7This is a simplification. In reality, some of the word senses will be the same, so strictly speaking this is not a set definition.
8Other fusion methods have also been evaluated, e.g., (weighted) average. Results are omitted here due to lack of space.

Minimum pairwise distance fusion outperformed other fusion schemes.
9http://www.cse.unt.edu/˜rada/downloads.html

10The baseline similarity matrix and the 8752 nouns are public available in:
http://www.telecom.tuc.gr/˜iosife/downloads.html
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idea behind WikiRelate! is to adapt these metrics to a hierarchy extracted from the links between the
pages of the English Wikipedia (Strube and Ponzetto, 2006) . 3) TypeDM is a structured DSM (Baroni
and Lenci, 2010), 4) AAHKPS1 constitutes an unstructured paradigm of DSM development using four
billion web documents that were acquired via crawling (Agirre et al., 2009), 5) Moreover, two well-
established dimensionality reduction algorithms (Isomap and LLE) that support the manifold hypothesis,
were applied to the task of semantic similarity computation 11. LDMS, Isomap and LLE were given as
input the matrix P ∈ Rn×n, where n = 8752 is the number of words in our models. Isomap and LLE
used dimensionality reduction down to d = 5 and neighborhood size equal to N = 120. SEMNET was
run for neighborhood size equal to N = 100. While LDMS run for dimensionality down to d = 5,
domain/neighborhood size equal to N = 140 and degree of sparseness 90%. The proposed LDMS
system surpassed the performance of the baseline system for all three datasets, as well as the performance
of the other corpus-based approaches for the WS353 and MC datasets. The dimensionality reduction
algorithms (Isomap - LLE) are shown to perform poorly for this particular task.

Datasets Algorithm
Baseline SEMNET WikiRelate! TypeDM AAHKPS1 Isomap LLE LDMS

WS353 0.61 0.64 0.48 - - 0.14 0.04 0.69
RG 0.81 0.87 0.53 0.82 - 0.04 0 0.86
MC 0.85 0.91 0.45 - 0.89 -0.04 -0.04 0.94

Table 1: Performance of various algorithms for the task of similarity judgment.

The performance (Pearson correlation) of the LDMS approach is shown in Figures 3a, 3b and 4a as
a function of neighborhood size and degree of sparseness. Results are presented for all three datasets:
WS353, MC, and RG. The baseline performance is also plotted (dotted line). For all three datasets,
we see a clear relationship between neighborhood size, degree of sparseness and performance. Sparse
representations achieve peak performance for larger neighborhood sizes. High degree of sparseness
between 80 and 90% achieves the best results for domain/neighborhood sizes between 100 and 140. The
figures show that there is potential for even better performance by fine-tuning the LDMS parameters.

The performance of LDMS is shown in Figure 4b as a function of the projection dimension d. The de-
gree of sparseness is fixed at 80% and the domain/neighborhood size is equal to 100 for all experiments.
It is observed that the performance for all three datasets remains relatively constant when at least d = 3
is used. In fact results are slightly better for d = 3 than for higher dimensions but the differences in
performance are not significant. The results suggest that even a 3D sub-space is adequate for accurately
representing the semantics of each underlying domain.
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Figure 3: Performance as a function of domain size N and sparseness percentage for the (a) WS353
dataset and (b) MC dataset.

11LDMS is not directly comparable with Isomap-LLE algorithms because it represents only the domains in low-dimensional
spaces and not the whole dataset.
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Figure 4: Performance for the (a) RG dataset as a function of domain size N and sparseness percentage
and (b) WS353, MC, RG datasets as a function of projection dimension d.

7 Conclusions

In this work, we proposed a novel, hierarchical DSM that was applied to semantic relation estimation
task obtaining very good results. The proposed representation consists of low-dimensional manifolds
that are derived from sparse projections of semantic neighborhoods. The core idea of low dimensional
subspaces was motivated by cognitive models of conceptual spaces. The validity of this motivation was
experimentally verified via the estimation of semantic similarity between nouns. The proposed approach
was found to be (at least) competitive with other state-of-the-art DSM approaches that adopt flat feature
representations and do not explicitly include the sparsity and dimensionality as a key design parameter.

The poor performance of Isomap and LLE can be attributed to the nature of the specific application,
i.e., word semantics. A key characteristic of this application is the ambiguity of word senses. These
algorithms assume only one sense for each word (i.e., a word is represented as a single point in a high-
dimensional space). Although the disambiguation task is not explicitly addressed, LDMS approach
handles the ambiguity of words by isolating each word’s senses in different domains.

Our initial intuition regarding the semantic fragmentation of lexical neighborhoods due to singularities
introduced by word senses was supported by the high performance when large (i.e., 80% - 90%) degree of
sparseness was imposed. The hypothesis of low-dimensional representation was validated by the finding
that as little as three dimensions are adequate for representing domain/neighborhood semantics. It was
also observed that the parameters of the LDMS model, i.e., number of dimensions, neighborhoodsize
and degree of sparseness, are interrelated: very sparse projections achieve best results with very low
dimensionality when large neighborhood sizes are used.

This is only a first step toward using ensembles of low-dimensional DSMs for semantic relation esti-
mation. As future work we plan to further investigate the creation of domains based on more complex
geometric properties of the underlying space (Kreyszig, 2007). A more formal investigation of the re-
lation between sparseness, dimensionality and performance is also needed. Finally, creating multi-level
hierarchical representations that are consistent with cognitive organization is an important challenge that
can further improve manifold DSM performance.
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