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ABSTRACT
Many evaluation issues for grammatical error detection have previously been overlooked,
making it hard to draw meaningful comparisons between different approaches, even when
they are evaluated on the same corpus. To begin with, the three-way contingency between a
writer’s sentence, the annotator’s correction, and the system’s output makes evaluation more
complex than in some other NLP tasks, which we address by presenting an intuitive evaluation
scheme. Of particular importance to error detection is the skew of the data – the low frequency
of errors as compared to non-errors – which distorts some traditional measures of performance
and limits their usefulness, leading us to recommend the reporting of raw measurements (true
positives, false negatives, false positives, true negatives). Other issues that are particularly
vexing for error detection focus on defining these raw measurements: specifying the size or
scope of an error, properly treating errors as graded rather than discrete phenomena, and
counting non-errors. We discuss recommendations for best practices with regard to reporting
the results of system evaluation for these cases, recommendations which depend upon making
clear one’s assumptions and applications for error detection. By highlighting the problems with
current error detection evaluation, the field will be better able to move forward.
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1 Introduction

With hundreds of millions of people worldwide learning second, or even third, languages
(Leacock et al., 2010), there is a large and growing need for NLP systems that automatically
detect and correct the grammar and word usage errors that learners make. In response to this
need, NLP researchers have developed tools to target errors involving articles (Han et al., 2006),
prepositions (Tetreault and Chodorow, 2008b), particles (Dickinson et al., 2011), verb forms
(Lee and Seneff, 2008), and collocations (Dahlmeier and Ng, 2011). Research in this field has
surged over the last few years, culminating notably in two recent “Helping Our Own” (HOO)
Shared Tasks (Dale and Kilgarriff, 2010) and (Dale et al., 2012), which are concerned with
automated error correction in texts authored by non-native speakers of English working in NLP.
However, despite this high level of activity and interest, there is relatively little consensus on
how best to evaluate grammatical error detection/correction systems. This makes it hard to
measure performance and compare systems, which is essential for progress in the field.

The goal of this paper is to draw attention to the many evaluation issues in error detection
that have largely been overlooked in the past and which make it hard to draw meaningful
comparisons between different approaches, even when they are evaluated on the same corpus.
Of particular importance is the skew of the data – the low frequency of errors as compared
to non-errors – which distorts some traditional measures of performance and limits their
usefulness. Many issues in evaluation remain outside the scope of this paper, and we will not
have recommendations for every problem that we discuss. However, we feel that highlighting
the problems will help to move the field forward.

The lack of consensus in evaluation is due, in large part, to the nature of the error detection
task. Consider (1a), a sentence that a learner of English might write.1 It could be corrected by a
human annotator or a system as (1b), (1c), (1d), or any number of other grammatical variants.

(1) a. Book of my class inpired to me.

b. A book in my class inspired me.

c. Books for my class inspired me.

d. The books of my class were inspiring to me.

How we count the number, type, and scope of errors in the learner’s sentence depends on
the relation between what was written and the annotator’s correction. However, on the task
of error detection, how we score the performance of an NLP system depends on the relation
between the system’s output and both the learner’s sentence and the annotator’s correction.
This three-way contingency makes the evaluation inherently more complex than in some other
NLP tasks where the only comparison is between system and annotator. In Section 3.1, we
describe the standard measures of system performance (Accuracy, Precision, Recall, F-measure),
and in Section 3.2, we map a three-way contingency table of matches and mismatches among
writer, annotator, and system onto the standard evaluation measures. Section 3.3 examines
general problems that arise in using these measures, and Section 3.4 describes the variety of

1For the sake of simplicity, we use constructed examples of grammatical errors to illustrate the evaluation issues
discussed in this paper. One example of a sentence with grammatical errors, taken from the first Helping Our Own
Shared Task (Dale and Narroway, 2011), is: First of all, we focus on an analysis on sentences in product reviews regarding
the two views: personal and impersonal views. where analysis on can be corrected to analysis of, regarding the two can be
corrected to regarding two and impersonal views can be corrected to impersonal.
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metrics found in published reports of system performance. Sections 3.5 and 3.6 deal with
three issues that are particularly vexing for error detection: how to specify the size or scope of
an error, how to properly treat errors as graded rather than discrete phenomena, and how to
count non-errors. Each subsection contains recommendations for best practices with regard
to reporting the results of system evaluation. Certain metrics are more or less appropriate
depending on the type of task the system is used for, so we begin with a brief overview of
applications of grammatical error detection.

2 Applications

It is not surprising that most applications of grammatical error detection are in education,
where it has been used for student assessment and to support language learning. A more recent
set of applications focuses on improving systems within the domain of NLP itself.

Automatically scoring essays Error detection is a fundamental component in most systems
which perform automated essay scoring (Yannakoudakis et al., 2011; Attali and Burstein, 2006;
Burstein et al., 2003; Lonsdale and Strong-Krause, 2003). The goal here is to find aspects of
grammar and word usage related to overall text quality so that a holistic score, usually on a 5-
or 6-point scale, can be generated. Essay scoring systems also measure the range of vocabulary,
discourse structure, and the mechanics of writing (e.g., spelling) as predictors of the writing
score. These systems are used for large scale high-stakes tests taken by native and non-native
speakers, such as the Graduate Record Exam (GRE), and for tests of non-native proficiency,
such as the Test of English as a Foreign Language (TOEFL).

Improving writing quality To date, most work that focuses on writing assistance tools has
targeted non-native English writers. Grammatical error detection in this context is used to
assist one in producing better essays or other documents (Chodorow et al., 2010; Hirst and
Budanitsky, 2005; Kukich, 1992). In the short term, the goal of providing this assistance is to
improve the current document by highlighting errors and suggesting corrections. In the longer
term, the goal is to help writers learn more about the language they are studying so that they
can produce higher quality writing, as described next.

Assisting language learning An indicative example of assisting language learners can be
found in various Intelligent Tutoring Systems, which provide learners with immediate feedback
on their language constructions (Meurers, 2012; Heift and Schulze, 2007). Learners not only
need to observe their errors but also to understand the meta-linguistic properties of such errors.
Furthermore, systems must track not just what the learner is doing incorrectly, but also what
the learner is doing correctly, in order to properly model behavior (Amaral and Meurers, 2007).
For both purposes, error detection is needed to detect errors, suggest corrections, and provide
information about the linguistic properties of the writer’s mistakes.

Applications within NLP Grammatical error detection can be a useful component in correct-
ing and evaluating text generated in various NLP applications. Among other applications, it can
be used to detect errors in machine translation (MT) output (such as in Knight and Chander
(1994) and Peng and Araki (2005)) and can even be incorporated in quality metrics to assess
MT (Parton et al., 2011). In these contexts, an NLP system takes the place of the writer, but the
goal is similar, namely to produce more error-free language.
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3 Measuring Performance

3.1 Traditional Evaluation Measures

To illustrate the traditional measures of NLP system evaluation, consider as an example the task
of comma restoration (see, e.g. Shieber and Tao, 2003), in which the commas are removed
from a well-edited text (the gold standard) and a system attempts to restore them by predicting
their locations. For evaluations involving a binary distinction such as this one (the presence vs.
absence of a comma), a comparison between the system’s output and the annotator’s judgments
(the gold standard) can be organized as a two-by-two contingency table, shown in Figure 1.
Presence of a comma is the target or positive class, and absence is the negative class. Positions
in the text where both the system and the gold standard indicate that there should be a comma
are true positives (TP); those where both indicate no comma are true negatives (TN); those
where the system predicts a comma but the gold standard shows no comma are false positives
(FP); and those positions where the system predicts no comma but the gold standard shows a
comma are false negatives (FN). Given counts for these four contingencies, it is straightforward
to calculate measures such as Accuracy (A), Precision (P), Recall (R), true-negative rate (TNR),
and F-score (F1), as shown in Figure 2.

Annotation (Gold Standard)
Comma (+) No comma (-)

System prediction
Comma (+) TP FP

No comma (-) FN TN

Figure 1: The basis for typical NLP system evaluation

Accuracy (A) = T P+T N
T P+T N+F P+FN

Precision (P)= T P
T P+F P

Recall (R)= T P
T P+FN

True Negative Rate (TNR) = T N
T N+F P

F-measure (F1) = 2 · P·R
P+R

Figure 2: Evaluation metrics

3.2 Error Detection and the Three-Way Contingency Table

Now consider a task that is similar to comma restoration, the task of comma error detection
(Israel et al., 2012), in which a system seeks to find and correct errors in the writer’s usage of
commas. For this task, the positive class is not the presence of a comma but rather an error
of the writer’s that involves a comma. Therefore, it is necessary to compare what the writer
has written to an annotator’s judgment, and only if there is a mismatch between the two do
we have an error (the positive class); when writer and annotator agree, the case is a non-error
(the negative class). The traditional 2x2 table is no longer sufficient to represent all of the
contingencies, which must instead be laid out in the more complex three-way table of Figure 3.

Figure 3 has the virtue of being complete in the sense that it shows all 2x2x2 (=8) possible
combinations of binary values for the writer’s, annotator’s, and system’s output. However, we
believe that the scheme in Figure 4, which we refer to as the Writer-Annotator-System (WAS)
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Annotation (Gold Standard)
Comma No comma

Writer’s form Comma No comma Comma No comma
Pos (+) / Neg (-) class No Error (-) Error (+) Error (+) No error (-)

System prediction
Comma TN TP FN FP

No comma FP FN TP TN

Figure 3: The basis for error detection evaluation

evaluation scheme, is a simpler and more intuitive way of characterizing the relationships. To
determine whether a case is a TN, TP, FN, or FP, the three sources of input are compared to see
which, if any, agree. The X, Y, and Z in the figure are variables that can be replaced with any
type of token; what is important is whether or not they match.

Written Annotated System
TN X X X
FP X X Y
FN X Y X
TP X Y Y
∗ X Y Z

Figure 4: WAS evaluation scheme

Note that the first row in Figure 4 (with answers of X from each input) can apply to multiple
outcomes, as in preposition selection, or to a binary classification task, such as the presence or
absence of a comma; we focus on the binary task, to be consistent with the previous figures. If
all three inputs agree, the case is tallied as a TN. If the System agrees with the Annotator but the
Writer does not, then it is a TP. For binary classification tasks, the first four rows are sufficient for
both detection and correction, as detecting an error naturally suggests the correct answer. For
tasks that involve more than two classes, further distinctions are needed to distinguish detection
and correction. The final row in the figure represents a situation where all three sources provide
different answers. This is marked with a * because it belongs in different categories depending
on whether the evaluation is for detection or correction. For detection, this is a TP because
the system is flagging an error, even if it does not produce the correct answer according to the
annotator or gold standard (essentially this reduces to X Y Y). From the TP, FP, FN, and TN
counts, all the measures in Figure 2 can be calculated.2

As far as we are aware, evaluation has not previously been schematized as in Figure 4, and we
recommend setting up one’s evaluation in such a way whenever possible. For the rest of the
paper, we will assume TP, FP, FN, and TN as clarified by this scheme.

3.3 Traditional Metrics and the Problem of Skewed Data

At first glance, A (accuracy) seems to be the most straightforward and easily interpreted
measure of system performance, but when the distribution of positive and negative classes is
highly skewed, as is most often the case with writing errors, accuracy can be quite misleading.
For example, Han et al. (2006) report a rate of usage errors of 13% for prepositions in a

2For error correction, X Y Z is both a FP (system 6= writer) and FN (system 6= annotator).
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corpus of English essays written by native speakers of Chinese, Japanese, and Russian. For
that corpus, a baseline system that always predicts "no error" will have an A of 87%, reflecting
the overwhelming proportion of negative cases. Similar or even greater levels of skew are
commonly found in the error detection literature (Leacock et al., 2010). With high baselines
such as these, it is often difficult to see, from a single summary measure such as A, just how a
system is performing, especially on the non-majority class, in this case, the errors.

The metrics most frequently reported in NLP research are intended to address this problem.
R compares the number of errors the System correctly detects (TP) to the total number of
errors in the Annotated gold standard (TP+FN); P compares TP to the total number of errors
that the System reports (TP+FP); and F1 is the harmonic mean of R and P. Unfortunately, all
three measures are affected by the proportion of cases that are annotated as errors in the gold
standard (referred to as the prevalence of the errors, which is equal to (TP+FN)/N, where N
is the total number of cases, i.e., N = TP+TN+FP+FN) and by the proportion of cases that
are reported by the System as errors (referred to as the bias of the System, which is equal to
(TP+FP)/N). Powers (2012) demonstrates how a system that performs no better than chance
will nonetheless show an increase in R when prevalence increases and an increase in P when
bias increases. To understand this behavior, we must consider what it means to perform at
chance.

If the class labels Error and No Error are assigned to cases independently by the Annotator and
the System, then these labels are expected to match a proportion of the time by chance alone -
a proportion equal to the product of their probabilities. For example, the expected proportion
of TP matches is equal to the product of the proportion of cases assigned the Error label by
the Annotator (i.e., the prevalence) and the proportion of cases assigned the Error label by the
System (i.e., the bias). This is illustrated in Figure 5, with the value in each cell of the table
equal to the product of the marginal proportions in the cell’s row and column (e.g., expected
proportion of TP = .20 x .20 = .04; expected proportion of FP = .20 x .80 = .16; etc.).

Annotation (Gold Standard) Marginal
Error (+) No Error (-) proportion

System prediction
Error (+) TP .04 FP .16 .20 (bias)

No Error (-) FN .16 TN .64 .80
Marginal proportion .20 (prevalence) .80

Figure 5: Performance of a hypothetical system with Accuracy = .68 and Kappa = .00

The A which is expected by chance, E(A), is .04 + .64 = .68, the sum of the expected proportions
of TP and TN. Cohen’s kappa (κ) statistic (Cohen, 1960), shown in Figure 6, uses E(A) to
correct the observed A found between Annotator and System. This provides a measure of
performance over and above chance.

κ = A−E(A)
1−E(A)

Figure 6: Formula for Cohen’s kappa
To illustrate the use of κ, consider the hypothetical data in Figure 7, which has the same
marginal proportions, and therefore the same E(A), as Figure 5. It shows a System that has an
observed A of .10 + .70 = .80, but, when corrected for chance agreement, the Accuracy value
(i.e., κ) is (.80 - .68)/(1.00 - .68) = .38. This says that after removing the proportion of cases
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expected to show agreement by chance alone, the System is correct (agrees with the Annotator)
on 38% of the remaining cases.

Annotation (Gold Standard) Marginal
Error (+) No Error (-) proportion

System prediction
Error (+) TP .10 FP .10 .20 (bias)

No Error (-) FN .10 TN .70 .80
Marginal proportion .20 (prevalence) .80

Figure 7: Performance of a hypothetical system with Accuracy = .80 and Kappa = .38

Now consider the hypothetical data in Figure 8, which show a system that is performing no
better than expected by chance. Its κ of .00 is the same as the κ of Figure 5, but the A values
for the two sets of data are quite different, .68 vs. .54. This illustrates the earlier observation
that A can be misleading as a measure of system performance, but A is not alone in this regard.
R, P, and F1 are also affected by changes in the marginal proportions.

Annotation (Gold Standard) Marginal
Error (+) No Error (-) proportion

System prediction
Error (+) TP .12 FP .18 .30 (bias)

No Error (-) FN .28 TN .42 .70
Marginal proportion .40 (prevalence) .60

Figure 8: Performance of a hypothetical system with Accuracy = .54 and Kappa = .00

For the data in Figure 5, R is .04/(.04 + .16) = .20, and P and F1 also have values of .20. These
differ from those of Figure 8, where R is .12/(.12 + .28) = .30, P is .12/(.12 + .18) = .40, and
F1 is .34. A comparison of the marginal proportions in the two figures shows that an increase in
bias can be expected to increase R, while an increase in prevalence can be expected to increase
P, even when systems are performing at chance levels. These are not desirable properties for
system performance measures. As Powers (2012, p. 345) points out, "traditional evaluation
measures used in Computational Linguistics (including Error Rates, Accuracy, Recall, Precision,
and F-measure) are of limited value for unbiased evaluation of systems, and are not meaningful
for comparison of algorithms unless both the dataset and algorithm parameters are strictly
controlled for skew (Prevalence and Bias)".

Sensitivity to skew may be especially problematic for evaluation of error detection/correction
systems. Until recently (Dale et al., 2012), error-annotated learner corpora were not generally
available for use in system testing. As a result, systems that were developed by different
researchers were tested on different datasets having different error rates (Leacock et al., 2010).
The variability in error rates (prevalence) could be due in part to different populations of
learners with different native languages and different levels of proficiency in their second
language. In addition to the variability in prevalence, there is also variability in bias when
parameters of error detection systems are tuned, as they typically are, on development data
to optimize performance. For example, if a system’s decision to output an Error label is based
on a probability that it computes for each case, then a probability threshold can be set which
will increase or decrease the number of Error labels that will be output. Lower thresholds
correspond to higher bias, and higher thresholds to lower bias.
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Because of sensitivity to bias, system evaluation is limited if it only examines performance at
one setting of a threshold. By varying the threshold through the full range of values, P-R curves
can be generated to give a better picture of performance. In a similar manner, other types of
curves can be produced, such as the Receiver Operating Characteristic (ROC), which plots the
true positive rate (TP/(TP+FN)) against the false positive rate (FP/(FP+TN)). Area under the
ROC curve has been used for evaluating and ranking machine learning models (Bradley, 1997),
but Kaymak et al. (2010) argue that the area under the κ curve (κ plotted against the false
positive rate) is superior to the area under the ROC curve because it accounts for skew in the
data while the area under ROC does not.

While κ has advantages over R and P, it too has come under increased scrutiny. Although
it properly takes changes in prevalence and bias into account, κ is known to favor correct
classifications of the minority class (for error detection, Errors) over those of the majority
class (Non-errors). Kaymak, et al.(2010, p. 9) have argued that “this property of Kappa is
actually a virtue for many real world classification problems in which it is more important to
correctly classify the minority rather than the majority class.” Error detection is arguably such
a problem. Another issue is that there are several kappa-like reliability measures which take
chance agreement into account, but it is not clear which one or ones are best. For example,
Krippendorff (2004) criticizes the use of κ for measuring the reliability of annotators in content
analysis because, for a given level of agreement, the value will actually increase when there
are greater differences in the annotators’ preferences for using the various category labels.
Krippendorff’s alpha measure is designed, in part, to address this problem. Recently, Powers
(2012) has shown that in some situations, Cohen’s kappa is inferior to another kappa-like
variant formed from a different combination of the values of the contingency table (Powers,
2003). Finally, despite its attractive features, κ is not informative about system performance
in the terms that an end user cares about because, as shown above, it does not reflect A, P,
or R. This limits its value for decisions about whether a system is ready for use in real world
applications.

3.4 Variety in Reporting Evaluation Measures

As a result of the many issues involved in evaluating grammatical error correction systems,
it is perhaps unsurprising that there is little consensus about which evaluation metric to
use. For example, Leacock et al. (2010) describe how, in 2008, there were three papers
on preposition error detection and each used slightly different evaluation metrics making
comparison impossible. More recently, Tetreault et al. (2010) and Dickinson et al. (2011) report
P and R for work done on prepositions and particles, respectively. Gamon (2010) also used
P and R, while Rozovskaya and Roth (2010b) and Rozovskaya and Roth (2011) reported A
of usage in a test corpus before and after corrections were made by their system. Sometimes,
different metrics have been used for two aspects of the same task, as in Han et al. (2010),
where A was reported for determining the presence vs. absence of a preposition, but P and R
were used to evaluate performance in detecting when an incorrect preposition was used by the
writer. Some researchers have even looked towards more holistic, sentence-level metrics like
BLEU and METEOR (see, e.g. Park and Levy, 2011), or modifying measures like P and R to
consider entire sentences, as in Gamon (2011). In the two HOO Shared Tasks, P, R and F1 were
all reported, but no preference was given to which one to use to rank the systems in the end.
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Recommendations It is clear that no single measure of performance is best for all purposes;
each one has its own set of advantages and disadvantages. However, all of the measures, aside
from BLEU and METEOR, are based on the same four values, the counts for TP, FP, FN, and TN.
We recommend reporting these four in addition to any metrics derived from them. This will
enable readers to calculate other measures that the authors of a particular paper did not choose
to include (e.g., Matthews Correlation), and will provide the flexibility needed to accommodate
new developments in evaluation as debates over how best to measure performance are resolved.
In other words, it will make it possible for future readers to go back to any publications that
report these four values and retrofit new measures to old data. We also recommend κ (and the
κ curve) for its ability to take the skew of the class and the label distributions into account.
When reporting P and R, prevalence and bias should also be reported. For a given test corpus,
prevalence will be constant, but bias will vary when threshold values change, so bias should be
represented, perhaps along the horizontal axis, in displaying P, R, and F1 curves.

3.5 Positives

In error detection, the target, or positive, class consists of an error in the writer’s text. Defining
a positive is complicated both by the variability in the unit size and scope of errors and by the
variability in human judgments of errors.

3.5.1 Unit Size

Often there is no simple 1:1:1 correspondence between the writer’s erroneous string, the
annotator’s correction, and the type of error the system was designed to detect. Looking back at
(1a), for example, Book may be treated as an article error corrected by (1b), a number error
corrected by (1c), or both an article error and a number error corrected by (1d). Each diagnosis
has implications for how the error will be counted and mapped onto a correction.

Even when there is no ambiguity about the type of error, decisions must still be made about the
size of the units over which the error is defined. In (2a), the noun-verb number disagreement
involves two discontinuous substrings (e.g., The book . . . inspire), either one of which could be
changed to correct the error, as in (2b) and (2c). This highlights the question of what size of
unit is most appropriate for measuring errors and corrections: is it the morpheme, the word, the
phrase, or the string? In this case, a strictly token-based definition may identify only a single
word as the error (either book or inspire) or identify two separate errors, whereas a string-based
definition can refer to both words as a single error.

(2) a. The book in my class inspire me.

b. The book in my class inspires me.

c. The books in my class inspire me.

There are several issues involved in choosing the unit size. First, the definition of unit size affects
whether a system is given credit for finding all and only the errors, as these examples illustrate.
Identifying inspire as an error may or may not be sufficient; identifying both words may be
overkill. Defining error detection metrics in terms of edit distance mitigates this problem for
evaluation comparisons (Dahlmeier and Ng, 2012), as correcting inspire to inspires is handled
the same as book ... inspire corrected to book ... inspires. In essence, edit distance measures
(EDMs) compare the system output to the correct string, ignoring exactly how it was derived.
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Moreover, EDMs naturally handle multiple, overlapping errors, a problem for systems that target
only a specific error type (Gamon, 2010; Rozovskaya and Roth, 2010a). Taking an example
from Dahlmeier and Ng (2012), the sequence ... development set similar with test set ... can be
corrected as a preposition selection error with→ to and an adjacent article omission error ε→
the, or it can also be corrected as a single error (with→ to the). Because EDMs can calculate
the best match between the system’s edits and those of the gold standard, they make it possible
to define errors over multiple units, not just words but sequences of words as well.

Despite the benefits of basing metrics on edit distance, issues remain, depending upon the
specific application of error detection or correction (see section 2). The selection of unit size is
consequential for the specificity of feedback that a system can give to the writer. If book and
inspire are not linked, for instance, it is harder to provide feedback on subject-verb agreement.
Or if with → to and ε → the really are different error types, then feedback should deal with
them separately. Focusing on matching the string, but not on how it was derived, works well
when the task is to produce a final corrected string, but it comes with a cost for applications
such as intelligent tutoring systems, where the goal is to determine which types of errors the
writer has made.

Additionally, errors can be defined over multiple units, but are still constrained by what the
base units are. Consider if the learner had written inpire in (2a), thereby adding a misspelling
on top of an agreement error. If the base units are words, then there is one correction to make,
mapping inpire to inspires, for what are clearly two distinct errors. Character-level edits would
handle this particular problem, but are difficult to work with as soon as the error is on the level
of the morpheme (e.g., the two-character, one-morpheme -es), the word, or the sentence. The
issue is that errors are defined across types of linguistic units; some errors are morpheme-level,
some phrase-level, and it is difficult to group them all together.3 EDMs can only work from the
smallest unit they define, and in general the units seem to be variable.

Finally, one benefit of EDMs is that they easily fit into calculations of P and R. However, by
defining matches in terms of string distance, there is no way to talk about true negatives. Errors
can be of variable sizes, but this means that the size of non-errors is, in a sense, undefined.
Thus, alternative measures like κ cannot be calculated.

The issue of unit size becomes more complicated when error types interact. In (3), for instance,
if a learner’s preposition in should be corrected to to, then the article can be dropped. If,
however, the preposition is not changed, then dropping the article makes the sentence worse.
This is because one correction leads to another, as noted by many doing error annotation (Boyd,
2010; Hana et al., 2010; Lee et al., 2012; Dickinson and Ledbetter, 2012). As far as we aware,
no system evaluation accounts for this problem, and we do not solve it, either.

(3) Every day we go { in the school→ to school }

Recommendations How one treats positives depends upon one’s purpose(s). If matching to a
correct string and P/R are all that is required, EDMs have several excellent properties, including
being able to account for errors of variable type and size (above the level of the base unit). If
feedback is desired, EDMs are not a good choice because each error type must be taken into
account separately (which is largely done in Dale and Narroway (2011)). EDMs should not

3While the typical base syntactic unit varies for different languages, e.g., morphemes for Hungarian (Dickinson and
Ledbetter, 2012), the principles discussed here apply across languages.
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be used if the goal is to control for skew in the data by calculating measures such as κ, which
require counts of true negatives (see section 3.6).

3.5.2 Reliability: Clear-Cut vs. Contentious Errors

For some errors, such as the extraneous preposition to in (1a), the judgment is unequivocal, but
for others, such as the writer’s choice to use of instead of another preposition, judgments are
likely to be contentious. Arguably, an error detection system which fails to mark to as an error
is performing more poorly than one which fails to mark of, but in current practice, all errors are
generally assigned equal weight (though, see the “with bonus” correction in Dale and Narroway,
2012). Tetreault and Chodorow (2008a) examined some problems posed by disagreements
in judgment. Using a cloze task, they asked two trained professional annotators to fill in a
blank in well-formed sentences where a preposition had been removed. The results showed
only 75% agreement on the prepositions that they filled in. When the same experts were asked
to mark preposition usage errors in non-native writing, the system’s evaluation differed by as
much as 10% in P depending on which expert’s annotations were used as the gold standard.
Madnani et al. (2011) have argued that a better approach to system evaluation when errors
are not clear-cut, as in preposition selection, is to treat them as graded and to assign them
weights based on the distribution of judgments for each error obtained through crowdsourcing.
Using this approach for system evaluation, if 80% of judgments for a case are Error and the
system labels it as an Error, then the TP count is incremented by .80 and the FP count by .20. If,
instead, the system outputs Non-error for this case, the FN count is incremented by .80 and the
TN count by .20. Madnani et al. (2011) present weighted versions of the P and R formulas, and
they argue that these measures are more stable than their unweighted counterparts, especially
when test sets are small.

Recommendations For error types that are not judged with high reliability, authors should
consider evaluation metrics based on weighted counts where the weights reflect the distributions
of human judgments. The standard metrics otherwise apply.

3.6 Negatives

The non-target, or negative, class in error detection consists of the non-errors in the writer’s text.
At first glance, this would simply seem to be the complement of the positive class. However, an
appropriate set of non-errors for system evaluation is not that easily specified, even for errors
of only a single token (see discussion in section 3.5 for variable-length errors). Consider the
task of enumerating the article non-errors in (1a). No article should be inserted before of, my,
class, inspired, to, me, and the punctuation at the end of the sentence. Should all 7 of these
positions be treated as negatives? Should only the noun phrases be counted? Most can be
trivially ruled out as sites for articles (e.g., *a my, *a me). Similarly, when detecting missing
prepositions, as in (4), performance measures can be affected not just by the system’s ability to
insert the proper preposition (of) in the correct position (after fond) but also by how we count
the positions where a preposition is not inserted by the system. In (4), are there four positions
where prepositions were not inserted or are there zero positions?

(4) He is fond beer .
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Decisions of this sort have consequences for measures of system performance. When positions
are included that can always be correctly identified as non-errors by trivial means, then the result
will be an inflation in the count of TN, but no change in the other counts of the contingency
table. This will not affect R, P, or F1, but it will cause both A and κ to increase. This is illustrated
in Figure 9 and Figure 10. Figure 9 is the same as Figure 5 except that the counts, based on an
N of 100, have been included in the cells of the table. Figure 10 shows the effect of increasing
the TN count by 100. This changes the proportions and, as a result, both A and κ increase.

Annotation (Gold Standard) Marginal
Error (+) No Error (-) proportion

System prediction
Error (+) TP 12(.12) FP 18(.18) .30 (bias)

No Error (-) FN 28(.28) TN 42(.42) .70
Marginal proportion .40 (prevalence) .60

Figure 9: Cell counts (proportions) of a hypothetical system: Accuracy = .54 and Kappa = .00

Annotation (Gold Standard) marginal
Error (+) No Error (-) proportion

System prediction
Error (+) TP 12(.06) FP 18(.09) .15 (bias)

No Error (-) FN 28(.14) TN 142(.71) .85
Marginal proportion .20 (prevalence) .80

Figure 10: Cell counts (proportions) of a hypothetical system: Accuracy = .77 and Kappa = .21

Recommendations When using κ or other measures that rely on true negatives, authors
should be very explicit about what constructions or parts of speech were included in the
negative class. If the TN count was based, in part, on a set of heuristics that identified obvious
negative cases even before a statistical classifier was used, then the number of TNs identified in
this way should also be reported so that the metrics can be adjusted appropriately.

Conclusion

We have presented the WAS evaluation scheme for mapping the writer’s, annotator’s, and
system’s output onto traditional NLP evaluation measures, and we have argued that the choice
of metric should take into account factors such as the skew of the data and the type of application
that the system will be used for. κ can provide a way to evaluate systems across differences
in skew, and new kappa-related measures are being developed. Our recommendations with
regard to reporting results of system performance can be summed up simply: Wherever possible,
provide the reader with the counts for the four cells of the contingency table in addition to
metrics that are derived from them. They are the basis for current and future measures of
performance. Along with these values, describe what N, the total number of cases, consists of
by listing the criteria that determined which constructions the system has analyzed. As noted
earlier, no single metric is best for all purposes. A measure that is useful for system comparisons
may not be the best to determine if a system is good enough to be deployed operationally,
and measures of overall sentence quality, such as edit distance, may not adequately support
language learning. It is our hope that, by following these guidelines, reporting in the field of
grammatical error detection will be more informative and more consistent.
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