
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers,
pages 541–552, Dublin, Ireland, August 23-29 2014.

An LR-inspired generalized lexicalized phrase structure parser

Benoit Crabbé
ALPAGE / INRIA - Université Paris Diderot

Place Paul Ricoeur
F-75013 Paris

benoit.crabbe@univ-paris-diderot.fr

Abstract

The paper introduces an LR-based algorithm for efficient phrase structure parsing of morpholog-
ically rich languages. The algorithm generalizes lexicalized parsing (Collins, 2003) by allowing
a structured representation of the lexical items. Together with a discriminative weighting com-
ponent (Collins, 2002), we show that this representation allows us to achieve state of the art
accurracy results on a morphologically rich language such as French while achieving more effi-
cient parsing times than the state of the art parsers on the French data set. A comparison with
English, a lexically poor language, is also provided.

1 Introduction

The paper provides a phrase structure parsing algorithm inspired by LR (Knuth, 1965), GLR (Tomita,
1988) and the recent developments of (Huang and Sagae, 2010) for dependency grammar. The parsing
algorithm comes with a discriminative weighting framework inspired by (Collins, 2002). Although dis-
criminative phrase structure parsing has been shown to be challenging when it comes to efficiency issues
(Turian and Melamed, 2006; Finkel et al., 2008), we use here several approximations that make the
framework not only tractable but also efficient and accurate on a lexically rich language such as French.

Despite the successes of dependency grammar, we are interested in phrase structure grammar since
it naturally allows to support compositional semantic representations as recently highlighted by (Socher
et al., 2012). It remains that most phrase structure parsers have been designed in priority for modelling
lexically poor languages such as English or Chinese (Collins, 2003; Charniak, 2000; Zhu et al., 2013).
Although highly accurate multilingual parsers exist (Petrov et al., 2006), they remain relatively both
slow for wide coverage purposes and their inner formal structure is not designed to handle naturally
morphological information.

We assume that parsing lexically rich languages benefits from taking into account the structured mor-
phological information that can be extracted from lexical forms. Using French as a case study we show
that we can reach both parsing efficiency with an approximative inference method and we can get a state
of the art accurracy by generalizing lexicalized parsing to handle feature structure-based word represen-
tations. Our proposal also differs theoretically from related ones (Sagae and Lavie, 2006; Zhang and
Clark, 2011; Zhu et al., 2013) by explicitly using an LR automaton. The explicit introduction of the
LR automaton allows us to establish a formal difference between shift reduce phrase structure parsing
and shift reduce dependency parsing. It further provides some insights on the nature of the grammar
underlying many contemporary parsers.

The paper is organized as follows. First, section 2, we set up a formal framework for describing
weighted phrase structure parsing as a 2-LCFG (Nederhof and Satta, 2010). Observing that the tree
structures are actually constrained in practice we formulate in section 3 an LR automaton construction
method for treebank grammars suitable for encoding these constraints. We then provide in section 4
a description of the algorithm and its components. Section 5 give an extension to 2-LCFG suitable
for parsing morphologically rich languages and meeting common practical requirements. The whole

This work is licensed under a Creative Commons Attribution 4.0 International Licence.

541

framework is then evaluated in section 6 on French and English allowing to better identify its properties
with respects to the state of the art.

2 Grammatical representation

The first step we consider is the grammar actually used for parsing and how it is generated. We suppose
here a bilexical context free grammar or 2-LCFG (Nederhof and Satta, 2010). A 2-LCFG is a CFG whose
rules are of the form given in Figure 1 (left). Symbols of the form x and h denote terminal symbols
while symbols of the form A[h] or A[x] denote lexicalized non terminals. A,B,C are non lexicalized
non terminals and h denotes a head. A 2-LCFG rule is typically of the form NP [cat]→ D[a]N [cat].

For practical robust parsing, 2-LCFG are grammars with a very large number of rules generated dy-
namically at runtime (Section 4). Most of the static grammatical preprocessing involved for the gen-
eration of an LR automaton only applies to the underlying delexicalized 2-CFG by ignoring lexical
annotation symbols.

A[h] → B[h]C[x]
A[h] → B[x]C[h]
A[h] → h

X:

Z

D

b

C

b

Y

B

a

A

a

X

Z:

D

b

C

b

Y:

B

a

A

a

Figure 1: 2-LCFG rule patterns and invalid 2-CFG trees

The first step towards robust parsing thus requires to generate a grammar suitable for this purpose. In
our case, the grammar is a treebank grammar and since most treebanks do encode trees with variable
branching arities we must transform it to match the 2-LCFG required pattern. The first step amounts to
apply an order 0 head markovization (Collins, 2003) which is followed by a reduction of unary rules.
Both transformations guarantee that the trees do follow strictly a Chomsky Normal Form (CNF). Trees in
CNF have two properties of interest. First, one can show by induction that they can be generated with a
constant number of derivation steps η for a sentence of length n : η = 2n−1. This property is in principle
critical for the comparison of weighted parsing hypotheses (Section 5) and explains why we use 2-LCFG

as a grammatical representation in the first place. Second, the binarization (markovization) procedure
also introduces temporary symbols we consider to be different from other non terminal symbols. These
temporary symbols are further constraining the tree structure. Using ’:’ to denote a temporary symbol
in Figure 1 (right), we observe for instance that the root of a tree cannot be temporary and two siblings
cannot be temporaries either. By contrast, arc standard dependency parsers such as the one of (Huang
and Sagae, 2010) do verify the first property while the second property is irrelevant in that case.

3 LR automaton construction

We use an LR automaton to enforce the parser to generate parse trees satisfying the above mentioned
structural constraints. Although, other proposals such as (Sagae and Lavie, 2006) apparently returns a
failure when the parser generates invalid trees and (Zhu et al., 2013) apparently handles the problem
with local constraints preventing the parser to generate invalid configurations, we use here an LR(0)
automaton to ensure that the parser globally enforces these constraints. This seemed to us theoretically
justified, easier to generalize (Section 6) and easier to implement.

As such, a traditional LR(0) parser (Knuth, 1965) is not suited for parsing natural language: it aims
to statically eliminate ambiguity from the grammar. Here, following (Tomita, 1985) the LR tables are
built without trying to resolve conflicts. Instead the conflicts are kept and determinism is brought by a
weighting component. The use of LR(0) tables aims to ensure that the parser actually generates valid
parse derivations. In this case, the generation of the derivations requires to constrain the underlying 2-
CFG grammar with respects to temporary symbols. This being said, building an LR(0) automaton for
robust treebank grammars raise two issues. The first is inductive, a grammar read off from a treebank is
not guaranteed to be robust and to generalize to other text, since a treebank remains a finite sample of
language. The second is practical : traditionalLR(0) compilation methods involve the determinisation of

542

the LR NFA which is exponential in the number n of states of this NFA. In case of very large ambiguous
treebank grammars n is very large and the compilation becomes intractable (Briscoe and Carroll, 1993).

These two observations lead us to design this automata by the following construction. First, let Σ be
the set of non terminal symbols read off from the treebank, T be the set of temporaries introduced by
binarization and N the set of non temporary symbols such that Σ = N ∪ T and N ∩ T = ∅. Second
we note W the set of terminal symbols extracted from the treebank and A ∈ N the unique axiom of this
grammar. We then partition Σ with the following set of equivalence classes: [a] = {A}, [t] = T and
[n] = Σ− (T ∪A). For convenience we also note [w] = W . Given these equivalence classes, we define
the matrix grammar Gm = 〈Σm, [w], [a], Rm〉 (where Σm = {[a], [n], [t]}). The rules Rm of Gm are
then designed to enforce the above mentioned tree well formedness constraints. Some possible such rules
are given in Table 1 using ID/LP notation (Gazdar et al., 1985).In other words, an immediate dominance
rule of the form a → b , c is expanded as two rules a → b c and a → c b. Such a grammar allows

[a]→ [n] , [t] [n]→ [n] , [t] [t]→ [n] , [t]
[a]→ [n] , [n] [n]→ [n] , [n] [t]→ [n] , [n]
[a]→ [w] [n]→ [w]

Table 1: Example of Immediate Dominance rules for Gm
to enforce the above-mentioned constraints, it is also small and it is robust : L(Gm) = [w]+. We can
then very easily build a deterministic LR(0) automaton Am = 〈Σm ∪ {[w]}, Q, i, F,Em〉 with classical
methods (Aho et al., 2006). From this automaton we can then efficiently generate an expanded automaton
Aexp = 〈{Σ ∪W}, Q, i, F,E〉 where E = {(q, a, q′) | (q, [x], q′) ∈ Em, ∀a ∈ [x]}. In order to read off

the LR(0) table from Aexp, we consider the set of actions A def
= {RL(X)|X ∈ Σ} ∪ {RR(X)|X ∈

Σ} ∪ {RU(X)|X ∈ Σ} ∪ {S} first introduced by (Sagae and Lavie, 2006). In short S denotes the
shift action, RU(X) denotes an unary reduction by terminal X , RL(X) denotes a binary reduction by
terminalX with left symbol marked as head, andRR(X) denotes a binary reduction by terminalX with
right symbol marked as head. By contrast with a classical LR action set, we extract the actions RL(X)
and RR(X) from a state q ∈ Q if we have an LR item of the form 〈X → AB•〉 without requiring that
〈X → BA•〉 ∈ q. This simplification, mirrorring that of (Sagae and Lavie, 2006), reduces the number
of actions, eases learning and makes parsing more efficient. This being said, the matrix grammar Gm
given in Table 1 is not the only one possible (see also section 6). A valid rule set must enforce tree well
formedness constraints by building upon a partition of Σ in equivalence classes. On the other hand the
action set A defined here implies that for every rule R ∈ Rm of the form [x] → [y] [z] there is a rule
R′ ∈ Rm of the form [x]→ [z] [y]. That is why we formulate the rules Rm with ID/LP notation and this
also means that we cannot express any word ordering constraint with this grammar. This last property is
actually shared by many robust parsers.

4 Discriminative LR-based parsing

The LR tables being built by preserving conflicts, determinism is achieved by a weighting component
derived from the global perceptron described by (Collins, 2002). We start by describing the weighted
parsing procedure before turning our attention to the weight estimation problem.

We assume that anLR(0) table has been built. The GOTO function of this table GOTO: (Σ∪W)×N 7→
N sends a couple of symbol and LR state to a new LR state. The ACTION: (N ×W) 7→ 2A function of
this table returns a set a of possible actions given a state and a terminal symbol. The initial LR state of
the table is σi while σe denotes a final state.

The algorithm relies on two data structures: a stack S and a queue. The stack S = . . . |s2|s1|s0 has
s0 for topmost element. A node si = 〈σ, τ〉 in the stack is a couple where σ is an LR state number and
τ = (si.ct[si.wt] si.cl[si.wl] si.cr[si.wr]) encodes a local tree of depth 1. si.ct, si.cl, si.cr denote
the root left child and right child categories of tree and si.wt, si.wl, si.wr denote the root, the left child
and right child terminals of this tree such that a node si.c·[si.w·] denotes a non terminal 2-LCFG symbol
at node si in the stack. The queue is static and initially filled up with the sequence of tokens to be parsed:

543

ITEM 〈j,S〉 : w
INIT 〈1, 〈σi, ε〉〉 : 0
GOAL 〈n+ 1, 〈σe, τ〉〉 : w

SHIFT
〈j,S	 | s0=〈σ,_〉〉:w

〈j+1,S	 | s0 | 〈GOTO(tj ,σ), (tj [tj] _ _)〉 :w+F (S,〈j,S〉)

RL(X) 〈j,S	 | s2=〈σ2,_〉:w2 | s1=〈σ1,(s1.ct[s1.wt] _ _)〉:w1 | s0=〈σ0,(s0.ct[s0.wt] _ _)〉〉:w0

〈j,S	 | s2 | 〈GOTO(X,σ2),(X[s1.wt] s1.ct[s1.wt] s0.ct[s0.wt])〉:w0+F (RL(X),〈j,S〉)

RR(X) 〈j,S	 | s2=〈σ2,_〉:w2 | s1=〈σ1,(s1.ct[s1.wt] _ _)〉:w1 | s0=〈σ0,(s0.ct[s0.wt] _ _)〉〉:w0

〈j,S	 | s2 | 〈GOTO(X,σ2),(X[s0.wt] s1.ct[s1.wt] s0.ct[s0.wt])〉:w0+F (RR(X),〈j,S〉)

RU(X) 〈j,S	 | s1=〈σ1,(s1.ct[s1.wt] _ _)〉 | s0=〈σ0,(s0.ct[s0.wt] _ _)〉〉:w0

〈j,S	 | s1 | 〈GOTO(X,σ1),(X[s0.wt] s0.ct[s0.wt])〉:w0+F (RU(X),〈j,S〉)

GR 〈j,S	 | s1=〈σ1,(s1.ct[s1.wt] _ _)〉 | s0=〈σ0,(s0.ct[s0.wt] _ _)〉〉:w0

〈j,S	 | s1 | 〈GOTO(GR,σ1),(s0.ct[s0.wt] _ _)〉:w0+F (GR,〈j,S〉) (Rule introduced in section 5)

Figure 2: Actions as inference rules in extended deductive notation

T = t1 . . . tn. Parsing is performed by generating sequentially configurations Ci = 〈j,S〉 where S is a
stack and j the index of the first element of the queue. Given an initial configuration C0 = 〈1, 〈σi, ε〉〉,
a derivation step Ci−1

ai−1⇒ Ci generates a new configuration Ci = 〈j′,S′〉 provided a configuration
Ci−1 = 〈j,S	|〈σ, τ〉〉 by applying the action ai−1 ∈ ACTION(σ, tj). A k−step derivation sequence
C0⇒k is a sequence of derivation steps such that C0

a0⇒ . . .
ak−1⇒ Ck. A derivation sequence is finished

when the configuration C3n−1 = 〈n+ 1, 〈σ, τ〉〉 is generated1. If σ = σe then the derivation is a success,
otherwise it is a failure. A derivation is also finished when ACTION(σ, tj) = ∅ for a configuration
Ck = 〈σ, tj〉 which is another case of failure. The actions detailed in Figure 2 using extended deductive
notation are responsible for modifying the stack and updating LR states. The shift action, SHIFT, thus
pushes onto the stack a local tree rooted by the category of the next token in the queue. The reduce left
RL(X) and the reduce right RR(X) actions pop the top two elements from the stack and push a new
element of category X[w] on top of it. The two actions differ only by the way the head w is assigned:
RL(X) chooses w to be X’s left child head word while RR(X) sets w to be X’s right child head word.
RU(X) is an unary reduction action that pops the stack top and pushes a new top element with category
X whose head is its unique child head. By design of the automaton we ensure that RU(X) can only be
applied after a shift reduction took place.

In order to achieve disambiguation, a derivation sequence C0⇒k = C0
a0⇒ . . .

ak−1⇒ Ck is also weighted
by a function of the form:

W (C0⇒k) = w ·Φg(C0⇒k) =
k−1∑
i=0

w ·Φ(ai, Ci)

that is the weight of a derivation sequence is given by an inner product that the parser approximates as
a sum of inner products local to each derivation step. w ∈ Rd is a d-dimensional vector of weights and
each Φ(ai, Ci) ∈ {0, 1}d is a d-dimensional vector of feature functions in which every φi has signature
φi(a,κ, j). The values a and j denote an action and the current index of the head of the queue in T while
κ is a kernel vector similar to the one defined by (Huang and Sagae, 2010). It summarizes information
accessible from the stack for the purpose of feature function evaluation. Figure 3 illustrates the actual
kernel vector used in this paper: together with j, the index of the first element in the queue, the kernel

1For shift reduce parsing with a 2-CFG grammar, the number of steps is the number of reduction steps plus n shifts:
η = 2n− 1 + n = 3n− 1.

544

vector κ is the set of values accessible to feature functions φi(a,κ, j) in the stack. As can be seen the
stack stores local trees with instanciated 2-LCFG nodes labelled with the notation introduced in section
4. Since the score of a derivation is a sum of independent terms, the (prefix) weight w = W (C0⇒k) of a
derivation sequence can be computed at each derivation step. This allows to store the (prefix) weight of
this sequence on configurations such that a configuration has the extended form Ck = 〈j,S〉 : w in the
weighted case. We make explicit the actual prefix weight computation in Figure 2 by using the following
abbreviation: F (ai, Ci) = w ·Φ(ai, Ci).

s0.ct[s0.wt]

s0.cr[s0.wr]s0.cl[s0.wl]

s1.ct[s1.wt]

s1.cr[s1.wr]s1.cl[s1.wl]

s2.ct[s2.wt]

Figure 3: Representation of the kernel vector κ

For a given input sequence T , the parser is naturally non deterministic. Non determinism is introduced
by the ACTION function which returns a set a ∈ 2A of possible actions given the current configuration.
In the nondeterministic case, we thus derive from a given derivation sequence C0⇒k−1 a set δ(C0⇒k−1)
of k−steps derivation sequences. If we let GENk−1(T) be the set of derivation sequences at step k − 1,
the set of derivation sequences at step k is GENk(T) =

⋃
C0⇒k−1∈GENk−1(T) δ(C0⇒k−1). In this context,

achieving deterministic parsing amounts to solve the following optimization problem:

Ĉ = argmax
C0⇒3n−1∈GEN3n−1(T)

W (C0⇒3n−1) (1)

Since in the worst case, the size of GENk(T) is |A|k, the search space has exponential size. Like
(Zhu et al., 2013), we use in this paper a beam search approximation. A beam GENKk (T) is a
subset of size K of GENk(T). Provided a beam GENKk−1(T) we build GENKk (T) with the fol-
lowing recurrence: GENKk (T) = K-argmaxC0⇒k∈∆(GENK

k−1(T))W (C0⇒k) where ∆(GENKk−1(T)) =⋃
C0⇒k−1∈GENK

k−1(T) δ(C0⇒k−1), Using a beam aims to reduce complexity toO(K|A|(3n−1)) ≈ O(n)
and makes inference computationally tractable in practice. On the other hand it makes inference incom-
plete (the parser may fail to find a solution even if it exists) and does not guarantee the solution to be
optimal. In other words, Equation 1 is replaced by an approximation:

C̃ = argmax
C0⇒3n−1∈GENK

3n−1(T)

W (C0⇒3n−1) (2)

The weight estimation procedure is performed by the averaged percetron algorithm (Collins, 2002).
As pointed out by (Huang et al., 2012) using a beam introduces an approximation that can also harm
the convergence of the learning procedure since we provide at each training iteration the approxima-
tive solution given by equation 2 instead of the exact solution to equation 1 expected in theory by
the perceptron algorithm. To overcome the problem we perform updates on subderivation sequences.
Let C(r)

0⇒k be a subderivation sequence at step k and let C(0)
0⇒k = argmaxC0⇒k∈GENK

k (T)W (C0⇒k)
be the best subderivation in the beam at step k. In this context the perceptron update has the form:
w ← w + Φg(C

(r)
0⇒k) − Φg(C

(0)
0⇒k) . We tested two methods for choosing k satisfying the weaker

convergence criterions established by (Huang et al., 2012) : C
(0)
0⇒k 6= C

(r)
0⇒k and W (C(0)

0⇒k) >

W (C(r)
0⇒k). If we let V = {k |C(0)

0⇒k 6= C
(r)
0⇒k,W (C(0)

0⇒k) > W (C(r)
0⇒k)}, then the early update

method amounts to choose k = mink∈V k and the max violation update method amounts to choose
k = argmaxk∈V W (C(0)

0⇒k)−W (C(r)
0⇒k).

5 Generalisations

This section introduces two extensions to the algorithm meeting practical motivations: grammar relax-
ation and extended word representations.

545

In practical cases, it may be convenient to interface the parser with a morphological tagger. In this case
terminal symbols t1 . . . tn are part of speech tags. Since grammar transformations introduced in section
2 can potentially modify the tagset and since enforcing a strict Chomsky normal form in this case makes
little sense, we allow the trees to have structures such as the one given in Figure 4.

NP

NP:

AP

A

N

D

Figure 4: Relaxed tree structure

This kind of structure licences the following new
patterns of 2-CFG rules: A → B t and A → tB
where t denotes a terminal symbol (in this case a
tag). These new rule patterns modify a property of
2-LCFG on which we relied so far, η is now variable :
n− 1 ≤ η ≤ 2n− 1. We observe that longer deriva-
tion sequences tend to have an higher weight. Indeed
weights increase linearly with the length of the derivation sequence as illustrated in Figure 5 where the
weights are averaged out of measurements made over the parses on the French development set described
in Section 6.

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

0 10 20 30 40 50 60

0
20

00
40

00
60

00
80

00

Ck

W
ei

gh
t(

C
k)

Figure 5: Average derivation weight as a function of the derivation length

Although weights can in principle be positive or negative, this apparently counter-intuitive behaviour
is caused by the beam which keeps for further steps only the highest weighted configurations. To further
study the behaviour of variable length sequences, we define two variants of the parser: first the ’naive’
variant modifies the termination condition. Let S = {C0⇒k|Ck = 〈n+1, 〈σe, τ〉〉, 2n−1 ≤ k ≤ 3n−1}.
In this context, equation 2 is reframed as: C̃ = argmaxC0⇒k∈S W (C0⇒k) . A second version, called the
’synchronized version’ introduces an additional inference rule called the Ghost Reduction and referred
as GR in Figure 2. A slight modification of the LR automaton construction, designed to trigger either an
unary reduction action or a Ghost reduction after a shift allow us to enforce the property that η = 3n− 1
in this case too. The ghost reduction is designed to both make the parser ’wait’ one step during derivation
in case it chooses not to perform an unary reduction after shift and also to avoid modifying the content
of the stack.

The second extension allows terminals to be not only lexical tokens or part-of-speech tags but arbi-
trary tuples ω. This allows to encode words with an arbitrary set of additional structured features such
as their lemmas, gender, number, case, semantic representation. The exact nature of these additional
features depends on the capacity of a parsing preprocessor to actually supply them. In this context the
non terminal symbols of the 2-LCFG have thus the form A[ω]. The fields of the tuples are then made ac-
cessible to feature functions. This extension is motivated by the hypothesis that parsing morphologically
rich languages will benefit significantly from structured word representations, for instance allowing the
parser to take advantage of morphology.

We are now in position to describe the feature templates used by the parser (Figure 6). Before the dot
si and qi denote respectively the address in the stack and in the queue of the adressed node. t, l, r denote
the top, left and right nodes of the local trees in the stack. After the dot wc, wf denote a category and a
word form, while c is a constituent category. wm denote the mood of a verb and wX an refined category
dubbed subcat in the French Treebank (Abeillé et al., 2003): these subcategories refine crude tags by
encoding information such as the definiteness of a determiner, subtypes of adjectives etc. gen, num, agr

546

s0t.wc & s0t.c s0t.wf & s1t.wf s0t.c& s1t.c& s2t.c s0t.c& q2.wc & q3.wc Agreement
s0t.wf & s0t.c s0t.wf & s1t.c s0t.wf & s1t.c& s2t.c s0t.c& q2.wf & q3.wc s0tc& e(s0t.agr, s1t.agr)& s1t.c
s1t.wc & s1t.c s0t.c& s1t.wf s0t.c& s1t.wf & q0.wc s0t.c& q2.wc & q3.wf s0tc& e(s0t.num, s1t.num)& s1t.c
s1t.wf & s1t.c s0t.c& s1t.c s0t.c& s1t.c& s2t.wf s0t.c& s0r.c& s1t.c s0tc& e(s0t.gen, s1t.gen)& s1t.c
s2t.wc & s2t.c s0t.wf & q0.wf s0t.c& s1t.c& q0.wc s0t.c& s0r.c& s1t.wf s0tc& e(s0t.agr, q0.agr)& q1.wc

s2t.wc & s2t.c s0t.c& q0.wf s0t.wf & s1t.c& q0.wc s0t.w& s0r.c& s1t.wf s0tc& e(s0t.gen, q0.gen)& q1.wc

q0.wc & q0.wf s0t.c& q0.wc s0t.c& s1t.wf & q0.wc s0t.c& s0l.wf & s1t.c s0tc& e(s0t.num, q0.num)& q1.wc

q1.wc & q1.wf q0.wf & q1.wf s0t.c& s1t.c& q0.wf s0t.c& s0l.c& s1t.wf s0tc& e(s0t.agr, q1.agr)& q1.wc

q2.wc & q2.wf q0.wf & q1.wc s0t.c& q0.wc & q1.wc s0t.c& s0l.c& s1t.c s0tc& e(s0t.num, q0.num)& q1.wc

q3.wc & q3.wf q0.wc & q1.wc s0t.c& q0.wf & q1.wc Mood s0tc& e(s0t.gen, q0.gen)& q1.wc

s0l.wf & s0l.c s1t.wf & q0.wf s0t.c& q0.wc & q1.wf s0t.wm & s1t.wf Subcat
s0r.wf & s0r.c s1t.wf & q0.wc s0t.c& q1.wc & q2.wc s0t.wf & s1t.wm s0t.wX & s1t.wf

s1l.wf & s1l.c s1t.c& q0.wf s0t.c& q1.wf & q2.wc s0t.c& s1t.wm s0t.wf & s1t.wX

s1r.wf & s1r.c s1t.c& q0.wc s0t.c& q1.wc & q2.wf s0t.wm & s1t.c s0t.c& s1t.wX s0twX & s1t.c

Figure 6: Parser templates

denote the gender, the number and their interaction. The notation e(·, ·) is an equality function returning
true if the values of both its argument are equal.

6 Experiments

The following experiments aim to identify the contribution of the components of the parser both to
parsing accurracy and to parsing speed. Experiments are carried mainly on French. A final set of tests is
also carried out on English in order to highlight the generality of the framework and to ease comparisons
with other proposals.

6.1 Protocol

The experiments use the French SPMRL dataset (Seddah et al., 2013) which is newer and larger than
datasets previously used for parsing French (Crabbé and Candito, 2008). It instanciates the full French
Treebank described in (Abeillé et al., 2003) and will surely become the new standard data set for parsing
French in the next few years. We use this data set as is, with two scenarios: one with gold standard tags
and the second with tags predicted by a 97.35% accurate tagger (Seddah et al., 2013). The French data
is head annotated with head rules provided by (Arun and Keller, 2005). Additionally, compound word
structures are systematically left headed. For English, we use the Penn Treebank with standard split:
section 02-21 for training, section 22 for development and section 23 for test. The predicted scenario
uses the MELT tagger (Denis and Sagot, 2012) with an accurracy of 97.1%. The head annotations have
been inferred by aligning the phrase structure treebank with its dependency conversion described by (de
Marneffe et al., 2006).

We use a C++ implementation of the algorithm described above for running the experiments. Scores
reported for the Berkeley parser (Petrov et al., 2006) use the runs described by (Seddah et al., 2013).
F-score is measured with the classical evalb and times are measured on the same machine (MacOSX
2.4Ghz) and do not take into account input/output times for both parsers.

Each experiment modifies a single experimental variable by contrast with a default parser configura-
tion. The default parser configuration sets the beam size to K = 4 and uses the naive synchronisation
procedure (Section 5). The LR automaton uses the grammar G(base)

m (Figure 7) and the update method is
early update (Section 4). The set of templates is given in Figure 6 except for English where agreement,
mood and subcat are ignored since there is no morphology directly available.

Experiment 1 This first experiment tests the impact of the beam size by running the parser with
different sizes: K = 2,K = 4,K = 8,K = 16.

Experiment 2 The second experiment contrasts the naive synchronisation (naive) with the ghost
reduction synchronisation (sync) described in section 5.

547

Experiment 3 This third experiment contrasts two different matrix grammars (Figure 7). This exper-
iment aims to test whether we can take advantage of the LR automaton to better account for compound
words encoded in the French data. To this end we designed two matrix grammars generating two dif-
ferent automata. In Figure 7, the top left tree is an example of the representation of compound words
in the French data set. The corresponding binary structure is given on bottom left. The general gram-
mar G(base)

m encodes a matrix grammar that does not specifically handle compound words and for which
equivalence classes are [a] the axiom symbol, [n] non terminal symbols and [w] terminal symbols. Each
temporary non terminal t ∈ T yields its own equivalence class. The grammar G(cpd)

m adds further equiv-
alence classes: [n]cpd gathers non terminals marked as compounds (cpd) and is disjoint from [n], the non
compound non terminals. T(cpd) gathers temporary symbols marked as compounds and is disjoint from
T . From these two matrix grammar we generate two different LR automata with one of them encoding a
specific subgrammar for compounds (cpd) while the other is a generic grammar (base).

NCcpd

NC

marché

P

de

NC

part

NCcpd

NC

marché

NC:cpd

P

de

NC

part

Immediate dominance rules for Gbase
m

[a]→ [n] [n] [n]→ [n] , [n] t→ [n] , [n] (∀t ∈ T)
[a]→ [n] , [w] [n]→ [n] , [w] t→ [n] , [w] (∀t ∈ T)
[a]→ [w] [w] [n]→ [w] , [w] t→ [w] , [w] (∀t ∈ T)
[a]→ [w] [n]→ [w] t→ [n] , t (∀t ∈ T)
[a]→ [n] , t (∀t ∈ T) [n]→ [n] , t (∀t ∈ T) t→ [w] , t (∀t ∈ T)
[a]→ [w] , t (∀t ∈ T) [n]→ [w] , t (∀t ∈ T)

Additional immediate dominance rules for Gcpd
m

[a]→ [n]cpd , [n] [n]→ [n]cpd , [n] t→ [n]cpd , [n] (∀t ∈ T)
[a]→ [n]cpd , [n]cpd [n]→ [n]cpd , [n]cpd t→ [n]cpd , [n]cpd (∀t ∈ T)
[a]→ [n]cpd , [w] [n]→ [n]cpd , [w] t→ [n]cpd , [w] (∀t ∈ T)
[a]→ [n]cpd , t (∀t ∈ T) [n]→ [n]cpd , t (∀t ∈ T) t→ [n]cpd , t (∀t ∈ T)
[n]cpd → [w] , [w] [n]cpd → tcpd , [w] (∀tcpd ∈ Tcpd) tcpd → tcpd , [w] (∀tcpd ∈ Tcpd)
[n]cpd → [w] tcpd → [w] , [w] (∀tcpd ∈ Tcpd) tcpd → [w] (∀tcpd ∈ Tcpd)

Figure 7: Structured representation of compound words (French data set) and related matrix grammars.

Experiment 4 This experiment contrasts early update with max violation update. Max violation
update is trained over 12 epochs, while early update is trained over 25 epochs

Experiment 5 This last experiment contrasts the use of morphology. We remove (no-morph) the tem-
plates under mood, agreement and subcategories in Figure 6 in order to assess their impact.

6.2 Results

Results with respect to accurracy are given in table 2. Experiments are carried out on the development
set with gold part of speech tags (Table 2, left) and predicted part of speech tags (Table 2, right).

Experiment 1 The parser achieves its best result with a beam of size 8 (K = 8). Quite surprisingly it
achieves already a very correct score with a beam of size 4. We observe that increasing the size of the
beam does not proide significant improvements. Using beams of size 16 (or even 32) only bring marginal
accurracy improvements, if any, at the expense of more important parsing times.

Experiment 2 This second experiment is apparently more disappointing: synchronisation does not
seem to play a significant role on accurracy, or a detrimental one if any. This effect seems caused by
a property of the dataset. A more careful analysis of the parser error patterns shows that the parsing
model naturally misses many unary reductions. Since the naive automaton is biased towards predicting
longer sequences with higher weights, it somehow helps to favor longer derivations containing more
unary reductions, hence improving the accurracy.

548

French dev (gold tags)
Expérience F≤ 40 F Cov
K=2 85.40 82.74 98.6
K=4 86.52 83.69 99.5
K=8 86.80 84.31 99.9
K=16 86.49 83.95 99.9
sync 86.41 83.66 99.6
naive 86.52 83.69 99.5
cpd 86.30 83.30 99.2
base 86.52 83.69 99.5
Max Violation 85.98 83.49 99.5
Early Update 86.52 83.69 99.5
no-morph 85.23 82.43 99.8
all-morph 86.52 83.69 99.5

French dev (predicted tags)
Expérience F≤ 40 F Cov
K=2 83.24 80.42 98.9
K=4 84.32 81.34 99.4
K=8 84.43 81.79 99.8
K=16 84.59 81.94 99.8
sync 84.06 81.14 99.9
naive 84.32 81.34 99.4
cpd 83.84 81.17 99.0
base 84.32 81.34 99.4
Max Violation 83.42 80.56 99.5
Early Update 84.32 81.34 99.4
no-morph 83.68 81.05 99.8
all-morph 84.32 81.34 99.4

Table 2: Experimental results (development)

Experiment 3 This experiment highlights the problems related to further constraining a parser with
approximative search: we observe that parsing coverage is reduced. This can be explained by the fact
that further constraining the grammar creates less success states in the automaton and that the parser
sometimes has to perform less local decisions without all the necessary information available. This
suggests for further work that a more constrained matrix grammar should be used with a more robust
search strategy than simple beam search.

Experiment 4 In experiment 4, we observe that max violation update converges twice as fast as early
update but we experienced more overfitting problems explaining the lower scores. It is however harder
to achieve fair comparisons since the number of iterations is significantly different.

Experiment 5 This last experiment is probably the most significative. We observe that morphology
is the variable that allows the parser to improve significantly on French (dev F=81.79). This result thus
confirms those observed by (Hohensee and Bender, 2012) on several languages for dependency parsing,
yet we had to isolate agreement, refined subcategories and verbal mood to get significant improvements
(Figure 6).

Final tests In order to compare this proposal with current state of the art parsers, we provide com-
parative measures of speed and accurracy with the Berkeley parser (Petrov et al., 2006), known to be
representative of the state of the art in accurracy and in speed on French and in accurracy on English
(Table 3).

French Test (gold tags) F≤ 40 F Cov
K=8 87.14 84.20 99.8
Berkeley 86.44 83.96 99.9
French Test (predicted tags) F≤ 40 F Cov
K=8 84.33 81.43 99.8
Berkeley 83.16 80.73 99.9
French test (raw text) F≤ 40 F Cov
Berkeley 83.59 81.33 99.9
English test (gold tags) F≤ 40 F Cov
K=8 90.2 89.5 100
English test (pred tags) F≤ 40 F Cov
K=8 89.7 89.1 100
English test (raw text) F≤ 40 F Cov
Berkeley - 90.1 -

Table 3: Experimental results (test)

549

Interestingly parsing the English dataset with templates designed on French data is almost state of the
art on English (dev F=89.3, test F=89.1). This suggests that feature engineering is a less important issue
than often thought and it also suggests that the parser is likely to be easy to adapt to other languages by
generalizing the method used to parse English.

Although the differences are modest, the parser is state of the art on French (F=81.43) if we compare
with the Berkeley parser (F=80.73) known to be indicative of the state of the art on French (Seddah et
al., 2013) and if we ignore ensemble and semi-supervised parsers.

The most important difference is related to speed. (Petrov et al., 2006) is reported to be the fastest
phrase structure parser for English by (Huang and Sagae, 2010) where the authors compare with (Char-
niak, 2000). Yet (Petrov et al., 2006) is a polynomial time parser, while this one has linear time behaviour.
We compared the speed of both parsers on the same hardware (ignoring input/output times) and we find
(Petrov et al., 2006) has an average parse time of tµ = 0.28s with maximum tmax = 10.27s while
our linear time algorithm has mean time tµ = 0.06s and maximum tmax = 0.1s with beam 4 and
tµ = 0.1s, tmax = 0.5s with beam 8 (Figure 8). Further constraining the automaton shows to be useful
for speed, since for experiment 3, tµ = 0.04s with K = 4 which is clearly faster.

+
+

+ +++
+

+ + +++

+

+
+++

+

+ ++++
+

+++ ++ +++

+

++ + + +
++

+
+

+
++ +++ ++++

+
++

+
+ +

+

++ ++++ +++
+

+

+

+++ ++
+++

++++ + +
+

++

+

+
+ +

+

+

+
+

+

+ ++
+++

+
+

+
++

+
+

+
++

+

++
++ +

+

+
+++

++

+
+

+
+

+

+
++

+

+ ++

+
+

+

+

+

+

+

+++

+
++

+ + +
+

+

++
+

+

+++++ +
+

++ ++ ++
+

++ ++

+

+
+

+++ ++
+

+++
++ +++ ++ ++

+
+ +

++
++

+

+
++

++ +

+
+

+
++++ ++ +

+ + + +++ + ++
+++

+ ++ +++++ +++++
+

+ +++ +++ ++++++++++ +++

+

++ +
++

++ +++ +++ +++

+

+ +++

+

+++++ ++ +++ +++

+

+ +++

+

+ ++
+

+
++

+
++ +++

+

+ +++

+
++ + ++++ ++ + +

++

+

+ +
+

+
++ + +
+ ++

+
+

+
++

+ + ++
++ +

+

++ + +
+ +++ ++ + ++++ +

+

++ ++++ + ++++
+

++ +++
+

+++ +

+
+

+

++ +

+

+ +

+

++
+

+ +

+

+
++++

+

+
+

+ +++
++++

++
++++ +++ ++ ++ ++ +++ +

+
+

++++ + ++ +++ ++
+

++
+

+

+
+

+

++ + +
++

+

++++

++

+

+++
+

+

++ +
++++ +++ ++++

++
+

+
+ +

+
++

+
++ ++++ ++ ++++ +++

+

+
+

+
+

++++ + +++
+

+

+

+

+

+ +

+

+ ++
+

+
+

++ + + ++
++

+

+

+ ++++ +
++

+
++

+
+

++
+

++ ++
+++

+

+

+

+ ++
+

+ +
+

+
+

+

+
+

+

+

++
+

+
+

+ + +
++

+
+

+
+

+

+ ++ ++
+ +

+

+
+

+
+

+
+

+ +
+

+
+

+
+++

+ ++
++

+
+

++ + ++ ++ +
+ + + + ++++

+
+++ + ++

++ ++ +
++++ +

+++
+++

+
+++ +

+

+++ +++ +
+ ++ +++

+++ +++ ++

+
+

+ ++ + ++ +++++ + +
++

+
+

++
+

+

+

+ +++++ ++ +
++

++
+

++++
+++++ ++ +
+

+ +
+

+ ++

+

+ +
++ +

+

+++ +
+ +

+
+

+++++ +++ +

+

++ ++++ ++ +
+

++

+

++
+

+
+++ +

+ ++ +
+ ++++ ++ ++

+ +
++ ++ +

+

+

+
+

+++ + +++ ++
++

+

+

+

+

+

+

+++++ ++ ++ ++
++

++ ++

+

+
++ +

+++

++ +

+

+ + + +++
+

+++ ++ +++ +++

+

+++ +
+

+
+

+

+
+

++

+ +
++ + +

+ + +
++

+
+

++ ++
+

+

+
++++ +++ +++ +++ ++ +++ +++++++ +++ +++ + ++

+

+
+ ++ ++

++
++

++
+

+

++ +

+

++ ++

+

+ +++
+

++++ + + +++
+

++++
+

+

++ +

++
++

+
+

+

+

+

+++

+

+

+
+++

+

+

+

+++

+

+

+
++ + ++++

++
+ ++

+

+

++ +++++ ++++ + ++ +++ ++
++ +++++++++ ++ ++++ +++
+++++ ++++
+

++ + +
+

+ ++ ++ ++++ + ++ +++++
+++ +++ +++ +++++ +

+
+ ++++ ++ + ++++ + + +

++ ++++
+

++++ + +
+ +++ ++ +++ ++

+
++ +++ + ++

+
+

+
+ ++

+
+

+
+ + +++ +
+

+
+ +++

+
+

+

+

+

+ +++ + +++
+

+ ++
+

+ ++
+++ ++ ++ +++ ++

+

+ ++ + ++

+

+
+

+ +++ ++ +++++ ++ + +
+

+
+ ++

+
+

+
+ ++++

+

++ +++

+

+

+++++
+

+ +
+

+

+
+++ ++

++++++ ++ +
+

+

++ +
+

+

+

+

+
+ +

+
++ +++ ++++++ +

++++ +++++ + ++

+

++ +

+

++
+

+ ++ + +++

+

+
+++

+ ++ ++++ ++ ++ +
+

+ + ++++ ++
+ +

+
++

++ ++

+
++

+ ++

+
+ ++

++ +
+

++
+

++
+

+

+

+
+

+ + +++ +++ ++ + +
+ +

+
++

+
+

++
+ + +

+
++

+ ++

+
+

+

+

+ ++ +
+

++++++

+
++ + +++ + +

++ ++++
+++ ++

+
+++ + + ++ ++

++++++ ++
++

+ +
+++

+

+

+ + +
+

+
++

+

+

+

+ + +
+

+ +
+ ++ +
+

++ +
++

+ +
+

+ +
+

+
++ ++

+
+

+

+

+
+

+

+

+++
+

+++++
++

+
+

++ ++ + +++ ++ ++ + +++
+++++ +++

+
+ +

+
++ +

+

+
+

+ ++ ++ + + ++
++++ ++
+

+

+++++ ++ ++
+

+ + + + ++++ + ++
+

+ + ++++ + +
+ + ++++++ ++ ++

+

+ ++
+

+

+

+
+++ + ++ + ++

+

+

+

+

+ + +
+

+
+

+ +
+

+

+
+ ++ +

+

++++

+

++
+

++
+++++ + +

+++ ++

+
++ +++++ ++

+
+

+

+

+
+

+ ++
++ +

+++ ++ +

+

+
+

+ +++ ++++ ++
+

+ + +

+

+ + + +++++ ++ ++ ++ ++

+
++ + +++ ++ + +

+ ++ + +
+ +

+

+++ + ++

+

+
+

+

++
++

+

+

+

+

+
+

+

+

+
++

+
++

+
++ +

++
+ + ++++ +

+
+

++
++

+ ++ ++ ++

+

+++ +

+
+

+ ++ ++
+++ ++ +++ ++ + ++ +++ ++
+

+

+

+++ +++ ++ ++ +++ ++ + +

+

++ +++ + +

+

+++ ++ ++++

++
+

+
+ +

+
++ + ++

+
+++ +

+

+
+

++
+

+
++++

+

+

+

+++
+++++
+

+
++ +++ ++ ++

+
+++

+

++ +

+

+
++

+ +

+

++
+

+ ++

+
+

+

++++ + + +
+ +

+
+++ +++ +++ ++

+

+
+++++ ++ ++++++

+

++

+
+

+ ++
+

++ +++++ +
++++ +++ +

+
++ + + +

+
++ +++ ++ ++

+
++ +

++
++

+
+ +

++
+ ++

+
+ ++ +

+

++
++ +

+
++ +++ +++ + ++

+
++++

+
++ +++

+
++

+

+ +
+ +

+++
++ +++ ++++ ++
+

+ + ++
++

+
+

++ ++++
+

++ ++ +

+

++
++

++

+
+

+ +

+

+ + +

+

+ +

+

+

+

+

+
+ ++

+

+

+

+

+

+ +

+

+

+++

+

++ ++++++++ ++++
+

+ ++
+

+ +++++
+

++
+

+++++++ ++
+

+ +++ ++++ +

+

+ ++ +

+

+
+

+ ++

+

+ ++ + ++
+ +++

++
+

+
+

+ ++ +

+

++
+

+
+

+ + +++ +++ + +
+

++
+

+ + +++++

+

+ + + ++++ +++ ++

+

++ ++ +++ + + ++++ +
+ + +

++

+

++ +++ + ++
+

+

+

+ +
+

++

+

+
+

+
+

++ + ++
++

+

+

+
+

++
+

+ +++++
+

+

+
+++

+

+

+++
+

++ + +++ +
+

+
+

+ +++ +
+

++
+

+ +
+ ++ + +++ ++

+

+
+

+
+++++++++ + +++ + + +

++++ + ++
+

+
+

+

+++ +
+ +

+

++ +++ +
++

+

+
+++++

++
+ ++

+

+++ ++ ++
++++ +

+

+

++ ++

+

+ +

+

++++

+

0 20 40 60 80 100 120 140

0
2

4
6

8
10

Longueur

Te
m

ps
 (s

ec
s)

+ ++ +++ ++ + +++ ++ +++ ++ ++++ ++++ ++ +++ +++ + + +++ ++ +++ +++ ++++ +++ ++ + +++ ++++ +++ ++ ++++ ++ +++++++ + + +++ +++ + ++ ++ ++ ++ +++ + ++++ ++ +++ +++ ++ ++ ++++ +++ ++ ++ +++ ++ ++ ++ ++ ++ ++++ + +++ + + + +++ + ++++++ + +++ ++ ++ +++ ++ ++ ++++ ++ ++++ ++ +++ ++ ++ + + +++ ++ ++ ++++ + ++ +++++ ++ ++ + + +++ + ++ ++++ ++ +++++ +++++ ++ +++ +++ ++++++++++ +++ +++ + ++++ +++ +++ +++ ++ +++ ++++++ ++ +++ +++ ++ +++ ++ ++ + +++ +++ +++ ++ +++ +++ + ++++ ++ + +++ ++ ++ +++ + ++ ++ +++ +++ + ++ ++ + +++ + ++ +++ ++ + ++++ + +++ ++++ + ++++ +++ +++ ++++ + ++ +++ + ++ + +++ ++ + ++ ++++ ++ ++ +++ ++++ ++++++ +++ ++ ++ ++ +++ + ++ ++++ + ++ +++ ++ +++ + ++ + +++ + + ++ +++++ ++ ++++ + +++ + ++++ +++ ++++ +++ ++ + +++ +++ ++++ ++ ++++ +++ ++ ++ +++++ + +++ ++ ++ ++ + ++ ++ ++ +++ + + ++ ++ + ++ ++++ + +++ ++ + +++ +++ ++ +++ ++ ++ ++ ++ ++ ++ ++ ++ +++ ++ ++ + +++ ++ + +++ ++ ++ + ++ ++ + +++ + ++ ++ ++++ + ++++ + +++ + ++ ++ ++ + + + ++++ ++++ + ++++ ++ + ++++ + ++++++ ++++ + ++++ +++ ++ ++ +++ +++ +++ ++ +++ ++ + ++ +++++ + +++ ++++ ++ ++ +++++ ++ + ++++ +++++ +++++ ++ + ++ + ++ ++ ++ + ++ + ++++ + + ++ ++++++ +++ + +++ ++++ ++ + +++ +++ ++ +++ ++ ++ ++ ++++ ++ ++ + +++ ++ + +++ ++++ + +++ ++ +++ ++ ++ ++++++ ++ ++ ++ ++++ ++ ++++ + +++++ + ++ + + +++ ++++ ++ +++ +++ ++++ + + ++ ++ +++ + +++ + ++ + +++ ++ ++ +++ ++ ++++ +++ +++ +++ ++ +++ +++++++ +++ +++ + ++ +++ ++ ++ ++++ +++ +++ + +++ ++ ++ +++ +++++ + + +++ +++++ + +++ + +++++ + ++ ++++
+++ +++ ++ ++++ ++ +++ + ++++ +++ ++ + +++ +++++ ++++ + ++ +++ ++ ++ +++++++++ ++ ++++ +++ +++++ ++++ +++ + + ++ ++ ++ ++++ + ++ +++++ +++ +++ +++ +++++ + ++ ++++ ++ + ++++ + + +++ ++++ +++++ + ++ +++ ++ +++ ++ +++ +++ + ++ ++ ++ ++ ++ ++ + +++ ++ ++ +++ ++ ++ ++ +++ + +++ ++ ++ ++ ++ +++ ++ ++ +++ ++ ++ ++ + ++ ++ ++ +++ ++ +++++ ++ + ++ ++ ++ ++ ++ ++++ +++ +++ +++++++ ++ + ++ ++++ ++ ++++++ ++ + + +++ + + ++ +++ + +++ +++ ++++++ + ++++ +++++ + ++ +++ + +++ ++ ++ + +++ ++ ++++ ++ ++++ ++ ++ + ++ + ++++ ++ + ++ ++++ ++ +++ + ++++ ++ ++ + +++ +++ ++ ++ ++ + +++ +++ ++ + ++ + +++ ++ +++ + ++ +++ ++ + ++ ++ ++ + +++++++ +++ + +++ + +++ ++++ +++ ++ ++++ + + ++ ++ ++++++ ++ +++ + ++++ ++ + ++ +++ ++ ++ + + ++ ++ ++ ++ ++ + +++ + ++ + ++++ ++ +++ ++ ++ ++++ ++++++ +++ +++ ++ + +++ ++ ++ + +++ +++++ +++ ++ + +++ + ++ ++ ++ ++ + + ++ ++++ ++ + ++++++ ++ ++ ++ + + + ++++ + ++ ++ + ++++ + ++ + ++++++ ++ ++ ++ ++ ++ +++++ + ++ + ++ + ++ ++ + + + + ++ + + +++ ++ + +++++ +++ +++ +++++ + + +++ ++ +++ +++++ ++ + ++ ++ ++ ++ ++ ++++ ++ + ++ ++ +++ ++++ ++ ++ + + ++ + + +++++ ++ ++ ++ ++ +++ + +++ ++ + ++ ++ + ++ + ++++ + ++ ++ + +++++ + +++ + + +++++ +++ +++ + +++ + ++++ + + +++ +++ ++ ++ ++ ++++ + +++ ++ ++ +++ ++ +++ ++ + ++ +++ ++ ++ ++++ +++ ++ ++ +++ ++ + + +++ +++ + + ++++ ++ ++++ +++ ++ + +++ + ++ ++++ + ++ +++ ++ ++++ ++ ++++ +++++ + +++ +++ ++ ++ ++++ +++ + ++ +++ + +++ ++ ++ ++ +++++ + + ++ + ++++ +++ +++ ++ +++++++ ++ ++++++ +++ +++ ++ +++ +++++ + ++++ +++ + +++ + + ++++ +++ ++ ++ +++ + ++++ ++ + +++ ++ ++ ++ + +++++ + +++ +++ +++ + ++ +++++ +++ +++ +++ ++ + + ++++ ++ +++ ++++ ++ ++ + ++ +++ +++ ++++ +++ ++ + +++ ++ +++ ++ + ++ + + ++ + +++ ++ + ++ ++ ++ ++ ++ ++++ +++ ++++++++ ++++ ++ ++ ++ +++++ +++ ++++++++ ++ ++ +++ ++++ + ++ ++ + ++ ++ ++ ++ ++ + +++ +++ +++ + ++ ++ + +++ ++ ++ + +++ +++ + + +++ ++ + +++++ ++ + + ++++ +++ ++ +++ ++ +++ + + ++++ ++ + +++ +++ +++ + ++ ++ ++ + +++ ++ ++ +++ + ++ +++ ++ +++ ++ +++++ + ++ ++++

++++ +++ + +++ + ++ ++ +++ + +++ ++ ++ ++ + +++ ++ ++ + ++++++++++ + +++ + + +++++ + ++ ++ + ++++ + + + +++ +++ + +++ ++++++ +++ ++ ++++ ++ ++ ++++ + ++++ ++ ++ + +++++ + + ++ +++ ++ + +++ ++ +++ ++ ++++ ++++ ++ +++ +++ + + +++ ++ +++ +++ ++++ +++ ++ + +++ ++++ +++ ++
++++ ++ +++++++ + + +++ +++ + ++ ++ ++ ++ +++ + ++++ ++ +++ +++ ++ ++ ++++ +++ ++ ++ +++ ++ ++ ++ ++ ++ ++++ + +++ + + + +++ + ++++++ + +++ ++ ++ +++ ++ ++ ++++ ++ ++++ ++ +++ ++ ++ + + +++ ++

+
+ ++++ + ++ +++++ ++ ++ + + +++ + ++ ++++ ++ +++++ +++++ ++ +++ +++ ++++++++++ +++ +++ + ++++ +++ +++ +++ ++ +++ ++++++ ++ +++ +++ ++ +++ ++ ++ + +++ +++ +++ ++ +++ +++ + ++++ ++ + +++

++ ++ +++ + ++ ++ +++ +++ + ++ ++ + +++ + ++ +++ ++ + ++++ + +++ ++++ + ++++ +++ +++ ++++ + ++ +++ + ++ + +++ ++ + ++ ++++ ++ ++ +++ ++++ ++++++ +++ ++ ++ ++ +++ + ++ ++++ + ++ +++ ++ +++ + ++ + +++ + + ++ +++++ ++ ++++ + +++ + ++++ +++ ++++ +++ ++ + +++ +++ ++++ ++ ++++ +++ ++ ++ +++++ + +++ ++ ++ +
+ + ++ ++ ++ +++ + + ++ ++ + ++ ++++ + +++ ++ + +++ +++ ++ +++ ++ ++ ++ ++ ++ ++ ++ ++ +++ ++ ++ + +++ ++ + +++ ++ ++ + ++ ++ + +++ + ++ ++ ++++ + ++++ + +++ + ++ ++ ++ + + + ++++ ++++ + ++++ ++ + ++++ + ++++++ ++++ + ++++ +++ ++ ++ +++ +++ +++ ++ +++ ++ + ++ +++++ + +++ ++++ ++ ++ +++++ ++ + ++++ +++++ +++++ ++ + ++ + ++ ++ ++ + ++ + ++++ + + ++ ++++++ +++ + +++ ++++ ++ + +++ +++ ++ +++ ++ ++ ++ ++++ ++ ++ + +++ ++ + +++ ++++ + +++ ++ +++ ++ ++ ++++++ ++ ++ ++ ++++ ++ ++++ + +++++ + +

+ + + +++ ++++ ++ +++ +++ ++++ + + ++ ++ +++ + +++ + ++ + +++ ++ ++ +++ ++ ++++ +++ +++ +++ ++ +++ +++++++ +++ +++ + ++ +++ ++ ++ ++++ +++ +++ +
+

++ ++ ++ +++ +++++ + + +++ +++++ + +
++ + +++++ + ++

++++
+

++ +++ +
+

++++
+

+ +++ + ++++ +++ ++ + +++ +++++ ++++ + ++ +++ ++ ++ +++++++++ ++ ++++ +++ +++++ ++++ +++ + + ++ ++ ++ ++++ + ++ +++++ +++ +++ +++ +++++ + ++ ++++ ++ + ++++ + + +++ ++++ +++++ + ++ +++ ++ +++ ++ +++ +++ + ++ ++ ++ ++ ++ ++ + +++ ++ ++ +++ ++ ++ ++ +++ + +++ ++ ++ ++ ++ +++ ++ ++ +++ ++ ++ ++ + ++ ++ ++ +++ ++ +++++ ++ + ++ ++ ++ ++ ++ ++++ +++ +++ +++++++ ++ + ++ ++++ ++ ++++++ ++ + + +++ + + ++
+++ + +++ +++ ++++++ + ++++ +++++ + ++ +++ + +++ ++ ++ + +++ ++ ++++ ++ ++++ ++ ++ + ++ + ++++ ++ + ++ ++++ ++ +++ + ++++ ++ ++ + +++ +++ ++ ++ ++ + +++ +++ ++ + ++ + +++ ++ +++ + ++ +++ ++ + ++ ++ ++ + +++++++ +++ + +++ + +++ ++++ +++ ++ ++++ + + ++ ++ ++++++ ++ +++ + ++++ ++ + ++ +++ ++ ++ + + ++ ++ ++ ++ ++ + +++ + ++ + ++++ ++ +++ ++ ++ ++++ ++++++ +++ +++ ++ + +++ ++ ++ + +++ +++++ +++ ++ + +++ + ++ ++ ++ ++ + + ++ ++++ ++ + ++++++ ++ ++ ++ + + + ++++ + ++ ++ + ++++ + ++ + ++++++ ++ ++

++ ++ ++ +++++ + ++ + ++ + ++
++ + + + + +

+ + + +++ ++ + +++++ +++ +++ +++++ + + +++ ++ +++ +++++ ++ + ++ ++ ++ ++ ++ ++++ ++ + ++ ++ +++ ++++ ++ ++ + + ++ + + +++++ ++ ++ ++ ++ +++ + +++ ++ + ++ ++ + ++ + ++++ + ++ ++ + +++++ + ++
+ + + +++++ +++ +++ + +++ + ++++ + + +++ +++ ++ ++ ++ ++++ + +++ ++ ++ +++ ++ +++ ++ + ++ +++ ++ ++ ++++ +++ ++ ++ +++ ++ + + +++ +++ + + ++++ ++ ++++ +++ ++ + +++ + ++ ++++ + ++ +++ ++ ++++

++ ++++ +++++ + +++ +++ ++ ++ ++++ +++ + ++ +++ + +++ ++ ++ ++ +++++ + + ++ + ++++ +++ +++ ++
+++++++ ++ ++++++

+++ +++ ++ +++ +++++ + ++++ +++ + +++ + + ++++ +++ ++ ++ +++ + ++++ ++ + +++ ++ ++ ++ +
+++++ + +++ +++ +++ + ++ +++++ +++ +++ +++ ++ + + ++++ ++ +++ ++++ ++ ++ + ++ +++ +++ ++++ +++ ++ + +++ ++ +++ ++ + ++ + + ++ + +++ ++ + ++ ++ ++

++ ++
++++ +++ ++++++++ ++++ ++ ++ ++ +++++ +++ ++++++++ ++ ++ +++ ++++ + ++ ++ + ++ ++ ++ ++ ++ + +++ +++ +++ + ++ ++ + +++ ++ ++ + +++ +++ + + +++ ++ + +++++ ++ + + ++++ +++ ++ +++ ++ +++ + + ++++ ++ + +++ +++ +++ + ++ ++ ++ + +++ ++ ++ +++ + ++ +++ ++ +++ ++ +++++ + ++ ++++

+
+++ +++ + +++ + ++ ++ +++ + +++ ++ ++ ++ + +++ ++ ++ + ++++++++++ + +++ + + +++++ + ++ ++ + ++++ + + + +++ +++ + +++ ++++++ +++ ++ ++++ ++ ++ ++++ + ++++ ++ ++ + +++++ +

Berkeley Parser
beam 4
beam 8

Figure 8: Parsing times

We finally observe on English that the LR strategy performs reasonably accurately and faster than the
implementation of (Petrov et al., 2006) whereas optimisations of PCFG-LA described by (Bodenstab
et al., 2011) are significantly less accurate and not significantly faster. Although it is currently hard to
to compare directly on French with the most similar proposal, the Chinese/English parser described by
(Zhu et al., 2013), since it does not handle morphology. With respects to speed, their impressive result
on English suggests that there is still room for speed improvements without loss of accurracy.

7 Conclusion

To our knowledge, this is the first formulation of a discriminative LR-automaton driven parser for nat-
ural language. This LR inspired algorithm shares many properties with shift reduce parsers for phrase
structure grammar described by (Sagae and Lavie, 2006) and (Zhu et al., 2013). (Sagae and Lavie, 2006)
describe a first version of this kind of algorithm using a weighting system based on a local maximum en-
tropy classifier. It thus enables them to use a best first search strategy that allows in principle to achieve
near-optimal parsing. By contrast, like (Zhu et al., 2013), we use here a global perceptron algorithm
together with a beam based breadth first search to which we add an explicit LR component. The LR
automaton allows us to guarantee that the parser generates a viable prefix. We believe the LR framework
can also shed light on theoretical, practical and experimental issues related to phrase structure parsing by
comparison with dependency parsing. However using the LR automaton to constrain the parsing model

550

for multi-word expressions turns out to be disappointing since it forces the parser to take less local de-
cisions for which the beam approximation is not well suited. This suggests for future work to explore
search methods aiming to achieve optimality (Zhao et al., 2013).

Mirroring a common practice in dependency parsing, the parser also provides a first support for phrase
structure parsing of morphologically rich languages thanks to structured word representations. The richer
lexical structure makes morphological information available during the parsing process. For the case of
French it enables, among others, to integrate agreement in the parsing model. This simple integration
of morphology then allows the parser to achieve state of the art accurracy on French. Since in principle
nothing in the algorithm is specific to French, we expect to generalize and experiment with the model
on other morphologically rich languages. Further work for such languages is expected to involve a
refinement of the interface with morphology along the lines of (Hatori et al., 2012; Bohnet et al., 2013).

Acknowledgements

I am grateful to Maximin Coavoux who helped at some stages of the implementation. I am also grateful
to Benoit Sagot for his encouragments and several discussions that helped to clarify the contents of this
paper, and finally to Djamé Seddah who brought his expertise with the actual data sets.

References
Anne Abeillé, L. Clément, and F. Toussenel. 2003. Building a treebank for french. In Treebanks. Kluwer.

Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, and Monica S. Lam. 2006. Compilers: Principles, Techniques, and
Tools. Addison Wesley.

Abhishek Arun and Frank Keller. 2005. Lexicalization in crosslinguistic probabilistic parsing: The case of french.
In Association for Computational Linguistics.

Nathan Bodenstab, Aaron Dunlop, Keith Hall, and Brian Roark. 2011. Beam-width prediction for efficient
context-free parsing. In Proceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics, Portland, Oregon, June. Association for Computational Linguistics.

Bernd Bohnet, Joakim Nivre, Igor Boguslavsky, Richárd Farkas, Filip Ginter, and Jan Hajic. 2013. Joint morpho-
logical and syntactic analysis for richly inflected languages. TACL, 1:415–428.

Ted Briscoe and John A. Carroll. 1993. Generalized probabilistic lr parsing of natural language (corpora) with
unification-based grammars. Computational Linguistics, 19(1):25–59.

Eugene Charniak. 2000. A maximum-entropy-inspired parser. In North American Association for Computational
Linguistics.

Michael Collins. 2002. Discriminative training methods for hidden markov models: Theory and experiments
with perceptron algorithms. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP).

Michael Collins. 2003. Head-driven statistical models for natural language parsing. Computational Linguistics,
29(4).

Benoit Crabbé and Marie Candito. 2008. Expériences d’analyses syntaxique statistique du français. In Actes
deTALN 2008.

Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning . In LREC 2006. 2006. Generating
typed dependency parses from phrase structure parses. In Language ressources and evaluation conference.

Pascal Denis and Benoît Sagot. 2012. Coupling an annotated corpus and a lexicon for state-of-the-art pos tagging.
Language Resources and Evaluation, 46(1).

Jenny Rose Finkel, Alex Kleeman, and Christopher D. Manning. 2008. Efficient, feature-based, conditional
random field parsing. In Proceedings of the Association for Computational Linguistics.

Gerald Gazdar, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag. 1985. Generalized Phrase Structure Grammar.
Cambridge, MA: Harvard University Press and Oxford: Basil Blackwell’s.

551

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. 2012. Incremental joint approach to word
segmentation, pos tagging, and dependency parsing in chinese. In ACL (1), pages 1045–1053.

Matt Hohensee and Emily M. Bender. 2012. Getting more from morphology in multilingual dependency parsing.
In HLT-NAACL, pages 315–326.

Liang Huang and Kenji Sagae. 2010. Dynamic programming for linear-time incremental parsing. In Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics.

Liang Huang, Suphan Fayong, and Yang Guo. 2012. Structured perceptron with inexact search. In North Ameri-
can Association for Computational Linguistics.

Donald Knuth. 1965. On the translation of languages from left to right. Information and Control, 8(6).

Mark-Jan Nederhof and Giorgio Satta. 2010. Algorithmic aspects of natural language processing. In M.J. Atallah
and M. Blanton, editors, Algorithms and Theory of Computation Handbook. CRC press.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. 2006. Learning accurate, compact, and interpretable
tree annotation. In Proceedings of the 21st International Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computational Linguistics, Sydney, Australia. Association for Computa-
tional Linguistics.

Kenji Sagae and Alon Lavie. 2006. A best-first probabilistic shift-reduce parser. In Proceedings of the COL-
ING/ACL.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Candito, Jinho D. Choi, Richárd Farkas, Jennifer Foster,
Iakes Goenaga, Koldo Gojenola Galletebeitia, Yoav Goldberg, Spence Green, Nizar Habash, Marco Kuhlmann,
Wolfgang Maier, Joakim Nivre, Adam Przepiórkowski, Ryan Roth, Wolfgang Seeker, Yannick Versley, Veronika
Vincze, Marcin Wolińsk, Alina Wróblewska, and Éric Villemonte De La Clergerie. 2013. Overview of the
SPMRL 2013 Shared Task: A Cross-Framework Evaluation of Parsing Morphologically Rich Languages. In
Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically-Rich Languages.

Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng. 2012. Semantic compositionality
through recursive matrix-vector spaces. In Conference on Empirical Methods in Natural Language Processing.

Masaru Tomita. 1985. An efficient context free parsing algorithm for natural language. In International Joint
Conference on Artificial Intelligence (IJCAI).

Masaru Tomita. 1988. Graph structured stack and natural language parsing. In Proceedings of the Association for
Computational Linguistics (ACL).

Joseph P. Turian and I. Dan Melamed. 2006. Advances in discriminative parsing. In ACL.

Yue Zhang and Stephen Clark. 2011. Syntactic processing using the generalized perceptron and beam search.
Computational Linguistics, 37(1).

Kai Zhao, James Cross, and Liang Huang. 2013. Optimal incremental parsing via best-first dynamic programming.
In EMNLP, pages 758–768.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang, and Jingbo Zhu. 2013. Fast and accurate shift-reduce
constituent parsing. In Association for Computational Linguistics.

552

