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Abstract 

Topic modelling has been popularly used to discover latent topics from text documents. Most existing 

models work on individual words. That is, they treat each topic as a distribution over words. However, 

using only individual words has several shortcomings. First, it increases the co-occurrences of words 

which may be incorrect because a phrase with two words is not equivalent to two separate words. These 

extra and often incorrect co-occurrences result in poorer output topics. A multi-word phrase should be 

treated as one term by itself. Second, individual words are often difficult to use in practice because the 

meaning of a word in a phrase and the meaning of a word in isolation can be quite different. Third, 

topics as a list of individual words are also difficult to understand by users who are not domain experts 

and do not have any knowledge of topic models. In this paper, we aim to solve these problems by 

considering phrases in their natural form. One simple way to include phrases in topic modelling is to 

treat each phrase as a single term. However, this method is not ideal because the meaning of a phrase is 

often related to its composite words. That information is lost. This paper proposes to use the generalized 

Pólya Urn (GPU) model to solve the problem, which gives superior results. GPU enables the connection 

of a phrase with its content words naturally. Our experimental results using 32 review datasets show 

that the proposed approach is highly effective. 

1 Introduction 

Topic models such as LDA (Blei et al., 2003) and pSLA (Hofmann 1999) and their extensions have 

been popularly used to find topics in text documents. These models are mostly governed by the phe-

nomenon called “higher-order co-occurrence” (Heinrich 2009), i.e., how often terms co-occur in differ-

ent contexts. Word w1 co-occurring with word w2 which in turn co-occurs with word w3 denotes a sec-

ond-order co-occurrence between w1 and w3. Almost all these models regard each topic as a distribution 

over words. The words under each topic are often sorted according to their associated probabilities. 

Those top ranked words are used to represent the topic. However, this representation of topics as a list 

of individual words has some 1major shortcomings: 

• Topics are often difficult to understand or interpret by users unless they are domain experts and also 

knowledgeable about topic models. In most real-life situations, these are not the case. In some of our 

applications, we show users several good topics, but they have no idea what they are because many 

domain phrases cannot be split to individual words. For example, “battery” and “life” are put under 

the same topic, which is not bad. But the users wondered why “battery” and “life” are the same 

because they thought words under a topic should somehow have similar meanings. We had to explain 

that it is due to “battery life.” As another example, sentences such as “This hotel has a very nice 

sandy beach” may cause a topic model to put “hotel” and “sandy” in a topic, which is not wrong but 

again it is hard to understand by a user who may not be able to connect the two words. Thus in order 

to interpret topics well, the user must know the phrases (they are split into individual words) that may 
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be used in a domain and how words may be associated with each other. To make the matters worse, 

in most cases, the topics generated from a topic model are not perfect. There are some wrong words 

under a topic, which make the interpretation even harder.  

• Individual words are difficult to use in practice because in some cases a word under a topic may not 

have its intended meaning for the topic in a particular sentence context. This can cause many mis-

takes. For example, in sentiment analysis of product reviews, a topic is often regarded as a set of 

words indicating a product feature or attribute. This is not true in many cases. For example, if “bat-

tery” and “life” are put in one topic, when the system sees “life,” it assumes it is related to “battery.” 

But in the sentence “The life expectancy of the machine is about 2 years,” this “life” has nothing to 

do with battery or battery life. This causes an error. If the system can directly use phrases, “battery 

life” and “life expectancy,” the error will not occur.   

• Splitting phrases into multiple individual words causes extra co-occurrences that may result in poor 

or wrong topics involving other words. For example, due to sentences like “Beach staffs are rude” 

and “The hotel has a nice sandy beach,” a topic model may put “staff” and “sandy” under a topic for 

staff and/or put “beach” and “rude” together under the topic of beach views.   

Based on our experiences in opinion mining and social media mining, these are major issues with 

topic models. We believe that they must be dealt with before wide spread adaptation of topic models in 

real-life applications. In this paper, we make an attempt to solve this problem. We will use term to 

represent both word and phrase, and use word or phrase when we want to distinguish them.  

One obvious way to consider phrases is to use a natural language parser to find all phrases and then 

treat each phrase as one term, e.g., “battery life,” “sandy beach” and “beach staff.” However, the prob-

lem with this approach is that it may lose the connection of many related words or phrases in a topic. 

For example, under the topic for beach, we may not find “sandy beach” because there is no co-occur-

rence of “sandy beach” and “beach” if we treat “sandy beach” as a single term. This is clearly not a good 

solution as it may miss a lot of topical terms (words or phrases) for a topic. It can also result in poor 

topics due to the loss of co-occurrences.  

Another obvious solution is to use individual words as they are, but add an extra term representing 

the phrase. For example, we can turn the sentence “This hotel has a nice sandy beach” to “This hotel 

has a nice sandy beach <sandy beach>.” This solution helps deal with the problem of losing co-occur-

rences to some extent, but because the words are still treated individually, the three problems discussed 

above still exist, although the phrase “sandy beach” now can show up in some topics. However, due to 

the fact that phrases are obviously less frequent than individual words, they may be ranked very low, 

which make little difference to solving the three problems. 

In this paper, we propose a novel approach to solve the problem, which is based on the generalized 

Pólya urn (GPU) model (Mahmoud 2008). GPU was first introduced into LDA in (Mimno et al., 2011) 

to concentrate words with high co-document frequency. However, Mimno et al. (2011) and other re-

searchers Chen et al., (2013) still use them in the framework of individual words. In the GPU model, we 

can deal with the problems above by treating phrases as individual terms and allowing their component 

words to have some connections or co-occurrences with them. Furthermore, we can push phrases up in 

a topic as phrases are important for understanding but are usually less frequent than individual words 

and ranked low in a topic. The intuition here is that when we see a phrase, we also see a small fraction 

of their component words; and when we see each individual word, we also see a small fraction of its 

related phrases. Further, in a phrase not all words are equally important. For example, in “hotel staff”, 

“staff” is more important as it is the head noun, which represents the semantic category of the phrase. 

Our experiments are conducted using online review collections from 32 domains. We will see that 

the proposed method produces significantly better results both quantitatively based on the statistical 

measure of topic coherence and qualitatively based on human labeling of topics and topical terms. 

In summary, this paper makes the following contributions: 

1. It proposes to consider phrases in topic models, which as we have explained above, is important 

for accurate topic generation, the use of the resulting topics and human interpretation. As we will 

see in Section 2, although some prior works exist, they are based on n-grams (Mukherjee and Liu, 

2013). They are different from our approach. N-grams can generate many non-understandable 

phrases. Furthermore, due to infrequency of n-grams (much less frequent than individual words), 
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typically a huge amount of data is needed in order to produce reasonable topics, which many ap-

plications simply do not have.  

2. It proposes to use the generalized Pólya Urn (GPU) model to deal with the problems arising in 

considering phrases. To the best of our knowledge, the GPU model has not been used in the context 

of phrases. This model not only generates better topics, but also rank phrases relatively high in 

their topics, which greatly helps understanding of the generated topics. 

3. Comprehensive experiments conducted using product and service review collections from 32 do-

mains demonstrate the effectiveness of the proposed model. 

2 Related Work 

GPU was first introduced to topic modelling in (Mimno et al., 2011), in which GPU is used to concen-

trate words with high co-document frequency based on corpus-specific co-occurrence statistics. Chen et 

al. (2013) applied GPU to deal with the adverse effect of using prior domain knowledge in topic 

modeling by increasing the counts of rare words in the knowledge sets. However, these works still use 

only individual words. 

Topics in most topic models like LDA are unigram distributions over words and assume words to be 

exchangeable at the word level. However, there exists some work that tries to take word order into 

consideration by including n-gram language models. Wallach (2006) proposed the Bigram Topic Model 

(BTM) which integrates bigram statistics with topic-based approaches to document modeling. Wang et 

al. (2007) proposed the Topical N-gram Model (TNG), which is a generalization of the BTM. It 

generates words in their textual order by first sampling a topic, then sampling its status as a unigram or 

bigram, and then sampling the word from a topic-specific unigram or bigram distribution. Although the 

“bag-of-words” assumption does not always hold in real-life applications, it offers a great computational 

advantage over more complex models taking word order into account for discovering significant n-

grams. Our approach is different from these works in two ways. First, we still follow the “bag-of-words” 

or rather “bag-of-terms” assumption. Second, we find actual phrases rather than just n-grams. Most n-

grams are still hard to understand because they are not natural phrases.   

Blei and Lafferty (2009), Liu et al. (2010) and Zhao et al. (2011) also try to extract keyphrases from 

texts. Their methods, however, are very different because they identify multi-word phrases using 

relevance and likelihood scores in the post-processing step based on the discovered topical unigrams. 

Mukherjee and Liu (2013) and Mukherjee et al. (2013) all try to include n-grams to enhance the 

expressiveness of their models while preserving the advantages of “bag-of-words” assumption, which 

has a similar idea as our paper. However, as we point out in the introduction, this way of including 

phrases/n-grams suffers from several shortcomings. Solving these problems is the goal of our paper. 

Finally, since we use product reviews as our datasets, our work is also related to opinion mining using 

topic models, e.g. (Mei et al., 2007; Lu and Zhai, 2008; Titov and McDonald, 2008; Zhao et al., 2010; 

Li et al., 2010; Sauper and Barzilay, 2013; Lin and He, 2009; Jo and Oh, 2011). However, none of these 

models uses phrases. 

3 Proposed Model 

We start by briefly reviewing the Latent Dirichlet Allocation (LDA) model (Blei et al., 2003). Then we 

describe the simple Pólya urn (SPU) model, which is embedded in LDA. After that, we present the 

generalized Pólya urn (GPU) model and discuss how it can be applied to our context. The proposed 

model uses GPU for its inference. It shares the same graphical model as LDA. However, the GPU in-

ference mechanism is very different from that of LDA, which cannot be reflected in the graphical model 

or the generative process as it only helps to infer more desirable posterior distributions of topic models. 

3.1 Latent Dirichlet Allocation 

LDA is a generative probabilistic model for a document collection. It assumes that documents are rep-

resented as a mixture of latent topics, and each latent topic is characterized by a distribution over terms. 

In order to generate a term 𝑤𝑛
(𝑑)

 in document 𝑑, where 𝑛 is its position, we first draw a discrete topic 

assignment 𝑧𝑛
(𝑑)

 from a document-specific distribution over 𝑇 topics 𝜃𝑑, which is drawn from a prior 

Dirichlet distribution with hyperparameter 𝛼. Then we draw a term from the topic-specific distribution 
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over the vocabulary 𝜙
𝑧𝑛
(𝑑), which is drawn from a prior Dirichlet distribution with hyperparameter 𝛽. 

For inference, instead of directly estimating 𝜃 and 𝜙, Gibbs sampling is used to approximate them 

based on the posterior estimates of latent topic assignment 𝒛. The Gibbs sampling procedure considers 

each term in the documents in turn, and estimates the probability of assigning the current term to each 

topic, conditioned on the topic assignments to all other terms. Griffiths and Steyvers (2004) showed this 

could be calculated by: 

 
𝑝 (𝑧𝑛

(𝑑)
= 𝑡|𝒛−𝑑,𝑛,𝑊, 𝛼, 𝛽) ∝

𝐶𝑡|𝑑 + 𝛼

𝐶𝑑 + 𝑇𝛼
×
𝑁
𝑤𝑛
(𝑑)

|𝑡
+ 𝛽

𝑁𝑡 + 𝑉𝛽
 (1) 

where  𝑧𝑛
(𝑑)

= 𝑡 represents the topic assignment of term 𝑤𝑛
(𝑑)

 to topic 𝑡, and  𝒛−𝑑,𝑛 refers to the topic 

assignments of all other terms. 𝑊 denotes all terms in the document collection, 𝑉 denotes the size of 

vocabulary of the collection, 𝑇 is the number of topics in the corpus, 𝑁𝑤|𝑡 is the count of term 𝑤 under 

topic 𝑡, 𝑁𝑡 = ∑ 𝑁𝑤′|𝑡𝑤′ , and 𝐶𝑡|𝑑 refers the count of topic 𝑡 being assigned to some terms in document 

𝑑, 𝐶𝑑 = ∑ 𝐶𝑡′|𝑑𝑡′ . All these counts exclude the current term. 

3.2 Simple Pólya Urn Model 

Traditionally, the Pólya urn model is designed in the context of colored balls and urns. In the context of 

topic models, a term can be seen as a ball of a certain color and the urn contains a mixture of balls with 

various colors. The classic topic-word (or topic-term) distribution can be reflected by the color propor-

tion of balls in the urn. LDA follows the simple Pólya urn (SPU) model, which works as follows: when 

a ball of a particular color is drawn from an urn, that ball is put back to the urn along with another ball 

of the same color. This process corresponds to assigning a topic to a term in the Gibbs sampler of LDA. 

Based on the topic-specific “collapsed” probability of a term 𝑤 given topic 𝑡, 
𝑁𝑤|𝑡+𝛽

𝑁𝑡+𝑉𝛽
, which is essen-

tially the second ratio in (1), drawing a term 𝑤 will only increase the probability of seeing 𝑤 in the 

future sampling process. This self-reinforcing property is known as “the rich get richer”. In the next 

subsection, we will introduce the generalized Pólya urn (GPU) model, which increases the probability 

of seeing certain other terms when we sample a term. 

3.3 Generalized Pólya Urn Model 

The generalized Pólya urn (GPU) model differs from SPU in that, when a ball of a certain color is 

drawn, two balls of that color is put back along with a certain number of balls of some other colors. 

Unlike SPU, GPU sampling not only allows us to see a ball of the same color again with higher proba-

bility, but also increases the probability of seeing balls with certain other colors. These additional balls 

of certain other colors added to the urn increase their proportions in the urn. We call this the promotion 

of these colored balls. Applying the idea, there are two directions of promotion in our application (Note 

that in each sentence, we need to identify each phrase, but do not need to add any extra information): 

1. Word to phrase: When an individual word is assigned to a topic (analogous to drawing a ball of 

a certain color), each phrase containing the word will be promoted, meaning that the phrase will 

be added to the same topic with a small count. That is, a fraction of the phrase will be assigned to 

the topic. This is justified because it is reasonable to assume that the phrase is related to the word 

to some extent in meaning.  

2. Phrase to word: When a phrase is assigned to a topic, each component word in it is also promoted 

with a certain small count. That is, each word is also assigned the topic by a certain amount. In 

most cases, the head nouns are more important. Thus, we promote the head nouns more. For 

example, in “hotel staff”, “staff” is the head noun that determines the category of the noun phrase. 

The rationale of this promotion is similar to that above.  

Let 𝑤𝑛
(𝑑)

 be a word and 𝑝_𝑤 be the word itself or a phrase containing the word 𝑤𝑛
(𝑑)

. 𝑣 represents a 

term, and 𝑝_𝑣 indicates all the related terms of 𝑣. The new GPU sampling is as follows:  

 
𝑝 (𝑧𝑛

(𝑑)
= 𝑡|𝒛−𝑑,𝑛,𝑊, 𝛼, 𝛽, 𝐴) ∝

𝐶𝑡|𝑑 + 𝛼

𝐶𝑑 + 𝑇𝛼
×
∑ 𝑁𝑝_𝑤|𝑡𝐴𝑝_𝑤,𝑤𝑛

(𝑑) + 𝛽𝑝_𝑤

∑ ∑ 𝑁𝑝_𝑣|𝑡𝐴𝑝_𝑣,𝑣𝑝_𝑣𝑣 + 𝑉𝛽
 (2) 
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where 𝐴  is a 𝑉 × 𝑉 real-value matrix, each cell of which contains a real value virtualcount, indicating 

the amount of promotion of a term under a topic when assigning this topic to another term. 𝑉 is size of 

all terms. The new model retains the document-topic component of standard LDA, which is the first 

ratio in (1), but replaces the usual Pólya urn topic-word (topic-term) component, the second ratio in (1), 

with a generalized Pólya urn framework (Mahmoud 2008; Mimno et al., 2011). The simple Pólya urn 

model is a simplified version of GPU in which matrix 𝐴 is an identity matrix. In this paper, 𝐴 is an 

asymmetric matrix because the main goal of using GPU is to promote the less frequent phrases in the 

documents. 

4 EXPERIMENTS 

In this section, we evaluate the proposed method of considering phrases in topic discovery, and compare 

it with three baselines. The first baseline discovers topics using LDA in a traditional way without con-

sidering phrases, i.e., using only individual words. We refer to this baseline as LDA(w). The second 

baseline considers phrases by treating each whole phrase as a separate term in the corpus. We refer to 

this baseline as LDA(p). The third baseline considers phrases by keeping individual component words 

in the phrases as they are, but also adding phrases as extra terms. We refer to this baseline as LDA(w_p). 

We refer to our proposed method as LDA(p_GPU). Note that for those words that are not in any phrases, 

they are treated as individual words (or unigrams). 

Data Set: We use product reviews from 30 sub-categories (types of product) in the electronics domain 

from Amazon.com. The sub-categories are “Camera”, “Mouse”, “Cellphone,” etc (see the whole list 

below Figure 1). Each domain contains 1,000 reviews. Besides, we also use a collection of hotel reviews 

and a collection of restaurant reviews from TripAdvisor.com and Yelp.com. The hotel review data con-

tains 101,234 reviews, and the restaurant review data contains 25,459 reviews. We thus have a total of 

32 domains. We ran the Stanford Parser to perform sentence detection, lemmatization and POS tagging. 

Punctuations, stopwords, numbers and words appearing less than 5 times in each dataset are removed. 

Domain names are also removed, e.g., word “camera” for the domain Camera, since it co-occurs with 

most words in the dataset, leading to high similarity among topics/aspects. 

Sentences as Documents: As noted in (Titov and McDonald, 2008), when standard topic models are 

applied to reviews as documents, they tend to produce topics that correspond to global properties of 

products (e.g., product brand name), but cannot separate different product aspects or features well. The 

reason is that all reviews of the same product type basically evaluate the same aspects of the product 

type. Only the brand names and product names are different. Thus, using individual reviews for model-

ling is ineffective for finding product aspects or features, which are our topics. Although there are ap-

proaches which model sentences (Jo and Oh, 2011; Zhao et al., 2010; Titov and McDonald, 2008), we 

take the approach in (Brody and Elhadad, 2010; Chen et al., 2013), dividing each review into sentences 

and treating each sentence as an independent document. 

Noun Phrase Detection: Although there are different types of phrases, in this first work we focus 

only on noun phrases as they are more representative of topics in online reviews. We will deal with other 

types of phrases in the future. Our first step is thus to obtain all noun phrases from each domain. Due to 

the efficiency issue of full natural language parser with a huge number of reviews, instead of applying 

the Stanford Parser to recognize noun phrases, we design a rule-based approach to recognize noun 

phrases as consecutive nouns based on POS tags of sentences. Although the Stanford Parser may give 

us better noun phrases, our simple method serves the purpose and gives us very good results. In fact, 

based on our initial experiments, the Stanford Parser also gives many wrong phrases. 

Parameter Settings: In all our experiments, the posterior inference was drawn after 2000 Gibbs 

sampling iterations with a burn-in of 400 iterations. Following (Griffiths and Steyvers, 2004), we fix the 

Dirichlet priors as follows: for all document-topic distributions, we set 𝛼=50/𝐾, where 𝐾 is the number 

of topics. And for all topic-term distributions, we set 𝛽=0.1. We also experimented with other settings 

of these priors and did not notice much difference. 

Setting the number of topics/aspects in topic models is often tricky as it is difficult to know the exact 

number of topics that a corpus has. While non-parametric Bayesian approaches (Teh et al., 2005) do 

exist for estimating the number of topics, it’s not the focus of this paper. We empirically set the number 

of topics to 15. Although 15 may not be optimum, since all models use the same number, there is no 

bias against any model. 
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In Section 3.3, we introduced the promotion concept for the GPU model. When we sample a topic for 

a word, we add virtualcount of topic assignment to all its related phrases. However, not all words in a 

phrase are equally important. For example, in phrase “hotel staff”, “staff” is more important, and we call 

such words the head nouns. In this work, we apply a simple method used in (Wang et al., 2007), which 

is to always assume that the last word in a noun phrase is the head noun. Although we are aware of the 

potential harm to our model when we promote a wrong word, we will leave it as our future work. Again, 

because we want to connect phrases with their component words and promote the rank of phrases in 

their topics, we add less virtual counts to individual words. Thus, we add 0.5 * virtualcount to the last 

word in a phrase and add 0.25 * virtualcount to all other words. We set virtualcount = 0.1 in our exper-

iments empirically. 

Based on the discovered topics, we conduct statistical evaluation using topic coherence, human eval-

uation and also a case study to quantitatively and qualitatively show the superiority of the proposed 

method in terms of both interpretability and topic wellness. 

4.1 Statistical Evaluation 

Perplexity and KL-divergence are often used to evaluate topic models statistically. However, researchers 

have found that perplexity on held-out documents is not always a good predictor of human judgments 

of topics (Chang et al., 2009). In our application, we are not concerned with the test on future data using 

the hold-out set. KL-divergence measures the difference of distributions, and thus can be used to meas-

ure the distinctiveness of topics. However, distinctiveness of topics does not necessarily mean human 

agreeable topics. Recently, Mimno et al. (2011) proposed a new measure called topic coherence, which 

has been shown to correlate with human judgments of topic quality quite well. Higher topic coherence 

score indicates higher quality of topics, i.e., better topic coherence. Topic coherence is computed as 

below. 

 

𝑇𝐶(𝑡; 𝑉(𝑡)) = ∑ ∑ 𝑙𝑜𝑔
𝐷 (𝑣𝑚

(𝑡)
, 𝑣𝑙

(𝑡)
) + 1

𝐷 (𝑣𝑙
(𝑡)
)

𝑚−1

𝑙=1

𝑀

𝑚=2

 (3) 

in which 𝐷(𝑣) is the document frequency of term 𝑣 (i.e., the number of documents with at least one 

term 𝑣) and 𝐷(𝑣, 𝑣′) is the co-document frequency of term 𝑣 and term 𝑣′ (i.e., the number of documents 

containing both term 𝑣 and term 𝑣′). Also, 𝑉(𝑡) = (𝑣1
(𝑡)
, … , 𝑣𝑀

(𝑡)
) is the list of 𝑀 most probable terms 

in topic 𝑡. 1 is added as a smoothing count to avoid taking the logarithm of zero. 

We thus use this measure to score all four experiments. Figure 1 and Figure 2 show the topic coher-

ence using top 15 terms and top 30 terms respectively on the 32 different domains. Notice the topic 

coherence is a negative value, and a smaller absolute value is better than a larger one. Firstly, we can 

see from both charts that our proposed model LDA(p_GPU) is better than all other three baselines by a 

large margin. Secondly, the performance of the other three baselines are quite similar. In general, 

LDA(p) is slightly worse than the other two baselines. It is because replacing many words with phrases 

decreases the number of co-occurrences in the corpus. In contrast, LDA(w_p) is slightly better than the 

other two baselines on most domains because some frequent phrases add more reliable co-occurrences 

in the corpus. However, as we point out in the introduction, some problems still exist. Firstly, it does 

not solve the problem of phrases and their component words having different meanings, and thus artifi-

cially creating such wrong co-occurrences may damage the overall performance. Secondly, even if the 

number of co-occurrences increases, most of the phrases are still too infrequent to be ranked high in 

their associated topics to be useful in helping users understand the topic. 

In order to test the significance of the improvement, we conduct paired t-tests on the topic coherence 

results. Using both 15 top terms and 30 top terms, statistical tests show that our proposed method, 

LDA(p_GPU), outperforms all three baselines significantly (p < 0.01). However, there’s no significant 

improvement between any pair of the three baselines. 

4.2 Manual Evaluation 

Although several statistical measures, such as perplexity, KL-divergence and topic coherence, have been 

used to statistically evaluate topic models, since topic models are mostly (including ours) unsupervised, 
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statistical measures may not always correlate with human interpretations or judgments. Thus, in this 

sub-section, we perform a manual evaluation through manual labeling of topics and topical terms. 

Manual labeling was done by two annotators, who are familiar with reviews and topic models. The 

labeling was carried out in two stages sequentially: (1) labeling of topics and (2) labeling of topical 

terms in each topic. After the first stage, an annotator agreement is computed and then the two annotators 

discuss about the disagreed topics to reach a consensus. Then, they move on to the next stage to label 

the top ranked topical terms in each topic (based on their probabilities in the topic). For the annotator 

 

Figure 1: Topic coherence of the top 15 terms of each model on each of the 32 datasets. Notice that since topic coherence 
is a negative value, a smaller absolute value is better than a larger one.  

Domain/dataset names are listed as follows (1:Amplifier; 2:BluRayPlayer; 3:Camera; 4:CellPhone; 5:Computer; 
6:DVDPlayer; 7:GPS; 8:HardDrive; 9:Headphone; 10:Keyboard; 11:Kindle; 12:MediaPlayer; 13:Microphone; 14:Monitor; 
15:Mouse; 16:MP3Player; 17:NetworkAdapter; 18:Printer; 19:Projector; 20:RadarDetector; 21:RemoteControl; 22:Scan-
ner; 23:Speaker; 24:Subwoofer; 25:Tablet; 26:TV; 27:VideoPlayer; 28:VideoRecorder; 29:Watch; 30:WirelessRouter; 
31:Hotel; 32:Restaurant). 

 

Figure 2: Topic coherence of the top 30 terms of each model on each dataset. Notice again that since topic coherence is a 
negative value, a smaller absolute value is better than a larger one. X-axis indicates the domain id numbers, whose names 
are listed below Figure 1. 

  

Figure 3: Human evaluation on five domains using top 15 and top 30 terms. X-axis indicates the domain id numbers, whose 
corresponding domain names are listed below Figure 1. Y-axis indicates the ratio of correct topic terms. 
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agreement, we compute Kappa scores. The Kappa score for topic labeling is 0.838, and the Kappa score 

for topical terms labeling is 0.846. Both scores indicate strong agreement in the labeling. 

Evaluation measure. A commonly used evaluation measure in human evaluation is precision@n (or 

P@n for short), which is the precision at a particular rank position n in a topic. For example, Preci-

sion@5 means the precision of the top ranked 5 terms for a topic. To be consistent with the automatic 

evaluation, we use Precision@15 and 30. Top 15 terms is usually sufficient to represent the topic. How-

ever, since we include phrases in our experiments which may lead to some other terms ranked lower 

than using only words, we labeled up to top 30 terms. The Precision@n measure is also used in (Zhao 

et al., 2010) and some others, e.g., (Chen et al., 2013). 

In our experiments, we labeled four results for each domain, i.e., those of LDA(w), LDA(p), LDA(w_p) 

and LDA(p_GPU). Due to the large amount of human labeling effort, we only labeled 5 domains. We 

find that it is sometimes hard to figure out what some of the topics are about and whether some terms 

are related to a topic or not, so we give the results to our human evaluators together with the phrases in 

each domain extracted by our rules in order to let them be familiar with the domain vocabulary. The 

human evaluation results are shown in Figure 3. 

Results and Discussions. Again, we conduct paired t-tests on the human evaluation results of top 15 

and 30 terms. Statistical tests show that our proposed method, LDA(p_GPU), outperforms all other three 

methods significantly (p < 0.05) using both top 15 and top 30 terms. However, there’s no significant 

improvement between any pair of the three baselines. 

4.3 Case Study 

In order to illustrate the importance of phrases in enhancing human readability, we conduct case study 

using one topic from each of the five manually labeled domains. Due to space limitations, we only 

compare the results of our model LDA(p_GPU) with LDA(w). 

Table 1: Example topics discovered by LDA(w) and LDA(p_GPU) 

Hotel Restaurant Watch 

LDA(w) LDA(p_GPU) LDA(w) LDA(p_GPU) LDA(w) LDA(p_GPU) 

bed clean service service hand big 

comfortable comfortable star friendly minute hand 

small quiet staff server hour minute 

sleep sleep atmosphere staff beautiful cheap 

size large friendly atmosphere casual hour 

large spacious server waiter christmas automatic 

tv size waiter attentive setting seconds 

pillow king size bed attentive star condition line 

king pillow reason service staff worth hour hand 

chair queen size bed decor star service weight durable 

table bed size quick customer service red analog hand 

mattress bed nd pillow customer table service press hand move 

clean bed sheet waitress delivery service gift hand line 

double bed linen tip rush hour service run seconds hand 

big sofa bed pleasant service attitude functionality hand sweep 

Tablet MP3Player 
LDA(w) LDA(p_GPU) LDA(w) LDA(p_GPU) 

screen screen battery battery 

touch size headphone hour 

software easier life battery life 

hard pro media price 

pad touch screen car worth 

option bigger windows charge 

version area hour replacement 

website inch decent free 

angle screen protector reason market 

car screen size xp aaa battery 

charger inch screen program aa battery 

ipod draw aaa purchase 

worth home screen window hour battery 

gb screen look set aaa 

drive line pair life 
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In the above table, we notice that with phrases, the topics are much more interpretable than only 

reading individual words given by LDA(w). For example, “hand” in “Watch” domain given by LDA(w) 

is quite confusing at first, but in LDA(p_GPU), “hour hand” makes it more understandable. Another 

example is “aaa” in “MP3Player” domain. It is quite confusing at first, but “aaa battery” should make it 

more interpretable by an application user who is not familiar with topic models or does not have exten-

sive domain knowledge. Also, due to wrong co-occurrences created by individual words in a phrase, the 

LDA(w) results contain much more noise than those of LDA(p_GPU). 

5 CONCLUSION 

This paper proposed a new method to consider phrases in discovering topics using topic models. The 

method is based on the generalized Pólya urn (GPU) model, which allows us to connect phrases with 

their component words during the inference and rank phrases higher in their related topics. Our method 

preserves the advantages of “bag-of-words” assumption while preventing the side effects that traditional 

methods have when considering phrases. We tested our method against three baselines across 32 differ-

ent domains, and demonstrated the superiority of our method in improving the topic quality and human 

interpretability both quantitatively and qualitatively. 
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