
UD on Software Requirements: Application and Challenges

Naı̈ma Hassert∗
Université de Montréal

naima.hassert@umontreal.ca

Pierre André Ménard∗

CRIM
menardpa@crim.ca

Edith Galy
CRIM

galyed@crim.ca

Abstract

Technical documents present distinct challenges when used in natural language processing tasks
such as part-of-speech tagging or syntactic parsing. This is mainly due to the nature of their
content, which may differ greatly from more studied texts like news articles, encyclopedic ex-
tracts or social media entries. This work contributes an English corpus composed of software
requirement texts annotated in Universal Dependencies (UD) to study the differences, challenges
and issues encountered on these documents when following the UD guidelines. Different struc-
tural and linguistic phenomena are studied in the light of their impact on manual and automatic
dependency annotation. To better cope with texts of this nature, some modifications and features
are proposed in order to enrich the existing UD guidelines to better cover technical texts. The
proposed corpus is compared to other existing corpora to show the structural complexity of the
texts as well as the challenge it presents to recent processing methods. This contribution is the
first software requirement corpus annotated with UD relations.

1 Introduction

Since its first release (Nivre et al., 2016), the Universal Dependencies (UD) treebank project has grown to
over 200 repositories across 114 languages as of version 2.8 (Nivre et al., 2020). These treebanks target
various types of documents such as news, fiction, grammar examples, spoken transcription, nonfiction,
Wikipedia content, legal, religious, fiction, social media, blog, email, poetry, medical, web pages, aca-
demic, government and essays. While these types of text are often encountered, this selection leaves out
one important subgenre of nonfiction: technical documents. From a natural language processing (NLP)
perspective, having an annotated corpus is essential to study, evaluate and potentially train and optimize
machine learning algorithms to process a specific type of text.

As a first step to study and evaluate their content, this work focus on the study of technical documents
through the exploration of software requirements (SR) specifications. These types of documents often
deviate from standard free-flowing text, hindering manual as well as automatic analysis of universal
dependencies.

This article presents the contextual background of the study in the next section. Section 3 describes
how the raw corpus was constructed, while Section 4 enumerates some phenomena that were observed in
the corpus and how they were annotated. Section 5 compares the new corpus with other existing English
UD annotated corpora.

2 Problem context

Technical documents, a subclass of nonfiction documents, can take several roles or forms. They can be
instruction manuals, equipment maintenance procedures, documentation of schematics or plans, and so
on. They might contain images, schemas, and isolated or large sections of texts, depending on their focus.
Their goal might be distilled as conveying specific information in a clear, concise and unambiguous
∗ These two authors contributed equally to this work as first authors.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

way. Among this subgenre exists a specific type of technical document called software requirements
specification (SRS).

Technical documents, and more specifically software requirements (SR) specifications, are written
with the goal to inform the reader about a subject by giving information that is clear, measurable and
unambiguous. Software requirement specifications are broken into multiple software requirements (SR).
These can be analysed by software experts with the goal to unambiguously understand them and develop
a software system that fulfills their needed functionalities.

Natural language processing tasks can be applied to almost any step of the software requirement life
cycle, like elicitation, analysis, modeling, verification, etc (Zhao et al., 2021). Applied to software
requirement specifications, dependency analysis can have multiple applications. One such use in analysis
pipeline is to help perform semantic parsing (Roth and Klein, 2015) or semantic frame parsing (Wang,
2016) on SR by linking tokens to their governor, up to the root of the sentence. This step can support
semantic parsing in detecting relevant parts of the sentence and attributing them specific roles such as
actor, object, condition, action, etc. The result of this analysis can be used to automatically generate test
cases (Ahsan et al., 2017) in order to verify software systems and improve them. Improving dependency
analysis on technical documents and, more specifically, SR, can enhance the overall performance of
those tasks.

Unfortunately, this is easier said than done. Several types of structural and linguistic phenomena hinder
the progress of automatic dependency parsing. Manually parsing dependency relations for these texts is
a difficult task for any human annotator for two reasons: the text’s related technical expressions are not
intuitive to understand and there are some limitations to the application of the UD guidelines. While
human experts in the domain rarely have issues interpreting SR described in natural language, NLP
tools trained on free-flowing texts have more difficulty in interpreting and linking sentence segments to
perform dependency parsing.

Figure 1: Source document representation of a sample software requirement for a radio system.

Figure 1 shows an example of such software requirement for a radio system designed for a specific
type of airplane. Briefly looking at this example, one can see multiple atypical phenomena when com-
pared to traditional texts: partial sentences, vertical enumerations, acronyms, domain-specific named
entities, etc. While this SR does not represent the majority of requirement texts in any given SRS, its
composition and presentation format are common in this type of document, especially in systems that
manage scientific processes or interact with physical modules. As automatic dependency parsers are usu-
ally trained on complete and well-structured sentences, they behave erratically on such texts. They fail
to assign correct part-of-speech (POS) tags and to accurately detect the heads and their corresponding
dependency relations. This motivates the development of annotated corpora in order to better study the
represented phenomena and develop better approaches to correctly analyze them.

3 Corpus Creation Process

One of the goals for creating this SR corpus (hereafter named CTeTex for CRIM’s Technical Texts
corpus) was to study the performances of automatic dependency parsing on uncommon SR texts that
typically cause issues with these tools.

The corpus was composed of source documents from public sources. These were taken from different
websites, including one previously released dataset, which is called the PURE software requirements
corpus (Ferrari et al., 2017). This last repository was used as a source to extract the majority of SR for
the corpus. It contained SRS documents ranging in complexity from student projects for a multiplayer
game to telescope grid communication software. The documents were produced or owned by public
organizations so their licence permits free use for academic research.

Following the goal of this corpus, the requirements were chosen based on their particular attributes
in order to present various features of software requirement documents and, more broadly, technical
documentation. Documents from the corpus were scanned manually in order to differentiate SR from
non-requirements segments (section’s introduction, generic explanations, etc.) and were sampled based
on the expected challenge they offered. While a random selection would have been more representative
of the given corpus, this selection process gives a better view of the problematic issues presented by these
types of documents.

The Inception platform (Klie et al., 2018) was used to perform dependency annotation. As it performs
default tokenization on texts, tokens were corrected manually. Basic UD dependency relations were
added to the tokens without the enhanced version. The resulting corpus1 contains 196 SR coming from
24 source documents with 9,273 tokens distributed in 276 sentences. An annotator syntactically analyzed
each document to produce token segmentation, part-of-speech tags and labelled dependency relations.
The annotator was a student mastering in linguistics with prior knowledge of dependency grammar and
was trained with a senior linguist on an alternate proprietary technical corpus to ensure the quality of
the annotations. The initial Kappa inter-annotator agreement on the first segment of the training corpus
was 0,69, but grew to near-perfect match on non-problematic cases through iterative consulting with the
senior linguist. This ensured that the UD guidelines were understood and homogeneously applied by the
annotator and the senior linguist.

For the CTeText corpus, the annotator consulted with a software engineer in order to clarify technical
terms and expressions that were specific to the software or engineering domain, a type of system or a
single system. This helped clarify some ambiguity on both part-of-speech tags and dependency relations.
The annotations were then revised by a group of three experts (including the annotator) to discuss unre-
solved cases in order to solve them. The annotation process took approximately 180 hours, considering
only the main annotator’s time.

4 Applying UD Guidelines on Software Requirements

This section describes various structural and linguistic phenomena that are often found in SR texts, the
issues in applying the guidelines and how they were annotated in the proposed corpus. Table 1 shows the
quantity of examples found in the corpus for each of the subsections. Note that some text segments, like a
scientific notation using abbreviations and specialized vocabulary, can be counted in multiple categories.

Phenomena Occurrences Number of tokens
Scientific and mathematical notations 22 68
Abbreviations and acronyms 579 579
Lists and enumerations 41 2 736
Specialized vocabulary 503 1 180

Table 1: Estimation of occurrences and their total number of tokens for each phenomenon in CTeTex.

For each issue detected during the annotation phase, an in-depth analysis was done in order to find
the most adequate proposition. Each of the three experts revisited the relevant UD definitions of all
the possible alternatives to solve the issue. They then looked at the other English corpora (referred
in Section 5) with the Grew-match2 online search tool to check if there was similar cases that could

1The corpus will be published on the Universal Dependencies repository under CTeTex name.
2http://match.grew.fr

https://universaldependencies.org/treebanks/en_ctetex
http://match.grew.fr

shed some light on the targeted challenge and if they could apply to the context of CTeTEx corpus.
Specialized online discussions on universal dependencies were also consulted when topics aligned with
one or multiple possible solutions. Individual findings were then discussed together in order to review
the possible options and evaluate which one was the best to express the syntactic aspect in the specialized
context of technical texts.

4.1 Scientific and Mathematical Notations
Mathematical formulas and scientific expressions are often found in SR texts in order to inform the reader
on the valid response the described system should provide. However, the UD documentation does not
address which dependency relations are appropriate for those specific types of construction. One of the
only referenced cases related to those expressions is the specification that mathematical operators should
be designated as a SYM POS tag. The following sections provide details about the annotation choices
made for the CTeTex corpus as a well as a proposition to enhance the UD guidelines.

4.1.1 Formulas
Formulas use variables, coefficients and operators to clearly communicate a scientific or mathematical
process that should be implemented by a system, as shown in the underlying sentence in Figure 2. In
an attempt to determine which dependency relations were adequate in these cases, the verbalization of
those mathematical formulas and expressions was first considered. What could one say if one wanted
to express the formula in words? It was then proposed that the symbol “=” could be considered as the
equivalent of the verb “equals” or “is”, as the head of the expression, the symbol “+” as the coordinating
conjunction “plus” or “and”, etc.

However, the verbalization of those expressions is far from straightforward. For example, the expres-
sion O(n2). If the annotator does not have a background in mathematics or computer science, it could
be difficult to come up with a valid verbalization that would translate to “a big O of n squared”3.

The solution proposed is thus to acknowledge that mathematics is a formal language and, by nature,
does not obey the syntactic rules of natural languages like English. These are in fact two different
languages. When the two of them are found in the same text, it is a case of code-switching. Trying to
analyze both of them in the same way could result in misleading annotations.

Fortunately, UD already has a way to deal with foreign languages: the relation flat:foreign. It is
suggested that the head of the mathematical expression should be what is considered to be its first token,
for simplicity reasons. In accordance with UD guidelines, this head should be the parent of all the
following tokens constituting the mathematical expression. An example of the resulting tree can be seen
in Figure 2.

Figure 2: Annotated mathematical expression.

This solution has several advantages; it does not require the annotator to verbalize expressions that are
not intended to be expressed in words, it is constant and easily applicable to any specific case, it uses
a dependency relation that already exists in the UD documentation, and it differentiates them from text
written in natural language in the corpus.

However, the presence of mathematical operators does not necessarily indicate the presence of a math-
ematical formula or expression. Sometimes, the equal sign is found alone and is used to indicate the

3See https://en.wikipedia.org/wiki/Big_O_notation

https://en.wikipedia.org/wiki/Big_O_notation

meaning of a word or a group of words. In that case, the verbalization approach is more appropriate. As
it only implicates a single operator in this case, the proposed solution is to treat the equals sign as a verb.
The subject is the word that precedes it and the object is the word that follows it. This is illustrated in
Figure 3. Note the error in the sentence : ’groundwater’ should be one word (see ’goeswith’ between
’ground’ and ’water’). That is why ’ground’ is coordinated with ’water’ differently than ’surface’.

Figure 3: Example of a standalone equal operator.

4.1.2 Variables
Mathematical formulas suggest that variables and placeholders for undefined values will be present in
SR texts. For example, in “less than t minutes” or “for n nodes”. Regarding the part-of-speech tag that
should be attributed to variables, the UD documentation does not provide an easy solution. It mentions:
“The universal POS tags should capture regular, prevailing syntactic behavior, as well as morphological
characteristics when available, and should not reflect sentence-specific exceptional behavior.”

But what is the “prevailing syntactic behavior” of a letter? In the online Merriam-Webster dictionary,
letters are considered as nouns when they designate the letter in the alphabet or when used as an abbre-
viation for a noun that begins with that letter. Nothing is mentioned for when it is a name of a variable.
Two choices were thus considered: the UPOS X, since no official answer yet exists , or NUM, since it is
clear that it is what the variable expresses. UD guidelines specify that the UPOS X should be used with
sparingly, and only when there is no other possibilities. The second solution was thus the one adopted.
The dependencies are then defined as the sentence dictates, as if a number was replacing the variable.
While there is no case in the proposed corpus, a variable with a different type of implied value (categor-
ical, boolean, string, etc) would be tagged as if a specific value was used, likely with NOUN (i.e. The
system will send the s string”).

Is it important to note that this proposition excludes named system variables like in ”display the content
of the XYZ field” in which the name of the variable is a recognized concept of a system and is named
to differentiate it from other similar concepts, thus behaving like a noun and were tagged with PROPN.
This is different from an unnamed variable like ”display the top n results” which behaves syntactically
like its underlying numerical value.

4.2 Abbreviations and Acronyms

Software requirements usually contain high number of acronyms, mainly from computer science but
also from the described system’s application domain. Specifically, acronyms of proper and common
nouns, abbreviations of short expressions and Latin abbreviations have been found in the corpus. But
information on acronyms and abbreviations is very scarce in UD documentation. This section presents
an analysis for these types of constructions. For easier reference, the relevant expressions in the section
are provided with the Abbr=Yes feature in the treebank.

4.2.1 Acronyms
As mentioned in section 2, software requirements are written with the goal of informing the reader
about the software in clear and precise language. That is why this type of document refers to various
components of software that often have long, specific and repetitive names. It is then normal that in
order to reduce the length of the text and to facilitate its reading, those names are shortened in the form
of acronyms.

These types of acronyms are a challenge for an annotator for two reasons. First, the UD documentation
does not give clear guidelines for the appropriate POS tag to give to acronyms. It only mentions one case:
“Acronyms of proper nouns, such as UN and NATO, should be tagged PROPN.” Nothing is said about
acronyms of common nouns or acronyms of nominals of which the head is a common noun, like “ID”
(“Identifier”) or “ETA” (“Estimated Time of Arrival”). It was then decided that acronyms of common
nouns should be tagged NOUN.

There is a second challenge for the annotator: to find, in the document itself or elsewhere if it is not
specified in it, the long form of the acronym. The alternative use of short and long forms of acronyms,
without explicit association, is common in organization’s internal documents (Ménard and Ratté, 2010).
It is crucial in order to understand the general meaning of the requirement, but also for deciding if the
appropriate POS tag is PROPN or NOUN.

It should be noted that the difference between proper and common nouns can be very subtle, and it was
not the objective of this paper to address this problem. However, it was decided that within the corpus,
proper nouns are nouns that designate a specific entity that can be distinguished in a group of similar
entities. The following requirement can be taken as an example.

The TCS will provide the hardware and software necessary to allow the operator to conduct the
following major functions 1) mission planning, 2) mission control and monitoring, 3) payload
product management, 4) targeting, and 5) C4I system interface.

“TCS” here means “Tactical Control System”. It designates a specific system that can be distinguished
in a group of similar systems and that the entire technical document is meant to describe. It is then
annotated as a proper noun. However, “C4I” is a type of system, not a specific system: it is then a
common noun.

4.2.2 Abbreviations of Short Expressions
When short expressions were abbreviated, like “TBD” (“To Be Determined”) or “TBC” (“To Be Con-
firmed”), it was decided to give them the POS tag of the head of the expression (VERB in the mentioned
examples). This is because they could easily have been written in their long form and the normal syn-
tactic behavior of the sentence would have been preserved. The dependency relation is thus the one that
would have been appropriate if the expression was complete, as illustrated in Figure 4. Note that while
“TBC” is a parataxis, it is considered to qualify the noun “function” and was analyzed as a long form
that would be inserted after the head noun “function”. It is thus linked as acl.

Figure 4: Annotated sentence excerpt of an abbreviated short expression.

However, those abbreviations can sometimes be used as a placeholder for a number to indicate that
a value has not yet officially decided. In this case, if the expression was presented in its long form, the
sentence would be unnatural and even faulty. For the same reason variables’ names were tagged as NUM,
it was decided that in these cases, the POS tag should be NUM. This option was chosen so the POS tag
would reflect the fact that it is very clear that “TBD” stands for a number and has the same role. Figure 5
illustrates this analysis.

4.3 Lists and Enumerations
One of the abundant yet problematic syntactic constructions in technical documents from the NLP point-
of-view is vertical lists. Although UD guidelines specify what is the correct relation to apply within

Figure 5: Annotated sentence excerpt of an abbreviation used as an undefined number.

(a) Full introduction. (b) Fragmented introduction.

Figure 6: Two types of introduction sentence for list.

the elements of a list (list), which is only used to connect list items that do not appear in a standard
syntactic construction, such as coordination, they do not specify the relation that should be used to link
the introductive part of the sentence before the colons and the first element of the list.

In addition, the CoNLL-U file format does not allow line skips in sentences, nor does it allow for
multiple lines of text definition in the header. This prohibits the lossless representation of sentences
spanning multiple lines, as in the case of vertical lists.

4.3.1 Relation for List Introduction

Two types of syntactic structures were seen in requirements containing lists. One type uses a complete
sentence as an introduction to the list, containing a verb, its subject and a complement as shown in
Figure 6a. In the other type, the clause that precedes the colon is an incomplete sentence, ending with a
transitive verb or any other word that needs an argument (Figure 6b).

The proposed solution for the first type of construction is to use the relation parataxis between the
head of the clause, to which the list is linked to, and the first element of the list. For the second type of
construction, however, as the part of the sentence before the colons is incomplete, the parataxis relation
is not the best relation to use. The proposed approach (Figure 7) defines the relation between the verb
(“has” in the example below) and its direct object (“ID”) as the habitual obj. More broadly, the relation to
use is the one that would have been obvious without the colons. The resulting tree is represented below.

Figure 7: Example of an annotated list introduction .

4.3.2 Multilevel Lists
Multilevel lists occurred several times in the CTeTex corpus. This type of construction seems specific
to technical documents. Indeed, there is no mention of them in the UD documentation and no examples
were found in the other English UD corpora. However, it is easy to represent this syntactic structure
with the UD relation list. To differentiate the different levels of lists from each other, the annotator
simply has to consider them as different lists, with different heads. In the Figure 8, for example, the
first list is composed of the phrases “Target CCTV” and “Device Control”, while the second list, or
sublist, is composed of the words “Pan”, “Tilt” and “Zoom”. The first list then begins by “CCTV”,
linked with its head “provide” with the relation parataxis (not with the noun “information”, as explained
in Section 4.3.1). The second list begins with “Pan”, linked with its head “control” (which is the last
element of the first list) with the relation nmod.

Figure 8: Example of an annotated multilevel list.

4.4 Specialized Vocabulary
Specialized vocabulary is perhaps the most obvious challenge when annotating technical documents. An-
notators or readers who are not experts in the field may have trouble understanding words and multiword
expressions in the text, making the annotation process longer and more complex.

4.4.1 Meta Identifiers
Some documents refer to specific SR using a unique identifier throughout the document, as shown in the
example below. This identifier is sometimes situated inside the requirement (in those cases, it is usually
placed after the main tensed verb of the requirement), and sometimes outside it.

The scheduler shall [SRS181] set the 50 Hz interval timer to a count down value so as to
cause the next minor frame interrupt at 20 msec from the previous interrupt congruently in all
operational FCPs.

Here, the meta identifier SRS181 is used to name the entire requirement. Elsewhere in the document,
this requirement can be referred using this identifier. It would thus be natural to give it the POS tag
PROPN.

The UD relation that seemingly describes this instance better is the appos relation. Even though the
referent is not usually a noun (but rather a full sentence, thus a verb parent) as required by this relation’s
definition. It also does not immediately follow its parent, as also defined in the guidelines. Nonetheless,
it is proposed to extend the definition of the appos relation to include constructions with meta identifiers.
This is because it is the only relation that really captures the function of those identifiers, which is to
name the requirement. An example of the suggested analysis is represented in Figure 9.

4.4.2 Nominal Modifiers vs Compounds
Using specialized technical vocabulary makes it more difficult to differentiate between the dependency
relations nmod (nominal modifier) and compound. It is probably the most influential UD guideline
regarding manual annotation of technical documents, because of the wide number of cases where a
decision has to be made.

At the moment, UD guidelines differentiating between compositionality and nominal modifiers are
unclear: for example, in the UD documentation, “phone book” is treated as a compound (in which the

Figure 9: Example for the meta identifier identification

meaning is not compositional), as well as “ice cream flavors”, of which the meaning is compositional (at
least between “flavors” and “ice cream”).

It is therefore proposed to follow one part of Sylvain Kahane’s recommendation in this Github dis-
cussion 4. As he suggests annotating all the Noun Noun combination with a new nmod:compound sub-
relation, we propose to use it for word group whose meaning is compositional and which could be
paraphrased like (like “the dog tail” - “the tail of the dog”). This sub-relation does not yet exist, but it
has the advantage of identifying borderline cases, and could easily be modified in post-processing, if a
different approach is chosen.

In summary, if the nominal expression is idiomatic (non-compositional), then it is a compound. If it is
compositional but does not possess any sort of case marking, then it is a nmod:compound. Finally, if it
is compositional and it possesses a case marking, then it is a nmod.

4.4.3 Meta Qualifiers
As shown in Section 4.4.1, some requirements are accompanied by meta identifiers that are used to name
the entire requirement. Similarly, some requirements are accompanied by qualifiers used to specify
the status of the requirement. In the CTeTex corpus, such qualifiers indicated if the requirements were
optional (“O”), mandatory (“M”), or were used as an element of information (“I”) (the meaning of those
letters were found directly in the document). In the following example, the requirement is qualified as
mandatory.

The network shall terminate the ongoing VCS/VBS call if it receives the 3-digit sequence
“***” transmitted via DTMF signals. (M)

Those types of constructions were not found in the UD documentation. It is rather unusual to witness,
in other types of documents, an element that qualifies an entire sentence instead of another word. They
are the equivalent, in other technical documents, or prefixing the sentence with ”It is mandatory that
the systems ...”, which specifies the modality of the requirement, much like an adverbial modifier. The
current case play the same semantic role, but is outside of the grammatical structure of the modified
sentence. While advmod was considered, the parataxis is used to link them to the root of the requirement.
The relation is applied to the “M” and “O” qualifiers which are considered as having the ADJ POS tag,
or NOUN for the “I” qualifier. The resulting tree is illustrated in Figure 10.

Figure 10: Annotated example of a meta qualifiers in a software requirement.

4https://github.com/UniversalDependencies/docs/issues/761

In cases where requirements are constituted of multiple sentences, it is suggested to link those indi-
cations to the head of the last sentence rather than the first one. This is to avoid bias in the statistics of
sentence size and distance between tokens.

4.5 Issues with CoNLL-U Format

Other than the challenge of applying the guidelines to the CTeTex corpus, using the current CoNLL-U
file format to express UD annotations is also problematic. One is that this format is lossy for multiline
sentences, as there is no mechanism to express a line change within a sentence, so the resulting sentence
cannot be rebuilt correctly. Another is that splitting multiline sentences into separate entries in the file
will force the loss of list references as there is no cross-sentence dependency indicator in CoNLL-U
format.

One way to solve these issues would be to allow intersentence parent reference with a [sentence id]-
[token id] structure to avoid multiline sentences in the current format. While that would help, it would
disrupt the semantics of the format by enabling the splitting of a sentence while also changing the format
of the parent id. While it is feasible, it has much impact on existing resources and codebase in CoNLL-U
format. A simpler solution would be to add a ”LineAfter=Yes” attribute in the MISC column to encode
the line skip characters, so that it would be possible to reconstruct the exact format of the sentence. The
latter option was retained to encode the CTeTex corpus as it has the least impact on the file format and it
helps solve the two issues.

5 Corpora Comparison

Following the application of the guidelines, there is a need to validate if these syntactic constructs really
differ from the other typical UD corpora and if they affect automatic processing tools. To that end,
CTeTex is compared with other English corpora in order to view the differences in performances when
a dependency parser is applied. The EWT (Silveira et al., 2014), GUM (Zeldes, 2017), GUMReddit
(Behzad and Zeldes, 2020), ParTuT (Sanguinetti and Bosco, 2015), PUD (McDonald et al., 2013), LinES
(Ahrenberg, 2015), Pronouns (Munro, 2021) and ESL (Berzak et al., 2016) corpora (version 2.8 of the
UD dataset) serve as a basis of comparison. Some of these texts targets a specific linguistic phenomenon
(Pronouns), are manually or semi-manually annotated (EWT, GUM, etc).

The left part of Table 2 shows the average sentence’s length, height (or depth), arity and mean depen-
dency distance or MDD (Jiang and Liu, 2015) for each of the eight corpora, followed by the average
measure over these same corpora. The CTeTex measures are then shown, with their differences (∆) with
the actual corpora average.

The average sentence length of CTeTex if almost 50% longer and around 10% deeper than the second-
highest measures from ParTUT corpus. This is expected as vertical lists often contain multiple elements
that directly influence the length of the overall sentence. While arity (number of children for a node) if
close to the ESL corpus, it is almost 20% higher than the average corpus. The complexity and length of
sentence also influence the MDD of CTeTex which is the highest among all corpora. This indicates that
tokens are less related to close neighbours that in other corpora, but are linked to parents that are often
found at a greater distance in the sentence.

This might have a negative impact on automatic tools if they use a smaller contextual window to
search for parent tokens. It also impacts the complexity of the annotation process, as the cognitive load
of understanding complex sentence can hinder the speed of analysis.

To evaluate the influence of the nature of the texts of the proposed corpus, the nine English UD corpora
were automatically annotated using Stanza v1.2.3 (Qi et al., 2020) dependency parser. Other dependency
parsing tools (like Spacy (Honnibal and Montani, 2017) and UDPipe 2 (Straka, 2018)) were also tested,
but produced worst overall performance on the CTeTex corpus as well as the other UD corpora. Thus
only Stanza’s results are presented for brevity. It should be noted that most universal dependency parsers
are trained to use some version of the English UD dataset, as few other resources are publicly available.
This is a methodological issue for the referred eight UD corpora as training data is usually not used for
evaluation. But the hypothesis was that if CTeTEx was similar to existing UD treebanks, the difference

(∆) between the average and CTeTex scores (for the automatic annotation columns) would have been
relatively small. The delta values thus emphasis the remote nature of the content of CTeTex compared to
existing annotated texts.

Sentence (avg) Automatic annotation
Corpus Length Height Arity MDD UPOS UAS LAS CLAS

EWT 15.33 3.32 4.66 3.38 0.9685 0.9345 0.9173 0.9003
GUM 18.17 3.72 4.83 3.39 0.9543 0.8963 0.8744 0.8570
LinES 17.97 3.75 5.08 3.30 0.9246 0.8237 0.7828 0.7537

ParTUT 23.75 4.71 5.52 3.48 0.9156 0.8602 0.8038 0.7565
Pronouns 5.98 1.81 3.44 1.76 0.9599 0.8519 0.8171 0.8397

PUD 21.18 4.31 5.76 3.34 0.9586 0.8882 0.8626 0.8454
GUMReddit 18.20 3.77 5.21 3.41 0.9439 0.8585 0.8278 0.8114

ESL 19.06 3.97 5.85 3.31 0.9368 0.8999 0.8643 0.8464
Average 17.71 3.67 5.04 3.17 0.9452 0.8766 0.8437 0.8263
CTeTex 33.60 5.17 6.01 3.98 0.8699 0.7739 0.6879 0.5949

∆ 15.89 1.5 0.97 0.81 0.0753 0.1027 0.1558 0.2314

Table 2: Overview of English UD corpora compared to CTeTex. (highest values in bold)

The right section of Table 2 shows universal part-of-speech (UPOS), unlabelled association score
(UAS), labelled association score (LAS) as well as the labeled association score for content words
(CLAS) like nouns, verbs and adjectives. Best overall scores were obtained on the EWT corpus. One
explanation might be the larger size of this resource compared to other corpora when used as training
data.

While the existing corpora offer a good score for the UPOS tag, the performance on CTeTex is 7.52%
lower. The reasons for such a low score might be explained by some of the decisions in Section 4 (vari-
able as NUM, etc.) but also by the large number of acronyms and complex domain specific terminology.
The scores continue to degrade with the addition of dependency relations (UAS), their labels (LAS) and
the specific study of content words (CLAS), dropping by 23.14% from the average corpora on this last
score. This goes to show that the complexity of SR texts and their underlying phenomena hinders current
dependency parsers. Using information analyzed by these tools in downstream processing tasks low-
ers the chance of a usable outcome. The CTeTex corpus is thus a relevant contribution to improve the
adaptability and stability of dependency parsers when processing technical document such as software
requirements specification.

6 Conclusion

This contribution is the first English software requirements corpus annotated with Universal Depen-
dencies part-of-speech and labelled dependency relations. The comparison to other existing corpora in
English shows specificity of the CTeTex corpus as well as the challenge of processing such texts with
automatic dependency annotation tools. It offers the possibility to evaluate and experiment on this type
of document to improve both the UD guidelines and the automatic annotation process.

Future work on this corpus includes studying the addition of enhanced UD relations as a way to
better express needed links. This would permit a better extraction of higher-level information from the
requirements. Future plans also include using CTeTex to train and evaluate neural dependency parsing
algorithms to improve their performance on this type of technical documents.

References
Lars Ahrenberg. 2015. Converting an English-Swedish parallel treebank to Universal Dependencies. In Proceed-

ings of the Third International Conference on Dependency Linguistics (Depling 2015), pages 10–19, Uppsala,
Sweden, August. Uppsala University, Uppsala, Sweden.

Imran Ahsan, Wasi Haider Butt, Mudassar Adeel Ahmed, and Muhammad Waseem Anwar. 2017. A compre-
hensive investigation of natural language processing techniques and tools to generate automated test cases. In
Proceedings of the Second International Conference on Internet of Things, Data and Cloud Computing, ICC
’17, New York, NY, USA. Association for Computing Machinery.

Shabnam Behzad and Amir Zeldes. 2020. A cross-genre ensemble approach to robust Reddit part of speech
tagging. In Proceedings of the 12th Web as Corpus Workshop (WAC-XII).

Yevgeni Berzak, Jessica Kenney, Carolyn Spadine, Jing Xian Wang, Lucia Lam, Keiko Sophie Mori, Sebastian
Garza, and Boris Katz. 2016. Universal dependencies for learner english. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 737–746. Association
for Computational Linguistics.

Alessio Ferrari, Giorgio Oronzo Spagnolo, and Stefania Gnesi. 2017. Pure: A dataset of public requirements
documents. In 2017 IEEE 25th International Requirements Engineering Conference (RE), pages 502–505.

Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural language understanding with Bloom embeddings,
convolutional neural networks and incremental parsing. To appear.

Jingyang Jiang and Haitao Liu. 2015. The effects of sentence length on dependency distance, dependency direction
and the implications–based on a parallel english–chinese dependency treebank. Language Sciences, 50:93–104.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa, Richard Eckart de Castilho, and Iryna Gurevych. 2018. The
inception platform: Machine-assisted and knowledge-oriented interactive annotation. In Proceedings of the
27th International Conference on Computational Linguistics: System Demonstrations, pages 5–9. Association
for Computational Linguistics, June.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan Das, Kuzman Ganchev,
Keith Hall, Slav Petrov, Hao Zhang, Oscar Täckström, Claudia Bedini, Núria Bertomeu Castelló, and Jungmee
Lee. 2013. Universal Dependency annotation for multilingual parsing. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics (Volume 2: Short Papers), pages 92–97, Sofia, Bulgaria,
August. Association for Computational Linguistics.

P. Ménard and S. Ratté. 2010. Classifier-based acronym extraction for business documents. Knowledge and
Information Systems, 29:305–334.

Robert Munro. 2021. Human-in-the-Loop Machine Learning. Manning.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajič, Christopher D. Manning,
Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel Zeman. 2016. Uni-
versal Dependencies v1: A multilingual treebank collection. In Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation (LREC’16), pages 1659–1666, Portorož, Slovenia, May. European
Language Resources Association (ELRA).

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Jan Hajič, Christopher D. Manning, Sampo Pyysalo,
Sebastian Schuster, Francis Tyers, and Daniel Zeman. 2020. Universal Dependencies v2: An evergrowing
multilingual treebank collection. In Proceedings of the 12th Language Resources and Evaluation Conference,
pages 4034–4043, Marseille, France, May. European Language Resources Association.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Manning. 2020. Stanza: A Python natural
language processing toolkit for many human languages. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: System Demonstrations.

Michael Roth and Ewan Klein. 2015. Parsing software requirements with an ontology-based semantic role la-
beler. In Proceedings of the 1st Workshop on Language and Ontologies, London, UK, April. Association for
Computational Linguistics.

M. Sanguinetti and C. Bosco. 2015. Parttut: The turin university parallel treebank. In Italian Natural Language
Processing within the PARLI Project.

Natalia Silveira, Timothy Dozat, Marie-Catherine de Marneffe, Samuel Bowman, Miriam Connor, John Bauer,
and Christopher D. Manning. 2014. A gold standard dependency corpus for English. In Proceedings of the
Ninth International Conference on Language Resources and Evaluation (LREC-2014).

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 197–207, Brussels,
Belgium, October. Association for Computational Linguistics.

Yinglin Wang. 2016. Automatic semantic analysis of software requirements through machine learning and ontol-
ogy approach. 21:692–701, Dec.

Amir Zeldes. 2017. The GUM corpus: Creating multilayer resources in the classroom. Language Resources and
Evaluation, 51(3):581–612.

Liping Zhao, Waad Alhoshan, Alessio Ferrari, Keletso J. Letsholo, Muideen A. Ajagbe, Erol-Valeriu Chioasca,
and Riza T. Batista-Navarro. 2021. Natural language processing for requirements engineering: A systematic
mapping study. ACM Comput. Surv., 54(3), apr.

	Introduction
	Problem context
	Corpus Creation Process
	Applying UD Guidelines on Software Requirements
	Scientific and Mathematical Notations
	Formulas
	Variables

	Abbreviations and Acronyms
	Acronyms
	Abbreviations of Short Expressions

	Lists and Enumerations
	Relation for List Introduction
	Multilevel Lists

	Specialized Vocabulary
	Meta Identifiers
	Nominal Modifiers vs Compounds
	Meta Qualifiers

	Issues with CoNLL-U Format

	Corpora Comparison
	Conclusion

