
A Computational Framework for Slang Generation

Zhewei Sun1, Richard Zemel1,2, Yang Xu1,2

1Department of Computer Science, University of Toronto, Toronto, Canada
2Vector Institute for Artificial Intelligence, Toronto, Canada

{zheweisun, zemel, yangxu}@cs.toronto.edu

Abstract

Slang is a common type of informal lan-

guage, but its flexible nature and paucity of

data resources present challenges for existing

natural language systems. We take an ini-

tial step toward machine generation of slang

by developing a framework that models the

speaker’s word choice in slang context. Our

framework encodes novel slang meaning by

relating the conventional and slang senses

of a word while incorporating syntactic and

contextual knowledge in slang usage. We con-

struct the framework using a combination of

probabilistic inference and neural contrastive

learning. We perform rigorous evaluations on

three slang dictionaries and show that our

approach not only outperforms state-of-the-art

language models, but also better predicts the

historical emergence of slang word usages

from 1960s to 2000s. We interpret the pro-

posed models and find that the contrastively

learned semantic space is sensitive to the simi-

larities between slang and conventional senses

of words. Our work creates opportunities for

the automated generation and interpretation of

informal language.

1 Introduction

Slang is a common type of informal language that

appears frequently in daily conversations, social

media, and mobile platforms. The flexible and

ephemeral nature of slang (Eble, 1989; Landau,

1984) poses a fundamental challenge for computa-

tional representation of slang in natural language

systems. As of today, slang constitutes only a

small portion of text corpora used in the natural

language processing (NLP) community, and it

is severely under-represented in standard lexical

resources (Michel et al., 2011). Here we propose

a novel framework for automated generation of

slang with a focus on generative modeling of

slang word meaning and choice.

Existing language models trained on large-scale

text corpora have shown success in a variety of

NLP tasks. However, they are typically biased

toward formal language and under-represent

slang. Consider the sentence ‘‘I have a feeling

he’s gonna himself someday’’. Directly apply-

ing a state-of-the-art GPT-2 (Radford et al., 2019)

based language infilling model (e.g., Donahue

et al., 2020) would result in the retrieval of kill

as the most probable word choice (probability =

7.7%). However, such a language model is lim-

ited and near-insensitive to slang usage, for exam-

ple, ice—a common slang alternative for kill—

received virtually 0 probability, suggesting that

existing models of distributional semantics, even

the transformer-type models, do not capture slang

effectively, if at all.

Our goal is to extend the capacity of NLP

systems toward slang in a principled framework.

As an initial step, we focus on modeling the gen-

erative process of slang, specifically the problem

of slang word choice that we illustrate in Figure 1.

Given an intended slang sense such as ‘‘to kill’’,

we ask how we can emulate the speaker’s choice

of slang word(s) in informal context.1 We are

particularly interested in how the speaker chooses

existing words from the lexicon and makes inno-

vative use of those words in novel slang context

(such as the use of ice in Figure 1).

Our basic premise is that sensible slang word

choice depends on linking conventional or estab-

lished senses of a word (such as ‘‘frozen water’’

for ice) to its emergent slang senses (such as ‘‘to

kill’’ for ice). For instance, the extended use of

ice to express killing could have emerged from

the use of cold ice to refrigerate one’s remains. A

principled semantic representation should adapt to

such similarity relations. Our proposed framework

is aimed at encoding slang that relates informal

1We will use the terms meaning and sense

interchangeably.
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Figure 1: A slang generation framework that

models speaker’s choice of a slang term (ice)

based on the novel sense (‘‘to kill’’) in context and

relations with conventional senses (e.g., ‘‘frozen

water’’).

and conventional word senses, hence capturing

semantic similarities beyond those from existing

language models. In particular, contextualized

embedding models such as BERT would consider

‘‘frozen water’’ to be semantically distant or

irrelevant from ‘‘to kill’’, so they cannot predict

ice to be appropriate for expressing ‘‘to kill’’ in

slang context.

The capacity for generating novel slang word

usages will have several implications and appli-

cations. From a scientific view, modeling the

generative process of slang word choice will help

explain the emergence of novel slang usages over

time—we show how our framework can predict

the emergence of slang in the history of English.

From a practical perspective, automated slang

generation paves the way for automated slang

interpretation. Existing psycho-linguistic work

suggests that language generation and compre-

hension rely on similar cognitive processes (e.g.,

Pickering and Garrod, 2013; Ferreira Pinto Jr. and

Xu, 2021). Similarly, a generative model of slang

can be an integral component of slang comprehen-

sion that informs the relation between a candidate

sense and a query word, where the mapping can

be unseen during training. Furthermore, a gener-

ative approach to slang may also be applied to

downstream tasks such as naturalistic chatbots,

sentiment analysis, and sarcasm detection (see

work by Aly and van der Haar [2020] and Wilson

et al., [2020]).

We propose a neural-probabilistic framework

that involves three components: 1) a probabilis-

tic choice model that infers an appropriate word

for expressing a query slang meaning given its

context, 2) an encoder based on contrastive learn-

ing that captures slang meaning in a modified

embedding space, and 3) a prior that incorporates

different forms of context. Specifically, the slang

encoder we propose transforms slang and con-

ventional senses of a word into a slang-sensitive

embedding space where they will lie in close

proximity. As such, senses like ‘‘frozen water’’,

‘‘unfriendliness’’ and ‘‘to kill’’ will be encour-

aged to be in close proximity in the learned embed-

ding space. Furthermore, the resulting embedding

space will also set apart slang senses of a word

from senses of other unrelated words, and hence

contrasting within-word senses from across-word

senses in the lexicon. A practical advantage of

this encoding method is that semantic similarities

pertinent to slang can be extracted automati-

cally from a small amount of training data, and

the learned semantic space will be sensitive to

slang.

Our framework also captures the flexible nature

of slang usages in natural context. Here, we focus

on syntax and linguistic context, although our

framework should allow for the incorporation

of social or extra-linguistic features as well.

Recent work has found that the flexibility of

slang is reflected prominently in syntactic shift

(Pei et al., 2019). For example, ice—most com-

monly used as a noun—is used as a verb to

express ‘‘to kill’’ (in Figure 1). We build on

these findings by incorporating syntactic shift

as a prior in the probabilistic model, which is

integrated coherently with the contrastive neural

encoder that captures flexibility in slang sense

extension. We also show how a contextualized

language infilling model can provide addi-

tional prior information from linguistic context

(c.f. Erk, 2016).

To preview our results, we show that our

framework yields a substantial improvement on

the accuracy of slang generation against state-of-

the-art embedding methods including deep con-

textualized models, in both few-shot and zero-shot

settings. We evaluate our framework rigorously

on three datasets constructed from slang dictio-

naries and in a historical prediction task. We show

evidence that the learned slang embedding space

yields intuitive interpretation of slang and offers

future opportunities for informal natural language

processing.

463



2 Related Work

NLP for Non-Literal Language. Machine

processing of non-literal language has been

explored in different linguistic phenomena includ-

ing metaphor (Shutova et al., 2013b; Veale et al.,

2016; Gao et al., 2018; Dankers et al., 2019),

metonymy (Lapata and Lascarides, 2003; Nissim

and Markert, 2003; Shutova et al., 2013a), irony

(Filatova, 2012), neologism (Cook, 2010), idiom

(Fazly et al., 2009; Liu and Hwa, 2018), vulgarity

(Holgate et al., 2018), and euphemism (Magu

and Luo, 2018). Non-literal usages are present in

slang, but these existing studies do not directly

model the semantics of slang. In addition, work

in this area has typically focused on detection and

comprehension. In contrast, generation of novel

informal language use has been sparsely tackled.

Computational Studies of Slang. Slang has

been extensively studied as a social phenomenon

(Mattiello, 2005), where social variables such as

gender (Blodgett et al., 2016), ethnicity (Bamman

et al., 2014), and social-economic status (Labov,

1972, 2006) have been shown to play important

roles in slang construction. More recently, an anal-

ysis of social media text has shown that linguistic

features also correlate with the survival of slang

terms, where linguistically appropriate terms have

a higher likelihood of being popularized (Stewart

and Eisenstein, 2018).

Recent work in the NLP community has also

analyzed slang. Ni and Wang (2017) studied slang

comprehension as a translation task. In their study,

both the spelling of a word and its context are

provided as input to a translation model to decode

a definition sentence. Pei et al. (2019) proposed

end-to-end neural models to detect and identify

slang automatically in natural sentences.

Kulkarni and Wang (2018) have proposed

computational models that derive novel word

forms of slang from spellings of existing words.

Here, we instead explore the generation of novel

slang usage from existing words and focus on

word sense extension toward slang context, based

on the premise that new slang senses are often

derived from existing conventional word senses.

Our work is inspired by previous research

suggesting that slang relies on reusing words in

the existing lexicon (Eble, 2012). Previous work

has applied cognitive models of categorization to

predict novel slang usage (Sun et al., 2019). In

that work, the generative model is motivated by

research on word sense extension (Ramiro et al.,

2018). In particular, slang generation is opera-

tionalized by categorizing slang senses based on

their similarities to dictionary definitions of can-

didate words, enhanced by collaborative filtering

(Goldberg et al., 1992) to capture the fact that

words with similar senses are likely to extend to

similar novel senses (Lehrer, 1985). However, this

approach presupposes that slang senses are similar

to conventional senses of a word represented in

standard embedding space, an assumption that is

not warranted and yet to be addressed.

Our work goes beyond the existing work in

three important aspects: 1) We capture seman-

tic flexibility of slang usage by contributing a

novel method based on contrastive learning. Our

method encodes slang meaning and conventional

meaning of a word under a common embedding

space, thereby improving the inadequate existing

methodology for slang generation that uses com-

mon, slang-insensitive embeddings. 2) We cap-

ture syntactic and contextual flexibility of slang

usage in a coherent probabilistic framework, an

aspect that was ignored in previous work. 3) We

rigorously test our framework against slang sense

definition entries from three large slang dictionar-

ies and contribute a new dataset for slang research

to the community.

Contrastive Learning. Contrastive learning is a

semi-supervised learning technique used to extract

semantic representations in data-scarce situations.

It can be incorporated into neural networks in the

form of twin networks, where two exact copies of

an encoder network are applied to two different

examples. The encoded representations are then

compared and back-propagated. Alternative loss

schemes such as Triplet (Weinberger and Saul,

2009; Wang et al., 2014) and Quadruplet loss (Law

et al., 2013) have also been proposed to enhance

stability in training. In NLP, contrastive learning

has been applied to learn similarities between text

(Mueller and Thyagarajan, 2016; Neculoiu et al.,

2016) and speech utterances (Kamper et al., 2016)

with recurrent neural networks.

The contrastive learning method we develop

has two main differences: 1) We do not use recur-

rent encoders because they perform poorly on

dictionary-based definitions; 2) We propose a joint

neural-probabilistic framework on the learned

embedding space instead of resorting to methods

such as nearest-neighbor search for generation.
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3 Computational Framework

Our computational framework for slang genera-

tion comprises three interrelated components: 1) A

probabilistic formulation of word choice, extend-

ing that in Sun et al. (2019) to leverage encap-

sulated slang senses from a modified embedding

space; 2) A contrastive encoder—inspired by vari-

ants of twin network (Baldi and Chauvin, 1993;

Bromley et al., 1994)—that constructs a modified

embedding space for slang by adapting the con-

ventional embeddings to incorporate new senses

of slang words; 3) A contextually informed prior

for capturing flexible uses of naturalistic slang.

3.1 Probabilistic Slang Choice Model

Given a query slang sense MS and its context

CS , we cast the problem of slang generation

as inference over candidate words w in our

vocabulary. Assuming all candidate words w are

drawn from a fixed vocabulary V , the posterior is

as follows:

P (w|MS , CS) ∝ P (MS |w,CS)P (w|CS)

∝ P (MS |w)P (w|CS) (1)

Here, we define the prior P (w|CS) based on regu-

larities of syntax and/or linguistic context in slang

usage (described in Section 3.4). We formulate the

likelihood P (MS|w)
2 by specifying the relations

between conventional senses of word w (denoted

by Mw = {Mw1
,Mw2

, · · · ,Mwm
}, i.e., the set

of senses drawn from a standard dictionary) and

the query MS (i.e., slang sense that is outside the

standard dictionary). Specifically, we model the

likelihood by a similarity function that measures

the proximity between the slang sense MS and

the set of conventional senses Mw of word w in

a continuous, embedded semantic space:

P (MS|w) = P (MS |Mw)

∝ f({sim(ES, Ewi
);Ewi

∈ Ew})
(2)

Here, f(·) is a similarity function in range [0, 1],
while ES and Ew represent semantic embeddings

of the slang sense MS and the set of conventional

senses Mw. We derive these embeddings from

contrastive learning which we describe in detail in

Section 3.2, and we compare this proposed method

2Here, we only consider linguistically motivated context

as CS and assume the semantic shift patterns of slang are

universal across all such contexts.

with baseline methods that draw embeddings from

existing sentence embedding models.

Our choice of the similarity function f(·) is

motivated by prior work on few-shot classi-

fication. Specifically, we consider variants of

two established methods: One Nearest Neighbor

(1NN) matching (Koch et al., 2015; Vinyals et al.,

2016) and Prototypical learning (Snell et al.,

2017).

The 1NN model postulates that a candidate

word should be chosen according to the similarity

between the query slang sense and the closest

conventional sense:

f1nn(ES , Ew) = max
Ewi

∈Ew
sim(ES, Ewi

) (3)

In contrast, the prototype model postulates that a

candidate word should be chosen if its aggregate

(or average) sense is in close proximity of the

query slang sense:

fprototype(ES , Ew) = sim(ES, E
prototype
w )

Eprototype
w =

1

|Ew|

∑

Ewi
∈Ew

Ewi
(4)

In both cases, the similarity between two senses

is defined by the exponentiated negative squared

Euclidean distance in semantic embedding space:

sim(ES, Ew) = exp(−
||ES − Ew||

2
2

hs
) (5)

Here, hs is a learned kernel width parameter.

We also consider an enhanced version of the

posterior using collaborative filtering (Goldberg

et al., 1992), where words with similar meaning are

predicted to shift to similar novel slang meanings.

We operationalize this by summing over the close

neighborhood of candidate word L(w):

P (w|MS , CS) =
∑

w′∈L(w)

P (w|w′)P (w′|MS , CS)
(6)

Here, P (w′|MS , CS) is a fixed term calculated

identically as in Equation (1) and P (w|w′) is the

weighting of words in the close neighborhood of

a candidate word w. This weighting probability

is set proportional to the exponentiated negative

cosine distance between w and its neighbor w′

defined in pre-trained word embedding space, and

the kernel parameter hcf is also estimated from

the training data:

P (w|w′) ∝ sim(w,w′) = exp(−
d(w,w′)

hcf
) (7)
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Here, d(w,w′) is the cosine distance between two

words in a word embedding space.

3.2 Contrastive Semantic Encoding (CSE)

We develop a contrastive semantic encoder for

constructing a new embedding space represent-

ing slang and conventional word senses that do

not bear surface similarities. For instance, the

conventional sense of kick such as ‘‘propel with

foot’’ can hardly be related to the slang sense of

kick such as ‘‘a strong flavor’’. The contrastive

embedding space we construct seeks to rede-

fine or warp similarities, such that the otherwise

unrelated senses will be in closer proximity than

they are under existing embedding methods. For

example, two metaphorically related senses can

bear strong similarity in slang usage, even though

they may be far apart in a literal sense.

We sample triplets of word senses as input to

contrastive learning, following work on twin net-

works (Baldi and Chauvin, 1993; Bromley et al.,

1994; Chopra et al., 2005; Koch et al., 2015).

We use dictionary definitions of conventional and

slang senses to obtain the initial sense embeddings

(See Section 4.4 for details). Each triplet consists

of 1) an anchor slang sense MS , 2) a positive

conventional sense MP , and 3) a negative con-

ventional sense MN . The positive sense should

ideally be encouraged to lie closely to the anchor

slang sense (in the resulting embedding space),

whereas the negative sense should ideally be

further away from both the positive conventional

and anchor slang senses. Section 3.3 describes the

detailed sampling procedures.

Our triplet network uses a single neural encoder

g to project each word sense representation into a

joint embedding space in R
d.

ES = g(MS);EP = g(MP );EN = g(MN )
(8)

We choose a 1-layer fully connected network with

ReLU(Nair and Hinton, 2010) as the encoder g

for pre-trained word vectors (e.g., fastText). For

contextualized embedding models we consider, g

will be a Transformer encoder (Vaswani et al.,

2017). In both cases, we apply the same encoder

network g to each of the three inputs. We train the

triplet network using the max-margin triplet loss

(Weinberger and Saul, 2009), where the squared

distance between the positive pair is constrained

to be closer than that of the negative pair with a

margin m:

Ltriplet =
[

m+ ‖ES −EP ‖
2
2 − ‖ES − EN‖22

]

+
(9)

3.3 Triplet Sampling

To train the triplet network, we build data triplets

from every slang lexical entry in our training set.

For each slang sense MS of word w, we create a

positive pair with each conventional sense Mwi
of

the same word w. Then for each positive pair, we

sample a negative example every training epoch by

randomly selecting a conventional senseMw′ from

a wordw′ that is sufficiently different fromw, such

that the corresponding definition sentenceDw′ has

less than 20% overlap in the set of content words

compared to MS and any conventional definition

sentence Dwi
of word w. We rank all candidate

words in our vocabulary against w by computing

cosine distances from pre-trained word embed-

dings and consider a word w′ to be sufficiently

different if it is not in the top 20 percent.

Neighborhood Sampling (NS). In addition to

using conventional senses of the matching word

w for constructing positive pairs, we also sample

positive senses from a small neighborhood L(w)
of similar words. This sampling strategy pro-

vides linguistic knowledge from parallel semantic

change to encourage neighborhood structure in

the learned embedding space. Sampling from

neighboring words also augments the size of the

training data considerably in this data-scarce task.

We sample negative senses in a similar way,

except that we also consider all conventional def-

inition sentences from neighboring words when

checking for overlapping senses.

3.4 Contextual Prior

The final component of our framework is the prior

P (w|CS) (see Equation (1)) that captures flexible

use of slang words with regard to syntax and dis-

tributional semantics. For example, slang exhibits

flexible Part-of-Speech (POS) shift, for example,

noun→verb transition as in the example ice, and

surprisals in linguistic context, for example, ice in

‘‘I have a feeling he’s gonna [blank] himself some-

day.’’ Here, we formulate the context CS in two

forms: 1) a syntactic-shift prior, namely, the POS
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information PS to capture syntactic regularities in

slang, and/or 2) a linguistic context prior, namely,

the linguistic context KS to capture distributional

semantic context when this is available in the data.

Syntactic-Shift Prior (SSP). Given a query

POS tag PS , we construct the syntactic prior by

comparing POS distribution Pw from literal natu-

ral usage of a candidate word w with a smoothed

POS distribution PS centered at PS . However, we

cannot directly compare PS to Pw because slang

usage often involves shifting POS (Eble, 2012;

Pei et al., 2019). To account for this, we apply a

transformation T by counting the number of POS

transitions for each slang-conventional definition

pair in the training data. Each column of the

transformation matrix T is then normalized, so

column i of T can be interpreted as the expected

slang-informed POS distribution given the i’th

POS tag in conventional context (e.g., the noun

column gives the expected slang POS distribution

of a word that is used exclusively as a noun

in conventional usage). The slang-contextualized

POS distribution P∗
S can then be computed by

applying T onPS : P∗
S = T×PS . The prior can be

estimated by comparing the POS distributions Pw

and P∗
S via Kullback-Leibler (KL) divergence:

P (w|CS) = P (w|PS) ∝ exp
(

−KL(Pw,P
∗
S)
)

1
2

(10)

Intuitively, this prior captures the regularities of

syntactic shift in slang usage, and it favors candi-

date words with POS characteristics that fits well

with the queried POS tag in a slang context.

Linguistic Context Prior (LCP). We use a

language model PLM to a given linguistic context

KS to estimate the probability of each candidate

word:

P (w|CS) = P (w|KS) ∝ PLM (w|KS)+α (11)

Here, α is a Laplace smoothing constant. We use

the GPT-2 based language infilling model from

Donahue et al. (2020) as PLM and discuss the

implementation in Section 4.3.

4 Experimental Setup

4.1 Lexical Resources

We collected lexical entries of slang and conven-

tional words/phrases from three separate online

dictionaries:3 1) Online Slang Dictionary (OSD),4

2) Green’s Dictionary of Slang (GDoS) (Green,

2010),5 and 3) an open source subset of Urban

Dictionary (UD) data from Kaggle.6 In addition,

we gathered dictionary definitions of conventional

senses of words from the online version of Oxford

Dictionary (OD).7

Slang Dictionary. Both slang dictionaries

(OSD and GDoS) are freely accessible online and

contain slang definitions with meta-data such as

Part-of-Speech tags. Each data entry contains the

word, its slang definition, and its part-of-speech

(POS) tag. In particular, OSD includes example

sentence(s) for each slang entry which we leverage

as linguistic context, and GDoS contains time-

tagged references that allow us to perform his-

torical prediction (described later). We removed

all acronyms (i.e., fully capitalized words) as they

generally do not extend meaning, and slang def-

initions that share more than 50% content words

with any of their corresponding conventional def-

initions to account for conventionalized slang. We

also removed slang with novel word forms where

no conventional sense definitions are available.

Slang phrases were treated as unigrams because

our task only concerns the association between

senses and lexical items. Each sense definition was

considered a data point during both learning and

prediction. We later partitioned definition entries

from each dataset to be used for training, vali-

dation, and testing. Note that a word may appear

in both training and testing but the pairing bet-

ween word senses are unique (See Section 5.3 for

discussion).

Conventional Word Senses. We focused on

the subset of OD containing word forms that are

also available in the slang datasets described. For

each word entry, we removed all definitions that

have been tagged as informal because these are

likely to represent slang senses. This results in

10,091 and 29,640 conventional sense definitions

corresponding to the OSD and GDoS datasets,

respectively.

3We obtained written permissions from all authors for the

datasets that we use for this work.
4OSD: http://onlineslangdictionary.com.
5GDoS: https://greensdictofslang.com.
6UD: https://www.kaggle.com/therohk/urban

-dictionary-words-dataset.
7OD: https://en.oxforddictionaries.com.
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Data Split. We used all definition entries from

the slang resources such that the corresponding

slang word also exists in the collected OD subset.

The resulting datasets (OSD and GDS) had 2,979

and 29,300 definition entries, respectively, from

1,635 and 6,540 unique slang words, of which

1,253 are shared across both dictionaries. For

each dataset, the slang definition entries were

partitioned into a 90% training set and a 10% test

set. Five percent of the data in the training set

were set aside for validation when training the

contrastive encoder.

Urban Dictionary. In addition to the two

datasets described above, we provide a third

dataset based on Urban Dictionary (UD) that are

made available via Kaggle. Unlike the previous

two datasets, we are able to make this one pub-

licly available without requiring one to obtain

prior permission from the data owners.8 To guard

against the crowd-sourced and noisy nature of UD,

we ensure quality by keeping definition entries

such that 1) it has at least 10 more upvotes than

downvotes, 2) the word entry exists in one of OSD

or GDoS, and 3) at least one of the corresponding

definition sentences in these dictionaries have a

20% or greater overlap in the set of content words

with the UD definition sentence. We also remove

entries with more than 50% overlap in content

words with any other UD slang definitions under

the same word to remove duplicated senses. This

results in 2,631 definitions entries from 1,464

unique slang words. The corresponding OD sub-

set has 10,357 conventional sense entries. We find

entries from UD to be more stylistically variable

and lengthier, with a mean entry length of 9.73 in

comparison to 7.54 and 6.48 for OSD and GDoS,

respectively.

4.2 Part-of-Speech Data

The natural POS distribution Pw for each candi-

date word w is obtained using POS counts from

the most recent available decade of the HistWords

project (Hamilton et al., 2016). For word entries

that are not available, mostly phrases, we estimate

Pw by counting POS tags from Oxford Dictionary

(OD) entries of w.

When estimating the slang POS transformation

for the syntactic prior, we mapped all POS tags

into one of the following six categories: {verb,

8Code and data available at: https://github.com

/zhewei-sun/slanggen.

other, adv, noun, interj, adj} for the OSD experi-

ments. For GDS, the tag ‘interj’ was excluded as

it is not present in the dataset.

4.3 Contextualized Language Model Baseline

We considered a state-of-the-art GPT-2 based

language infilling model from Donahue et al.

(2020) as both a baseline model and a prior to

our framework (on the OSD data where context

sentences are available for the slang entries). For

each entry, we blanked out the corresponding

slang word in the example sentence, effectively

treating our task as a cloze task. We applied

the infilling model to obtain probability scores

for each of the candidate words and apply a

Laplace smoothing of 0.001. We fine-tuned the

LM infilling model using all example sentences

in the OSD training set until convergence. We

also experiment with a combined prior where

the two priors are combined using element-wise

multiplication and re-normalization.

4.4 Baseline Embedding Methods

To compare with and compute the baseline

embedding methods M for definition sentences,

we used 300-dimensional fastText embeddings

(Bojanowski et al., 2017) pre-trained with sub-

word information on 600 billion tokens from

Common Crawl9 as well as 768-dimensional

Sentence-Bert (SBERT) (Reimers and Gurevych,

2019) encoders pretrained on Wikipedia and fine-

tuned on NLI datasets (Bowman et al., 2015;

Williams et al., 2018). The fastText embed-

dings were also used to compute cosine distances

d(w,w′) in Equation (7). Embeddings for phrases

and the fastText-based sentence embeddings were

both computed by applying average pooling to

normalized word-level embeddings of all content

words. In the case of SBERT, we fed in the

original definition sentence.

4.5 Training Procedures

We trained the triplet networks for a maximum

of 20 epochs using Adam (Kingma and Ba, 2015)

with a learning rate of 10−4 for fastText and 2−5

for SBERT based models. We preserved dimen-

sions of the input sense vectors for the contrastive

embeddings learned by the triplet network (that

is, 300 for fastText and 768 for SBERT). We used

1,000 fully-connected units in the contrastive

9http://commoncrawl.org.
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encoder’s hidden layer for fastText based models.

Triplet margins of 0.1 and 1.0 were used with

fastText and SBERT embeddings respectively.

We trained the probabilistic classification

framework by minimizing negative log likeli-

hood of the posterior P (w∗|MS , CS) on the

ground-truth words for all definition entries in the

training set. We jointly optimized kernel width

parameters using L-BFGS-B (Byrd et al., 1995).

To construct a word w’s neighborhood L(w) in

both collaborative filtering and triplet sampling,

we considered the 5 closest words in cosine

distances of their fastText embeddings.

5 Results

5.1 Model Evaluation

We first evaluated our models quantitatively by

predicting slang word choices: Given a novel

slang sense (a definition taken from a slang

dictionary) and its part-of-speech, how likely

is the model to predict the ground-truth slang

recorded in the dictionary? To assess model per-

formance, we allowed each model to make up to

|V | ranked predictions where V is the vocabulary

of the dataset being evaluated, and we used stan-

dard Area-Under-Curve (AUC) percentage from

Receiver-Operator Characteristic (ROC) curves

to assess overall performance.

We show the ROC curves for the OSD eval-

uation in Figure 2 as an illustration. The AUC

metric is similar to and a continuous extension

to an F1 score by comprehensively sweeping

through the number of candidate words a model

is allowed to predict. We find this metric to be the

most appropriate because multiple words may be

appropriate to express a probe slang sense.

To examine the effectiveness of the contrastive

embedding method, we varied the semantic rep-

resentation as input to the models by considering

both fastText and SBERT (described in Sec 4.4).

For both embeddings, we experimented with the

baseline variant without the contrastive encod-

ing (e.g., vanilla embeddings from fastText and

SBERT). We then augmented the models incre-

mentally with the contrastive encoder and the

priors whenever applicable to examine their

respective and joint effects on model performance

in slang word choice prediction. We observed that,

under both datasets, models leveraging the con-

trastively learned sense embeddings more reliably

predict the ground-truth slang words, indicated by

Figure 2: ROC curves for slang generation in

OSD test set. Collaborative-filtering prototype

model was used for prediction. Ticks on the y-axis

indicate median precision of the models.

both higher AUC scores and consistent improve-

ment in precision over all retrieval ranks. Note

that the vanilla SBERT model, despite being a

much larger model trained on more data, only pre-

sented minor performance gains when compared

with the plain fastText model. This suggests that

simply training larger models on more data does

not better encapsulate slang semantics.

We also analyzed whether the contrastive em-

beddings are robust under different choices of the

probabilistic models. Specifically, we considered

the following four variants of the models: 1)

1-Nearest Neighbor (1NN), 2) Prototype, 3) 1NN

with collaborative filtering (CF), and 4) Proto-

type with CF. Our results show that applying

contrastively learned semantic embeddings con-

sistently improves predictive accuracy across all

probabilistic choice models. The complete set of

results for all 3 datasets is summarized in Table 1.

We noted that the syntactic information from

the prior improves predictive accuracy in all set-

tings, while by itself predicting significantly better

than chance. On OSD, we used the context sen-

tences alone in a contextualized language infilling

model for prediction and also incorporating it as a

prior. Again, while the prior consistently improves

model prediction, both by itself and when paired

with the syntactic-shift prior, the language model

alone is not sufficient.

We found the syntactic-shift prior and linguistic

context prior to be capturing complementary infor-

mation (mean Spearman correlation of 0.054 ±
0.003 across all examples), resulting in improved

performance when they are combined together.
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Model 1NN Prototype 1NN+CF Proto+CF

Dataset 1: Online Slang Dictionary (OSD)

Prior Baseline - Uniform 51.9

Prior Baseline - Syntactic-shift 60.6

Prior Baseline - Linguistic Context(Donahue et al., 2020) 61.8

Prior Baseline - Syntactic-shift + Linguistic Context 67.3

FastText Baseline(Sun et al., 2019) 63.2 65.2 66.0 68.7

FastText + Contrastive Semantic Encoding (CSE) 71.7 71.6 73.0 72.6

FastText + CSE + Syntactic-shift Prior (SSP) 73.8 73.4 75.2 74.4

FastText + CSE + Linguistic Context Prior (LCP) 73.6 73.2 74.7 73.9

FastText + CSE + SSP + LCP 75.4 74.9 76.5 75.6

SBERT Baseline 67.4 68.1 69.5 72.0

SBERT + CSE 76.6 77.4 77.4 78.0

SBERT + CSE + SSP 77.6 78.0 78.8 78.9

SBERT + CSE + LCP 77.8 78.4 78.1 78.7

SBERT + CSE + SSP + LCP 78.5 79.0 79.4 79.5

Dataset 2: Green’s Dictionary of Slang (GDoS)

Prior Baseline - Uniform 51.5

Prior Baseline - Syntactic-shift 61.0

FastText Baseline(Sun et al., 2019) 68.2 69.9 67.8 69.7

FastText + Contrastive Semantic Encoding (CSE) 73.4 74.0 74.1 74.8

FastText + CSE + Syntactic-shift Prior (SSP) 74.5 74.8 75.2 75.8

SBERT Baseline 67.1 68.0 66.8 67.5

SBERT + CSE 77.8 78.2 77.4 77.9

SBERT + CSE + SSP 78.5 78.7 78.3 78.6

Dataset 3: Urban Dictionary (UD)

Prior Baseline - Uniform 52.3

FastText Baseline(Sun et al., 2019) 65.2 68.8 67.6 70.9

FastText + Contrastive Semantic Encoding (CSE) 71.0 72.2 71.5 73.7

SBERT Baseline 72.4 71.7 74.0 74.4

SBERT + CSE 76.2 76.6 77.2 78.8

Table 1: Summary of model AUC scores (%) for slang generation in 3 slang datasets.

However, the majority of the performance gain

is attributed to the augmented contrastive em-

beddings, which highlights the importance and

supports our premise that encoding of slang and

conventional senses is crucial to slang word

choice.

5.2 Historical Analysis of Slang Emergence

We next performed a temporal analysis to evaluate

whether our model explains slang emergence over

time. We used the time tags available in the

GDoS dataset and predicted historically emerged

slang from the past 50 years (1960s–2000s). For a

given slang entry recorded in history, we tagged its

emergent decade using the earliest dated reference

available in the dictionary. For each future decade

d, we trained our model using all entries before

d and assessed whether our model can predict

the choices of slang words for slang senses that

emerged in the future decade. We scored the

models on slang words that emerged during each

subsequent decade, simulating a scenario where

future slang usages are incrementally predicted.

Table 2 summarizes the result from the

historical analysis for the non-contrastive SBERT

baseline and our full model (with contrastive

embeddings), based on the GDoS data. AUC

scores are similar to the previous findings but

slightly lower for both models in this historical

setting. Overall, we find the full model to improve

the baseline consistently over the course of history

examined and achieve similar performance as in

the synchronic evaluation. This provides strong

evidence that our framework is robust and has
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Decade # Test Baseline SBERT+CSE+SSP

1960s 2010 67.5 77.4

1970s 1757 66.3 77.9

1980s 1655 66.3 78.6

1990s 1605 66.2 75.4

2000s 1374 65.9 77.0

Table 2: Summary of model AUC scores

in historical prediction of slang emergence

(1960s-2000s). The non-contrastive SBERT

baseline and the proposed full model (with

contrastive embedding, CSE, and syntactic

prior, SSP) are compared using collaborative-

filtering Prototype. Models were trained and

tested incrementally through time (test sizes

shown) and trained initially on 20,899 Green’s

Dictionary definitions prior to the 1960s.

explanatory power over the historical emergence

of slang.

5.3 Model Error Analysis and Interpretation

Few-shot vs Zero-shot Prediction. We analyze

our model errors and note that one source of error

stems from whether the probe slang word has

appeared during training versus not. Here, each

candidate word is treated as a class and each

slang sense of a word seen in the training set is

considered a ‘shot’. In the few-shot case, although

the slang sense in question was not observed in

prediction, the model has some a priori knowl-

edge about its target word and how it has been

used in slang context (because a word may have

multiple slang senses), thus allowing the model to

generalize toward novel slang usage of that word.

In the zero-shot case, the model needs to select

a novel slang word (i.e., one that never appeared

in training) and hence has no direct knowledge

about how that word should be extended in a

slang context. Such knowledge must be inferred

indirectly, and in this case, from the conventional

senses of the candidate words. The model can

then infer how words with similar conventional

senses might extend to slang context.

Table 3 outlines the AUC scores of the collabo-

ratively filtered prototype models under few-shot

and zero-shot settings. For each dataset, we par-

titioned the corresponding test set by whether the

target word appears at least once within another

definition entry in the training data. This results

in 179, 2,661, and 165 few-shot definitions in

(a) Online Slang Dictionary (OSD)

Model Few-shot Zero-shot

Prior - Uniform 55.1 47.1

Prior - Syntactic-shift 63.4 56.4

Prior - Linguistic Context 72.4 45.8

Prior - SSP + LCP 74.7 56.4

FT Baseline 68.3 69.2

FT + CSE 74.8 69.4

FT + CSE + SSP 76.8 70.9

FT + CSE + LCP 76.7 69.5

FT + CSE + SSP + LCP 78.7 70.9

SBERT Baseline 72.2 71.6

SBERT + CSE 78.3 77.5

SBERT + CSE + SSP 79.3 78.3

SBERT + CSE + LCP 79.8 77.1

SBERT + CSE + SSP + LCP 80.7 77.8

(b) Green’s Dictionary of Slang (GDoS)

Model Few-shot Zero-shot

Prior - Uniform 51.8 48.1

Prior - Syntactic-shift 61.6 54.8

FT Baseline 70.6 61.3

FT + CSE 76.3 59.2

FT + CSE + SSP 77.3 60.7

SBERT Baseline 68.3 59.6

SBERT + CSE 79.0 66.8

SBERT + CSE + SSP 79.7 67.7

(c) Urban Dictionary (UD)

Model Few-shot Zero-shot

Prior - Uniform 54.2 49.1

FT Baseline 68.6 75.0

FT + CSE 76.2 69.4

SBERT Baseline 73.0 76.8

SBERT + CSE 80.6 75.6

Table 3: Model AUC scores (%) for Few-shot and

Zero-shot test sets (‘‘CSE’’ for contrastive embed-

ding, ‘‘SSP’’ for syntactic prior, ‘‘LCP’’ for con-

textual prior, and ‘‘FT’’ for fastText).

Figure 3: Degree of synonymy in the test examples

relative to training data in each of the 3 datasets.

471



Figure 4: Model AUC scores (%) under test sets

with different degrees of synonymy present in

training, for the baselines and the best performing

models (under collaborative-filtering prototype).

OSD, GDoS, and UD, respectively, along with

120, 269, 96 zero-shot definitions. From our

results, we observed that it is more challeng-

ing for the model to generalize usage patterns

to unseen words, with AUC scores often being

higher in the few-shot case. Overall, we found the

model to have the most issues handling zero-shot

cases from GDoS due to the fine-grained senses

recorded in this dictionary, where a word has

more slang senses on average (in comparison to

(a) Online Slang Dictionary (OSD)

Model Training Testing

FT Baseline 0.33 ± 0.011 0.35 ± 0.033

FT + CSE 0.15 ± 0.0083 0.28 ± 0.030

SBERT Baseline 0.34 ± 0.011 0.32 ± 0.033

SBERT + CSE 0.097 ± 0.0069 0.23 ± 0.029

(b) Green’s Dictionary of Slang (GDoS)

Model Training Testing

FT Baseline 0.30 ± 0.0034 0.30 ± 0.010

FT + CSE 0.19 ± 0.0028 0.26 ± 0.0097

SBERT Baseline 0.32 ± 0.0035 0.32 ± 0.010

SBERT + CSE 0.10 ± 0.0019 0.22 ± 0.0089

(c) Urban Dictionary (UD)

Model Training Testing

FT Baseline 0.34 ± 0.012 0.31 ± 0.037

FT + CSE 0.20 ± 0.010 0.28 ± 0.033

SBERT Baseline 0.34 ± 0.012 0.28 ± 0.034

SBERT + CSE 0.10 ± 0.0075 0.23 ± 0.031

Table 4: Mean Euclidean distance from slang senses

to prototypical conventional senses.

the OSD and UD data). This issue caused the mod-

els to be more biased towards generalizing usage

patterns from more commonly observed words.

Finally, the SBERT-based models tend to be more

robust towards unseen word-forms, potentially

benefiting from their contextualized properties.

Synonymous Slang Senses. We also examined

the influence of synonymy (or sense overlap) in the

slang datasets. We quantified the degree of sense

synonymy by checking each test sense against all

training senses and computing the edit distance

between the corresponding sets of constituent

content words of the sense definitions.

Figure 3 shows the distribution of degree of

synonymy across all test examples where the edit

distance to the closest training example is con-

sidered. We perform our evaluation by binning

based on the degree of synonymy and summa-

rize the results in Figure 4. We do not observe

any substantial changes in performance when

controlling for the degree of synonymy, and in

fact, the highly synonymous definitions appear

to be more difficult (as opposed to easier) for

the models. Overall, we find the models to yield

consistent improvement across different degrees

of synonymy, particularly with the SBERT based

full model, which offers improvement in all

cases.
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Model Top-5 slang words predicted by model Predicted rank of the true slang

1. True slang: kick; Slang sense: ‘‘a thrill, amusement or excitement’’

Sample usage: I got a huge kick when things were close to out of hand.

SBERT Baseline thrill, pleasure, frolic, yahoo, sparkle 3496 / 6540

Full model twist, spin, trick, crank, punch 96 / 6540

2. True slang: whiff; Slang sense: ‘‘to kill, to murder, [play on SE, to blow away]’’

Sample usage: The trouble is he wasn’t alone when you whiffed him.

SBERT Baseline suicide, homicide, murder, killing, rape 2735 / 6540

Full model spill, swallow, blow, flare, dash 296 / 6540

3. True slang: chirp; Slang sense: ‘‘an act of informing, a betrayal’’

Sample usage: Once we’re sure there’s no back-fire anywhere, the Sparrow will chirp his last chirp.

SBERT Baseline dupe, sin, scam, humbug, hocus 2431 / 6540

Full model chirp, squeal, squawk, fib, chat 1 / 6540

4. True slang: red; Slang sense: ‘‘a communist, a socialist or anyone considered to have left-wing leanings’’

Sample usage: Why the hell would I bed a red?

SBERT Baseline leveller, wildcat, mole, pawn, domino 1744 / 6540

Full model orange, bluey, black and tan, violet, shadow 164 / 6540

5. True slang: team; Slang sense: ‘‘a gang of criminals’’

Sample usage: And a little team to follow me - all wanted up the yard.

SBERT Baseline gangster, hoodlum, thug, mob, gangsta 826 / 6540

Full model brigade, mob, business, gang, school 15 / 6540

Table 5: Example slang word predictions from the contrastively learned full model and SBERT baseline

(with no contrastive embedding) on slang usage from the Green’s Dictionary. Each example shows the

true slang, the probe slang sense, a sample usage, the alternative slang words predicted by each model,

and the predicted rank (colored bars indicate inverse rank) of the true slang from a lexicon of 6,540

words.

Semantic Distance. To understand the conse-

quence of contrastive embedding, we examine

the relative distance between conventional and

slang senses of a word in embedding space and

the extent to which the learned semantic relations

might generalize. We measured the Euclidean

distance between each slang embedding with the

prototype sense vector of all candidate words,

without applying the probabilistic choice models.

Table 4 shows the ranks of the corresponding

candidate words, averaged over all slang sense

embeddings considered and normalized between

0 and 1. We observed that contrastive learning

indeed brings closer slang and conventional senses

(from the same word), as indicated by lower mean

semantic distance after the embedding procedure

is applied. Under both fastText and SBERT,

we obtained significant improvement on both

the OSD and GDoS test sets (p < 0.001). On

UD, the improvement is significant for SBERT

(p = 0.018) but marginal for fastText (p = 0.087).

Examples of Model Prediction. Table 5 shows

5 example slangs from the GDoS test set and the

top words predicted by both the baseline SBERT

model and the full SBERT-based model with

contrastive learning. The full model exhibits a

greater tendency to choose words that appear

remotely related to the queried sense (e.g., spill,

swallow for the act of killing), while the baseline

model favors words that share only surface seman-

tic similarity (e.g., retrieving murder and homi-

cide directly). We found cases where the model

extends meaning metaphorically (e.g., animal to

action, in the case of chirp), euphemistically (e.g.,

spill and swallow for kill), and generalization of

a concept (e.g., brigade and mob for gang), all

of which are commonly attested in slang usage

(Eble, 2012).

We found the full model to achieve better

retrieval accuracy in cases where the queried

slang undergoes a non-literal sense extension,

whereas the baseline model is situated at retriev-

ing candidate words with incremental or literal

changes in meaning. We also noted many cases

where the true slang word is difficult to predict

without appropriate background knowledge. For

instance, the full-model suggested words such as

orange and bluey to mean ‘‘a communist’’ but

could not pinpoint the color red without knowing

its cultural association to communism. Finally,

we observed that our model to perform generally

worse when the target slang sense can hardly

be related to conventional senses of the target
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word, suggesting that cultural knowledge may be

important to consider in the future.

6 Conclusion

We have presented a framework that combines

probabilistic inference with neural contrastive

learning to generate novel slang word usages. Our

results suggest that capturing semantic and con-

textual flexibility simultaneously helps to improve

the automated generation of slang word choices

with limited training data. To our knowledge

this work constitutes the first formal computa-

tional approach to modeling slang generation,

and we have shown the promise of the learned

semantic space for representing slang senses. Our

framework will provide opportunities for future

research in the natural language processing of

informal language, particularly the automated

interpretation of slang.
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