
Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research

in Phonetics, Phonology, and Morphology,

August 5, 2021. ©2021 Association for Computational Linguistics

pages 60–71

60

Sample-efficient Linguistic Generalizations through Program Synthesis:
Experiments with Phonology Problems

Saujas Vaduguru1 Aalok Sathe2 Monojit Choudhury3 Dipti Misra Sharma1

1 IIIT Hyderabad 2 MIT BCS∗
3 Microsoft Research India

1 {saujas.vaduguru@research.,dipti@}iiit.ac.in
2 aalok.sathe@{mit.edu, richmond.edu}

3 monojitc@microsoft.com

Abstract

Neural models excel at extracting statistical
patterns from large amounts of data, but strug-
gle to learn patterns or reason about language
from only a few examples. In this paper, we
ask: Can we learn explicit rules that general-
ize well from only a few examples? We ex-
plore this question using program synthesis.
We develop a synthesis model to learn phonol-
ogy rules as programs in a domain-specific lan-
guage. We test the ability of our models to
generalize from few training examples using
our new dataset of problems from the Linguis-
tics Olympiad, a challenging set of tasks that
require strong linguistic reasoning ability. In
addition to being highly sample-efficient, our
approach generates human-readable programs,
and allows control over the generalizability of
the learnt programs.

1 Introduction

In the last few years, the application of deep neural
models has allowed rapid progress in NLP. Tasks
in phonology and morphology have been no excep-
tion to this, with neural encoder-decoder models
achieving strong results in recent shared tasks in
phonology (Gorman et al., 2020) and morphology
(Vylomova et al., 2020). However, the neural mod-
els that perform well on these tasks make use of
hundreds, if not thousands of training examples
for each language. Additionally, the patterns that
neural models identify are not interpretable. In
this paper, we explore the problem of learning in-
terpretable phonological and morphological rules
from only a small number of examples, a task that
humans are able to perform.

Consider the example of verb forms in the lan-
guage Mandar presented in Table 1. How would
a neural model tasked with filling the two blank
cells do? The data comes from a language that

∗Work done while at the University of Richmond

to V to be Ved

mappasuN dipasuN
mattunu ditunu

? ditimbe
? dipande

Table 1: Verb forms in Mandar (McCoy, 2018)

is not represented in large-scale text datasets that
could allow the model to harness pretraining, and
the number of samples presented here is likely not
sufficient for the neural model to learn the task.

However, a human would fare much better at
this task even if they didn’t know Mandar. Identi-
fying rules and patterns in a different language
is a principal concern of a descriptive linguist
(Brown and Ogilvie, 2010). Even people who
aren’t trained in linguistics would be able to solve
such a task, as evidenced by contestants in the Lin-
guistics Olympiads1, and general-audience puzzle
books (Bellos, 2020). In addition to being able to
solve the task, humans would be able to express
their solution explicitly in terms of rules, that is to
say, a program that maps inputs to outputs.

Program synthesis (Gulwani et al., 2017) is a
method that can be used to learn programs that map
an input to an output in a domain-specific language
(DSL). It has been shown to be a highly sample-
efficient technique to learn interpretable rules by
specifying the assumptions of the task in the DSL
(Gulwani, 2011).

This raises the questions (i) Can program syn-
thesis be used to learn linguistic rules from only
a few examples? (ii) If so, what kind of rules can
be learnt? (iii) What kind of operations need to ex-
plicitly be defined in the DSL to allow it to model
linguistic rules? (iv) What knowledge must be im-

1https://www.ioling.org/

https://www.ioling.org/


61

plicitly provided with these operations to allow the
model to choose rules that generalize well?

In this work, we use program synthesis to
learn phonological rules for solving Linguistics
Olympiad problems, where only the minimal num-
ber of examples necessary to generalize are given
(Şahin et al., 2020). We present a program syn-
thesis model and a DSL for learning phonological
rules, and curate a set of Linguistics Olympiad
problems for evaluation.

We perform experiments and comparisons to
baselines, and find that program synthesis does
significantly better than our baseline approaches.
We also present some observations about the ability
of our system to find rules that generalize well, and
discuss examples of where it fails.

2 Program synthesis

Program synthesis is “the task of automatically
finding programs from the underlying program-
ming language that satisfy (user) intent expressed
in some form of constraints” (Gulwani et al., 2017).
This method allows us to specify domain-specific
assumptions as a language, and use generic synthe-
sis approches like FlashMeta (Polozov and Gul-
wani, 2015) to synthesize programs.

The ability to explicitly encode domain-specific
assumptions gives program synthesis broad appli-
cability to various tasks. In this paper, we explore
applying it to the task of learning phonological
rules. Whereas previous work on rule-learning has
focused on learning rules of a specific type (Brill,
1992; Johnson, 1984), the DSL in program synthe-
sis allows learning rules of different types, and in
different rule formalisms.

In this work, we explore learning rules similar to
rewrite rules (Chomsky and Halle, 1968) that are
used extensively to describe phonology. Sequences
of rules are learnt using a noisy disjunctive synthe-
sis algorithm NDSyn (Iyer et al., 2019) extended to
learn stateful multi-pass rules (Sarthi et al., 2021).

2.1 Phonological rules as programs

The synthesis task we solve is to learn a program in
a domain-specific language (DSL) for string trans-
duction, that is, to transform a given sequence of
input tokens i ∈ I∗ to a sequence of output tokens
o ∈ O∗, where I is the set of input tokens, and O
is the set of output tokens. Each token is a symbol
accompanied by a feature set, a set of key-value
pairs that maps feature names to boolean values.

We learn programs for token-level examples,
which transform an input token in its context to
output tokens. The program is a sequence of rules
which are applied to each token in an input string
to produce the output string. The rules learnt are
similar to rewrite rules, of the form

φ−l · · ·φ−2φ−1Xφ1φ2 · · ·φr → T

where (i) X : I → B is a boolean predicate that
determines input tokens to which the rule is applied
(ii) φi : I → B is a boolean predicate applied to
the ith character relative to X , and the predicates φ
collectively determine the context in which the rule
is applied (iii) T : I → O∗ is a function that maps
an input token to a sequence of output tokens.
X and φ belong to a set of predicates P , and T

is a function belonging to a set of transformation
functions T . P and T are specified by the DSL.

We allow the model to synthesize programs that
apply multiple rules to a single token by synthesiz-
ing rules in passes and maintaining state from one
pass to the next. This allows the system to learn
stateful multi-pass rules (Sarthi et al., 2021).

2.2 Domain-specific language

The domain-specific language (DSL) is the declar-
ative language which defines the allowable string
transformation operations. The DSL is defined by
a set of operators, a grammar which determines
how they can be combined, and a semantics which
determines what each operator does. By defining
operators to capture domain-specific phenomena,
we can reduce the space of programs to be searched
to include those programs that capture distinctions
relevant to the domain. This allows us to explicitly
encode knowledge of the domain into the system.

Operators in the DSL also have a score asso-
ciated with each operator that allows for setting
domain-specific preferences for certain kinds of
programs. We can combine scores for each oper-
ator in a program to compute a ranking score that
we can use to identify the most preferred program
among candidates. The ranking score can capture
implicit preferences like shorter programs, more/-
less general programs, certain classes of transfor-
mations, etc.

The DSL defines the predicates P and set of
transformations T that can be applied to a partic-
ular token. The predicates and transformations in
the DSL we use, along with the description of their
semantics, can be found in Tables 2 and 3.



62

Predicate

IsToken(w, s, i) Is x equal to the token s? This allows us to evaluate matches with specific
tokens.

Is(w, f, i) Is f true for x? This allows us to generalize beyond single tokens and use
features that apply to multiple tokens.

TransformationApplied(w, t, i) Has the transformation t has been applied to x in a previous pass? This
allows us to reference previous passes in learning rules for the current pass.

Not(p) Negates the predicate p.

Table 2: Predicates that are used for synthesis. The predicates are applied to a token x that is at an offset i from
the current token in the word w. The offset may be positive to refer to tokens after the current token, zero to refer
to the current token, or negative to refer to tokens before the current token.

Transformation

ReplaceBy(x, s1, s2) If x is s1, it is replaced with s2. This allows the system to learn conditional
substitutions.

ReplaceAnyBy(x, s) x is replaced with s. This allows the system to learn unconditional substitutions.

Insert(x, S) This inserts a sequence of tokens S after x at the end of the pass. It allows for the
insertion of variable-length affixes.

Delete(x) This deletes x from the word at the end of the pass.

CopyReplace(x, i) These are analogues of the ReplaceBy and Insert transformations where the
token which is added is the same as the token at an offset i from x. They allow
the system to learn phonological transformations such as assimilation and
gemination.

CopyInsert(x, i)

Identity(x) This returns x unchanged. It allows the system where a transformation applies
under certain conditions, but does not under others.

Table 3: Transformations that are used for synthesis. The transformations are applied to a token x in the word w.
The offset i for the Copy transformations may be positive to refer to tokens after the current token, zero to refer to
the current token, or negative to refer to tokens before the current token.

output := Map(disjunction , input_tokens)
disjunction := Else(rule , disjunction)
rule := transformation

| IfThen(predicate , rule);

Figure 1: IfThen-Else statements in the DSL

Sequences of rules are learnt as disjunctions of
IfThen operators, and are applied to each token
of the input using a Map operator (Figure 1). The
conjunction of predicates X and φ that define the
context are learnt by nesting IfThen operators.

A transformation produces an token that is
tagged with the transformation that is applied. This
allows for maintaining state across passes.

The operators in our DSL are quite generic and
can be applied to other string transformations as
well. In addition to designing our DSL for string
transformation tasks, we allow for phonological
information to be specified as features, which are a
set of key-value pairs that map attributes to boolean
values. While we restrict our investigation to fea-

tures based only on the symbols in the input, more
complex features based on meaning and linguistic
categories can be provided to a system that works
on learning rules for more complex domains like
morphology or syntax. We leave this investigation
for future work.

2.3 Synthesis algorithm

We use an extension (Sarthi et al., 2021) of the
NDSyn algorithm (Iyer et al., 2019) that can syn-
thesize stateful multi-pass rules. Iyer et al. (2019)
describe an algorithm for selecting disjunctions
of rules, and use the FlashMeta algorithm as the
rule synthesis component. Sarthi et al. (2021) ex-
tend the approach proposed by Iyer et al. (2019)
for disjunctive synthesis to the task of grapheme-
to-phoneme (G2P) conversion in Hindi and Tamil.
They propose the idea of learning transformations
on token aligned examples, and use language-
specific predicates and transformations to learn
rules for G2P conversion. We use a similar ap-
proach, and use a different set of predicates and



63

Words
kæt → kæts
dOg → dOgz

Token-level
examples

k → k
æ → æ
t → t
→ s

d → d
O → O
g → g
→ z

Candidates

#1. IfThen(IsToken(w,"$",1),
IfThen(Is(w," voice",0),
Insert(x,"z")))

#2. IfThen(IsToken(w,"t",0),
IfThen(IsToken(w,"$",1),
Insert(x,"s")))

#3. IfThen(IsToken(w,"$",1),
Insert(x,"s")),

#4. IfThen(IsToken(w,"g",0),
IfThen(IsToken(w,"$",1),
Insert(x,"z")))

#5. IfThen(
Not(IsToken(w,"$",1)),

Identity(x))

Rules

Else(#1,
Else(#3,
Else (#5)
)

)

Program

Input
examples

align FM NDSyn

multi-pass

Figure 2: An illustration of the synthesis algorithm. FM is FlashMeta, which synthesizes rules which are com-
bined into a disjunction of rules by NDSyn. Here, rule #1 is chosen over #4 since it uses the more general concept
of the voice feature as opposed to a specific token, and thus has a higher ranking score.

transformations that are language-agnostic. Fig-
ure 2 sketches the working of the algorithm.

The NDSyn algorithm is an algorithm for learn-
ing disjunctions of rules, of the form shown in
Figure 1. Given a set of examples, it first gen-
erates a set of candidate rules using the Flash-
Meta synthesis algorithm (Polozov and Gulwani,
2015). This algorithm searches for a program in the
DSL that satisfies a set of examples by recursively
breaking down the search problem into smaller sub-
problems. Given an operator, and the input-output
constraints it must satisfy, it infers constraints on
each of the arguments to the operator, allowing it to
recursively search for programs that satisfy these
constraints on each of the arguments. For exam-
ple, given the Is predicate and a set of examples
where the predicate is true or false, the algorithm
infers constraints on the arguments the token s and
offset i such that the set of examples is satisfied.
The working of FlashMeta is illustrated with an
example in Figure 3. We use the implementation of
the FlashMeta algorithm available as part of the
PROSE2 framework.

From the set of candidate rules, NDSyn selects
a subset of rules with a high ranking score that
correctly answers the most examples as well incor-
rectly answers the least3. Additional details about
the algorithm are provided in Appendix A.

The synthesis of multi-pass rules proceeds in
passes. In each pass, a set of token-aligned exam-
ples is provided as input to the NDSyn algorithm.
The resulting rules are then applied to all the exam-

2https://www.microsoft.com/en-us/research/
group/prose/

3A rule will not produce any answer to examples that don’t
satisfy the context constraints of the rule.

ples, and those that are not solved are passed as the
set of examples to NDSyn in the next pass. This
proceeds until all the examples are solved, or for a
maximum number of passes.

3 Dataset

To test the ability of our program synthesis system
to learn linguistic rules from only a few examples,
we require a task with a small number of training
examples, and a number of test examples which
measure how well the model generalises to unseen
data. Additionally, to ensure a fair evaluation, the
test examples should be chosen such that the sam-
ples in the training data provide sufficient evidence
to correctly solve the test examples.

To this end, we use problems from the Linguis-
tics Olympiad. The Linguistics Olympiad is an
umbrella term describing contests for high school
students across the globe. Students are tasked with
solving linguistics problems—a genre of composi-
tion that presents linguistic facts and phenomena
in enigmatic form (Derzhanski and Payne, 2010).
These problems typically have 2 parts: the data
and the assignments.

The data consists of examples where the solver is
presented with the application rules to some linguis-
tic forms (words, phrases, sentences) and the forms
derived by applying the rules to these forms. The
data typically consists of 20-50 forms, the minimal
number of examples required to infer the correct
rules is presented (Şahin et al., 2020).

The assignments provide other linguistic forms,
and the solver is tasked with applying the rules
inferred from the data to these forms. The forms
in the assignments are carefully selected by the

https://www.microsoft.com/en-us/research/group/prose/
https://www.microsoft.com/en-us/research/group/prose/


64

predicate
rule

token offset

abc → d

Inverse SemanticsIfThen

abc → True

Inverse SemanticsIsToken

abc → a abc → −1

abc → b

abc → c

abc → 0

abc → 1

IsToken(w,"a",-1)
IsToken(w,"b",0)
IsToken(w,"c",1)

Search for rule ReplaceBy(x,"b","d")
ReplaceAnyBy(x,"d")

IfThen(IsToken(w,"a",-1),
ReplaceBy(x,"b","d"))

IfThen(IsToken(w,"b",0),
ReplaceAnyBy(x,"d"))

IfThen(IsToken(w,"c",1),
ReplaceAnyBy(x,"d"))

Figure 3: An illustration of the search performed by the FlashMeta algorithm. The blue boxes show the spec-
ification that an operator must satisfy in terms of input-output examples, with the input token underlined in the
context of the word. The Inverse Semantics of an operator is a function that is used to infer the specification for
each argument of the operator based on the semantics of the operator. This may be a single specification (as for
predicate) or a disjunction of specifications (as for token and offset). The algorithm then recursively searches for
programs to satisfy the specification for each argument, and combines the results of the search to obtain a program.
The search for the rule in an IfThen statement proceeds similarly to the search for a predicate. Examples of pro-
grams that are inferred from a specification are indicated with =⇒ . A dashed line between inferred specifications
indicates that the specifications are inferred jointly.

designer to test whether the solver has correctly
inferred the rules, including making generalizations
to unseen data. This allows us to see how much of
the intended solution has been learnt by the solver
by examining responses to the assignments.

The small number of training examples (data)
tests the generalization ability and sample effi-
ciency of the system, and presents a challenging
learning problem for the system. The careful se-
lection of test examples (assignment) lets us use
them to measure how well the model learns these
generalizations.

We present a dataset of 34 linguistics problems,
collected from various publicly accessible sources.
These problems are based on phonology, and some
aspects of the morphology of languages, as well
as the orthographic properties of languages. These
problems are chosen such that the underlying rules
depend only on the given word forms, and not
on inherent properties of the word like grammat-
ical gender or animacy. The problems involve
(1) inferring phonological rules in morphological
inflection (Table 4a) (2) inferring phonological
changes between multiple related languages (Ta-
ble 4b) (3) converting between the orthographic

form of a language and the corresponding phono-
logical form (Table 4c) (4) marking the phonolog-
ical stress on a given word (Table 4d). We refer
to each of these categories of problems as mor-
phophonology, multilingual, transliteration, and
stress respectively. We further describe the dataset
in Appendix B4.

3.1 Structure of the problems

Each problem is presented in the form of a matrix
M . Each row of the matrix contains data pertaining
to a single word/linguistic form, and each column
contains the same form of different words, i.e.,
an inflectional or derivational paradigm, the word
form in a particular language, the word in a partic-
ular script, or the stress values for each phoneme in
a word. A test sample in this case is presented as a
particular cell Mij in the table that has to be filled.
The model has to use the data from other words in
the same row (Mi:) and the words in the column
(M:j) to predict the form of the word in Mij .

In addition to the data in the table, each prob-
lem contains some additional information about the
symbols used to represent the words. This addi-

4The dataset is available here.

https://github.com/saujasv/phonological-generalizations


65

base form negative form

joy kas joya:ya’
bi:law kas bika’law
tipoysu:da ?
? kas wurula:la’

(a) Movima negation

Turkish Tatar

bandIr mandIr
yelken cilkän
? osta
bilezik ?

(b) Turkish and Tatar

Listuguj Pronunciation

g’p’ta’q g@b@da:x
epsaqtejg epsaxteck
emtoqwatg ?
? @mtesk@m

(c) Micmac orthography

Aleut Stress

tatul 01000
n@tG@lqin 000010000
sawat ?
qalpuqal 00001000

(d) Aleut stress

Table 4: A few examples from different types of Linguistics Olympiad problems. ‘?’ represents a cell in the table
that is part of the test set.

tional information is meant to aid the solver under-
stand the meaning of a symbol they may not have
seen before. We manually encode this information
in the feature set associated with each token for
synthesis. Where applicable, we also add conso-
nant/vowel distinctions in the given features, since
this is a basic distinction assumed in the solutions
to many Olympiad problems.

We use the assignments that accompany every
problem as the test set, ensuring that the correct
answer can be inferred based on the given data.

3.2 Dataset statistics

The dataset we present is highly multilingual. The
34 problems contain samples from 38 languages,
drawn from across 19 language families. There
are 15 morphophonology problems, 7 multilingual
problems, 6 stress, and 6 transliteration problems.
The set contains 1452 training words with an aver-
age of 43 words per problem, and 319 test words
with an average of 9 per problem. Each problem
has a matrix that has between 7 and 43 rows, with
an average of 23. The number of columns ranges
from 2 to 6, with most problems having 2.

4 Experiments

4.1 Baselines

Given that we model our task as string transduc-
tion, we compare with the following transduction
models used as baselines in shared tasks on G2P
conversion (Gorman et al., 2020) and morphologi-
cal reinflection (Vylomova et al., 2020).
Neural: We use LSTM-based sequence-to-
sequence models with attention as well as Trans-
former models as implemented by Wu (2020). For
each problem, we train a single neural model that
takes the source and target column numbers, and
the source word, and predicts the target word.
WFST: We use models similar to the pair n-gram
models (Novak et al., 2016), with the implementa-
tion similar to that used by Lee et al. (2020). We

train a model for each pair of columns in a problem.
For each test exampleMij , we find the column with
the smallest index j′ such that Mij′ is non-empty
and use Mij′ as the source string to infer Mij .

Additional details of baselines are provided in
Appendix C.

4.2 Program synthesis experiments

As discussed in Section 3.1, the examples in a prob-
lem are in a matrix, and we synthesize programs
to transform entries in one column to entries in
another. Given a problem matrix M , we refer to
a program to transform an entry in column i to
an entry in column j as M:i → M:j . To obtain
token-level examples, we use the Smith-Waterman
alignment algorithm (Smith et al., 1981), which
favours contiguous sequences in aligned strings.

We train three variants of our synthesis system
with different scores for the Is and IsToken op-
erators. The first one, NOFEATURE, does not use
features, or the Is predicate. The second one, TO-
KEN, assigns a higher score to IsToken and prefers
more specific rules that reference tokens. The third
one, FEATURE, assigns a higher score to Is and
prefers more general rules that reference features
instead of tokens. All other aspects of the model
remain the same across variants.
Morphophonology and multilingual problems:
For every pair of columns (s, t) in the problem
matrix M , we synthesize the program M:s →M:t.
To predict the form of a test sample Mij , we find
a column k such that the program M:k →M:j has
the best ranking score, and evaluate it on Mik.
Transliteration problems: Given a problem ma-
trixM , we construct a new matrixM ′ for each pair
of columns (s, t) such that all entries in M ′ are in
the same script. We align word pairs (Mis,Mit)
using the Phonetisaurus many-to-many alignment
tool (Jiampojamarn et al., 2007), and build a sim-
ple mapping f for each source token to the target
token with which it is most frequently aligned. We
fill in M ′is by applying f to each token of Mis and



66

Model All Morphophonology Multilingual Transliteration Stress

EXACT CHRF EXACT CHRF EXACT CHRF EXACT CHRF EXACT

NOFEATURE 26.8% 0.64 30.1% 0.72 42.1% 0.59 12.0% 0.51 15.4%
TOKEN 32.7% 0.63 37.5% 0.68 45.3% 0.60 16.4% 0.52 22.2%
FEATURE 30.9% 0.51 38.6% 0.56 39.9% 0.42 9.5% 0.49 23.0%

LSTM 8.2% 0.44 9.2% 0.49 5.7% 0.45 2.1% 0.31 15.0%
Transformer 5.4% 0.42 2.3% 0.39 9.2% 0.50 1.7% 0.42 12.6%
WFST 20.9% 0.56 16.3% 0.47 38.7% 0.63 29.7% 0.71 2.8%

Table 5: Metrics for all problems, and for problems of each type. The CHFF score for stress problems is not
calculated, and not used to determine the overall CHRF score.

M ′it =Mit. We then find a program M ′:s →M ′:t.
Stress problems: For these problems, we do not
perform any alignment, since the training pairs are
already token aligned. The synthesis system learns
to transform the source string to the sequence of
stress values.

4.3 Metrics
We calculate two metrics: exact match accuracy,
and CHRF score (Popović, 2015). The exact match
accuracy measures the fraction of examples the
synthesis system gets fully correct.

EXACT =
#{correctly predicted test samples}

#{test samples}
The CHRF score is calculated only at the token
level, and measures the n-gram overlaps between
the predicted answer and the true answer, and al-
lows us to measure partially correct answers. We
do not calculate the CHRF score for stress problems
as n-gram overlap is not a meaningful measure of
performance for these problems.

4.4 Results
Table 5 summarizes the results of our experiments.
We report the average of each metric across prob-
lems for all problems and by category.

We find that neural models that don’t have spe-
cific inductive biases for the kind of tasks we
present here are not able to perform well with this
amount of data. The synthesis models do better
than the WFST baseline overall, and on all types
of problems except transliteration. This could be
due to the simple map computed from alignments
before program synthesis causing errors that the
rule learning process cannot correct.

5 Analysis

We examine two aspects of the program synthesis
models we propose. The first is the way it uses the

explicit knowledge in the DSL and implicit knowl-
edge provided as the ranking score to generalize.
We then consider specific examples of problems,
and show examples of where our models succeed
and fail in learning different types of patterns.

Model 100% ≥ 75% ≥ 50%

NOFEATURE 3 5 7
TOKEN 3 6 10

FEATURE 3 6 11
WFST 1 2 7

Table 6: Number of problems where the model
achieves different thresholds of the EXACT score.

5.1 Features aid generalization
Since the test examples are chosen to test specific
rules, solving more test examples correctly is in-
dicative of the number of rules inferred correctly.
In Table 6, we see that providing the model with
features allows it to infer more general rules, solv-
ing a greater fraction of more problems. We see
that allowing the model to use features increases
its performance, and having it prefer more general
rules involving features lets it do even better.

5.2 Correct programs are short
In Figure 4 we see that the number of rules in a
problem5 tends to be higher when the model gets
the problem wrong, than when it gets it right. This
indicates that when the model finds many specific
rules, it overfits to the training data, and fails to
generalize well. This holds true for all the variants,
as seen in the downward slope of the lines.

We also find that allowing and encouraging a
model to use features leads to shorter programs.
The average length of a program synthesized by

5To account for some problems having more columns than
others (and hence more rules), we find the average number of
rules for each pair of columns.



67

Figure 4: Number of rules plotted against EXACT score

NOFEATURES is 30.5 rules, while it is 25.8 for
TOKEN, and 20.7 for FEATURE. This suggests that
explicit access to features, and implicit preference
for them leads to fewer, more general rules.

5.3 Using features
Some problems provide additional information
about certain sounds. For example, a prob-
lem based on the alternation retroflexes in
Warlpiri words (Laughren, 2011) explicitly identi-
fies retroflex sounds in the problem statement. In
this case, a program produced by our FEATURE

system is able to use these features, and isolate the
focus of the problem by learning rules such as

IfThen(Not(Is(w, "retroflex", 0)),
Identity(x))

The system learns a concise solution, and is able
to generalize using features rather than learning
separate rules for individual sounds.

In the case of inflecting a Mandar verb (McCoy,
2018), the FEATURE system uses a feature to find
a more general rule than is the case. To capture the
rule that the prefix di- changes to mas- when the
root starts with s, the model synthesizes

IfThen(Is(w, "fricative", 1),
ReplaceBy(x, "i", "s"))

However, since s is the only fricative in the data,
this rule is equivalent to a rule specific to s. This
rule also covers examples where the root starts with
s, and causes the model to miss the more general
rule of a voiceless sound at the beginning of the root
to be copied to the end of the prefix. It identifies
this rule only for roots starting with p as

IfThen(IsToken(w, "p", 1),
CopyReplace(x, w, 1))

The TOKEN system does not synthesize these

rules based on features, and instead chooses rules
specific to each initial character in the root.

Since the DSL allows for substituting one token
with one other, or inserting multiple tokens, the
system has to use multiple rules to substitute one
token with multiple tokens. In the case of Mandar,
we see one way it does this, by performing multiple
substitutions (to transform di- to mas- it replaces d
and i with a and s respectively, and then inserts m).

5.4 Multi-pass rules

In a problem on Somali verb forms (Somers, 2016),
we see a different way of handling multi-token
substitutions by using multi-pass rules to create a
complex rule using simpler elements. The problem
requires being able to convert verbs from 1st person
to 3rd person singular. The solution includes a rule
where a single token (l) is replaced with (sh). The
learned program uses two passes to capture this
rule through sequential application of two rules:
first ReplaceBy(x, "l", "h"), followed by

IfThen(TransformationApplied(w,
"{ReplaceBy , h}", 1),

Insert(x, "s"))

5.5 Selecting spans of the input

In a problem involving reduplication in Tarangan
(Warner, 2019), all variants fail to capture any syn-
thesis rules. Reduplication in Tarangan involves
copying one or two syllables in the source word
to produce the target word. However, the DSL we
use does not have any predicates or transformations
that allow the system to reference a span of mul-
tiple tokens (which would form a syllable) in the
input. Therefore, it fails to model reduplication.

5.6 Global constraints

Since we provide the synthesis model with token-
level examples, it does not have access to word-
level information. This results in poor performance
on stress problems, as stress depends on the entire
word. Consider the example of Chickasaw stress
(Vaduguru, 2019). It correctly learns the rule

IfThen(Is(w, "long", 0),
ReplaceAnyBy(x, "1"))

that stresses any long vowel in the word. How-
ever, since it cannot check if the word has a long
vowel that has already been stressed, it is not able
to correctly model the case when the word doesn’t
have a long vowel. This results in some samples be-
ing marked with stress at two locations, one where



68

the rule for long vowels applies, and one where the
rule for words without long vowels applies.

6 Related work

Gildea and Jurafsky (1996) also study the problem
of learning phonological rules from data, and ex-
plicitly controlling generalization behaviour. We
pursue a similar goal, but in a few-shot setting.

Barke et al. (2019) and Ellis et al. (2015) study
program synthesis applied to linguistic rule learn-
ing. They make much stronger assumptions about
the data (the existence of an underlying form, and
the availability of additional information like IPA
features). We take a different approach, and study
program synthesis models that can work only on
the tokens in the word (like NOFEATURE), and also
explore the effect of providing features in these
cases. We also test our approach on a more varied
set of problems that involves aspects of morphol-
ogy, transliteration, multilinguality, and stress.

Şahin et al. (2020) also present a set of Linguis-
tics Olympiad problems as a test of the metalin-
guistic reasoning abilities of NLP models. While
problems in their set involve finding phonological
rules, they also require the knowledge of syntax
and semantics that are out of the scope of our study.
We present a set of problems that only requires
reasoning about surface word forms, and without
requiring the meanings.

7 Conclusion

In this paper, we explore the problem of learning
linguistic rules from only a few training examples.
We approach this using program synthesis, and
demonstrate that it is a powerful and flexible tech-
nique for learning phonology rules in Olympiad
problems. These problems are designed to be chal-
lenging tasks that require learning rules from a
minimal number of examples. These problems also
allow us to specifically test for generalization.

We compare our approach to various baselines,
and find that it is capable of learning phonologi-
cal rules that generalize much better than existing
approaches. We show that using the DSL, we can
explicitly control the structure of rules, and using
the ranking score, we can provide the model with
implicit preferences for certain kinds of rules.

Having demonstrated the potential of program
synthesis as a learning technique that can work with
very little data and provide human-readable models,

we hope to apply it to learning more complex types
of lingusitic rules in the future.

In addition to being a way to learn rules from
data, the ability to explicity control the general-
ization behaviour of the model allows for the use
of program synthesis to understand the kinds of
learning biases and operations that are required to
model various linguistic processes. We leave this
exploration to future work.

Acknowledgements

We would like to thank Partho Sarthi for invaluable
help with PROSE and NDSyn. We would also like
to thank the authors of the ProLinguist paper for
their assistance. Finally, we would like to thank the
anonymous reviewers for their feedback.

References
Shraddha Barke, Rose Kunkel, Nadia Polikarpova, Eric

Meinhardt, Eric Bakovic, and Leon Bergen. 2019.
Constraint-based learning of phonological processes.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6176–
6186, Hong Kong, China. Association for Computa-
tional Linguistics.

A. Bellos. 2020. The Language Lover’s Puzzle Book:
Lexical perplexities and cracking conundrums from
across the globe. Guardian Faber Publishing.

Eric Brill. 1992. A simple rule-based part of speech
tagger. In Speech and Natural Language: Proceed-
ings of a Workshop Held at Harriman, New York,
February 23-26, 1992.

Keith Brown and Sarah Ogilvie. 2010. Concise ency-
clopedia of languages of the world. Elsevier.

Noam Chomsky and Morris Halle. 1968. The sound
pattern of english.

Ivan Derzhanski and Thomas Payne. 2010. The
Linguistic Olympiads: academic competitions in
linguistics for secondary school students, page
213–226. Cambridge University Press.

Kevin Ellis, Armando Solar-Lezama, and Josh Tenen-
baum. 2015. Unsupervised learning by program syn-
thesis. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, pages
973–981. Curran Associates, Inc.

Daniel Gildea and Daniel Jurafsky. 1996. Learning
bias and phonological-rule induction. Computa-
tional Linguistics, 22(4):497–530.

https://doi.org/10.18653/v1/D19-1639
https://books.google.co.in/books?id=xzzUDwAAQBAJ
https://books.google.co.in/books?id=xzzUDwAAQBAJ
https://books.google.co.in/books?id=xzzUDwAAQBAJ
https://www.aclweb.org/anthology/H92-1022
https://www.aclweb.org/anthology/H92-1022
https://doi.org/10.1017/CBO9780511770791.019
https://doi.org/10.1017/CBO9780511770791.019
https://doi.org/10.1017/CBO9780511770791.019
http://papers.nips.cc/paper/5785-unsupervised-learning-by-program-synthesis.pdf
http://papers.nips.cc/paper/5785-unsupervised-learning-by-program-synthesis.pdf
https://www.aclweb.org/anthology/J96-4003
https://www.aclweb.org/anthology/J96-4003


69

Kyle Gorman, Lucas F.E. Ashby, Aaron Goyzueta,
Arya McCarthy, Shijie Wu, and Daniel You. 2020.
The SIGMORPHON 2020 shared task on multilin-
gual grapheme-to-phoneme conversion. In Proceed-
ings of the 17th SIGMORPHON Workshop on Com-
putational Research in Phonetics, Phonology, and
Morphology, pages 40–50, Online. Association for
Computational Linguistics.

Sumit Gulwani. 2011. Automating string processing
in spreadsheets using input-output examples. SIG-
PLAN Not., 46(1):317–330.

Sumit Gulwani, Oleksandr Polozov, and Rishabh
Singh. 2017. Program synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1–119.

Arun Iyer, Manohar Jonnalagedda, Suresh
Parthasarathy, Arjun Radhakrishna, and Sriram K
Rajamani. 2019. Synthesis and machine learning
for heterogeneous extraction. In Proceedings of the
40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages
301–315.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek
Sherif. 2007. Applying many-to-many alignments
and hidden Markov models to letter-to-phoneme
conversion. In Human Language Technologies
2007: The Conference of the North American Chap-
ter of the Association for Computational Linguistics;
Proceedings of the Main Conference, pages 372–
379, Rochester, New York. Association for Compu-
tational Linguistics.

Mark Johnson. 1984. A discovery procedure for cer-
tain phonological rules. In 10th International Con-
ference on Computational Linguistics and 22nd An-
nual Meeting of the Association for Computational
Linguistics, pages 344–347, Stanford, California,
USA. Association for Computational Linguistics.

Mary Laughren. 2011. Stopping and flapping in
warlpiri. In Dragomir Radev and Patrick Littell,
editors, North American Computational Linguistics
Olympiad 2011: Invitational Round. North Ameri-
can Computational Linguistics Olympiad.

Jackson L. Lee, Lucas F.E. Ashby, M. Elizabeth Garza,
Yeonju Lee-Sikka, Sean Miller, Alan Wong, Arya D.
McCarthy, and Kyle Gorman. 2020. Massively
multilingual pronunciation modeling with WikiPron.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 4223–4228, Mar-
seille, France. European Language Resources Asso-
ciation.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Tom McCoy. 2018. Better left unsaid. In Patrick Lit-
tell, Tom McCoy, Dragomir Radev, and Ali Shar-
man, editors, North American Computational Lin-
guistics Olympiad 2018: Invitational Round. North
American Computational Linguistics Olympiad.

Josef Robert Novak, Nobuaki Minematsu, and Keikichi
Hirose. 2016. Phonetisaurus: Exploring grapheme-
to-phoneme conversion with joint n-gram models in
the wfst framework. Natural Language Engineer-
ing, 22(6):907–938.

Oleksandr Polozov and Sumit Gulwani. 2015. Flash-
meta: A framework for inductive program synthesis.
SIGPLAN Not., 50(10):107–126.

Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Gözde Gül Şahin, Yova Kementchedjhieva, Phillip
Rust, and Iryna Gurevych. 2020. PuzzLing Ma-
chines: A Challenge on Learning From Small Data.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
1241–1254, Online. Association for Computational
Linguistics.

Partho Sarthi, Monojit Choudhury, Arun Iyer, Suresh
Parthasarathy, Arjun Radhakrishna, and Sriram Ra-
jamani. 2021. ProLinguist: Program Synthesis for
Linguistics and NLP. IJCAI Workshop on Neuro-
Symbolic Natural Language Inference.

Temple F Smith, Michael S Waterman, et al. 1981.
Identification of common molecular subsequences.
Journal of molecular biology, 147(1):195–197.

Harold Somers. 2016. Changing the subject.
In Andrew Lamont and Dragomir Radev, edi-
tors, North American Computational Linguistics
Olympiad 2016: Invitational Round. North Ameri-
can Computational Linguistics Olympiad.

Saujas Vaduguru. 2019. Chickasaw stress. In
Shardul Chiplunkar and Saujas Vaduguru, editors,
Panini Linguistics Olympiad 2019. Panini Linguis-
tics Olympiad.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Ekaterina Vylomova, Jennifer White, Eliza-
beth Salesky, Sabrina J. Mielke, Shijie Wu,
Edoardo Maria Ponti, Rowan Hall Maudslay, Ran
Zmigrod, Josef Valvoda, Svetlana Toldova, Francis
Tyers, Elena Klyachko, Ilya Yegorov, Natalia
Krizhanovsky, Paula Czarnowska, Irene Nikkarinen,
Andrew Krizhanovsky, Tiago Pimentel, Lucas
Torroba Hennigen, Christo Kirov, Garrett Nicolai,
Adina Williams, Antonios Anastasopoulos, Hilaria
Cruz, Eleanor Chodroff, Ryan Cotterell, Miikka
Silfverberg, and Mans Hulden. 2020. SIGMOR-
PHON 2020 shared task 0: Typologically diverse
morphological inflection. In Proceedings of the
17th SIGMORPHON Workshop on Computational

https://doi.org/10.18653/v1/2020.sigmorphon-1.2
https://doi.org/10.18653/v1/2020.sigmorphon-1.2
https://doi.org/10.1145/1925844.1926423
https://doi.org/10.1145/1925844.1926423
https://doi.org/10.1561/2500000010
https://www.aclweb.org/anthology/N07-1047
https://www.aclweb.org/anthology/N07-1047
https://www.aclweb.org/anthology/N07-1047
https://doi.org/10.3115/980491.980561
https://doi.org/10.3115/980491.980561
https://www.nacloweb.org/resources/problems/2011/naclo11r1_prob.pdf
https://www.nacloweb.org/resources/problems/2011/naclo11r1_prob.pdf
https://www.aclweb.org/anthology/2020.lrec-1.521
https://www.aclweb.org/anthology/2020.lrec-1.521
https://www.nacloweb.org/resources/problems/2018/NACLO2018ROUND2.pdf
https://doi.org/10.1017/S1351324915000315
https://doi.org/10.1017/S1351324915000315
https://doi.org/10.1017/S1351324915000315
https://doi.org/10.1145/2858965.2814310
https://doi.org/10.1145/2858965.2814310
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/2020.acl-main.115
https://doi.org/10.18653/v1/2020.acl-main.115
https://www.nacloweb.org/resources/problems/2016/NACLO2016ROUND2.pdf
https://www.nacloweb.org/resources/problems/2016/NACLO2016ROUND2.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.sigmorphon-1.1
https://doi.org/10.18653/v1/2020.sigmorphon-1.1
https://doi.org/10.18653/v1/2020.sigmorphon-1.1


70

Research in Phonetics, Phonology, and Morphology,
pages 1–39, Online. Association for Computational
Linguistics.

Elysia Warner. 2019. Tarangan. In Samuel Ahmed,
Bozhidar Bozhanov, Ivan Derzhanski (technical
editor), Hugh Dobbs, Dmitry Gerasimov, Shin-
jini Ghosh, Ksenia Gilyarova, Stanislav Gurevich,
Gabrijela Hladnik, Boris Iomdin, Bruno L’Astorina,
Tae Hun Lee (editor-in chief), Tom McCoy, André
Nikulin, Miina Norvik, Tung-Le Pan, Aleksejs
Peguševs, Alexander Piperski, Maria Rubinstein,
Daniel Rucki, Artūrs Semeņuks, Nathan Somers,
Milena Veneva, and Elysia Warner, editors, Interna-
tional Linguistics Olympiad 2019. International Lin-
guistics Olympiad.

Shijie Wu. 2020. Neural transducer. https://github.
com/shijie-wu/neural-transducer/.

A NDSyn algorithm

We use the NDSyn algorithm to learn disjunctions
of rules. We apply NDSyn in multiple passes to
allow the model to learn multi-pass rules.

At each pass, the algorithm learns rules to per-
form token-level transformations that are applied
to each element of the input sequence. The token-
level examples are passed to NDSyn, which learns
the if-then-else statements that constitute a set of
rules. This is done by first generating a set of can-
didate rules by randomly sampling a token-level
example and synthesizing a set of rules that satisfy
the example. Then, rules are selected to cover the
token-level examples.

Rules that satisfy a randomly sampled example
are learnt using the FlashMeta program synthesis
algorithm (Polozov and Gulwani, 2015). The syn-
thesis task is given by the DSL operator P and the
specification of constraints X that the synthesized
program must satisfy. In our application, this speci-
fication is in the form of token-level examples, and
the DSL operators are the predicates and transfor-
mations defined in the paper. The algorithm recur-
sively decomposes the synthesis problem (P,X )
into smaller tasks (Pi,Xi) for each argument Pi

to the operator. Xi is inferred using the inverse
semantics of the operator Pi, which is encoded as
a witness function. The inverse semantics provides
the possible values for the arguments of an opera-
tor, given the output of the operator. We refer the
reader to the paper by Polozov and Gulwani (2015)
for a full description of the synthesis algorithm.

After the candidates are generated, they are
ranked according to a ranking score of each pro-
gram. The ranking score for an operator in a pro-
gram is computed as a function of the scores of

its arguments. The arguments may be other op-
erators, offsets, or other constants (like tokens or
features). The score for an operator in the argu-
ment is computed recursively. The score for an
offset favours smaller numbers and local rules by
decreasing the score for larger offsets. The score
for other constants is chosen to be a small negative
constant. The scores for the arguments are added
up, along with a small negative penalty to favour
shorter programs, to obtain the final score for the
operator.

This ranking score selects for programs that are
shorter, and favours either choosing more gen-
eral by giving the Is predicate a higher score
(FEATURE) or more specific rules by giving the
IsToken predicate a higher score (TOKEN). The
top k programs according to the ranking function
are chosen as candidates for the next step.

To choose the final set of rules from the candi-
dates generated using the FlashMeta algorithm,
we use a set covering algorithm that chooses the
rules that correctly answer the most number of ex-
amples while also incorrectly answering the least.
These rules are applied to each example, and the
output tokens are tagged with the transformation
that is applied. These outputs are then the input to
the next pass of the algorithm.

B Dataset

We select problems from various Linguistics
Olympiads to create our dataset. We include pub-
licly available problems that have appeared in
Olympiads before. We choose problems that only
involve rules based on the symbols in the data, and
not based on knowledge of notions such as gender,
tense, case, or semantic role. These problems are
based on the phonology of a particular language,
and include aspects of morphology and orthogra-
phy, and maybe also the phonology of a different
language. In some cases where a single Olympiad
problem involves multiple components that can be
solved independent of each other, we include them
as separate problems in our dataset.

We put the data and assignments in a matrix, as
described in Section 3.1 . We separate tokens in a
word by a space while transcribing the problems
from their source PDFs. We do not separate diacrit-
ics as different tokens, and include them as part of
the same token. For each token in the Roman script,
we add the boolean features vowel and consonant,
and manually tag the tokens according to whether

https://ioling.org/booklets/iol-2019-indiv-prob.en.pdf
https://github.com/shijie-wu/neural-transducer/
https://github.com/shijie-wu/neural-transducer/


71

they are a vowel or consonant.
We store the problems in JSON files with details

about the languages, the families to which the lan-
guages belong, the data matrix, the notes used to
create the features, and the feature sets for each
token.

C Baselines

C.1 Neural
Following Şahin et al. (2020), we use small neural
models for sequence-to-sequence tasks. We train a
single neural model for each task, and provide the
column numbers as tags in addition to the source
sequence. We find that the single model approach
works better than training a model for each pair of
columns.
LSTM: We use LSTM models with soft attention
(Luong et al., 2015), with embeddings of size 64,
hidden layers of size 128, a 2-layer encoder and a
single layer decoder. We apply a dropout of 0.3 for
all layers. We train the model for 100 epochs using
the Adam optimizer with a learning rate of 10−3,
learning rate reduction on plateau, and a batch size
of 2. We clip the gradient norm to 5.
Transformer: We use Transformer models
(Vaswani et al., 2017) with embeddings of size
128, hidden layers of size 256, a 2-layer encoder
and a 2-layer decoder. We apply a dropout of 0.3
for all layers. We train the model for 2000 steps
using the Adam optimizer with a learning rate of
10−3, warmup of 400 steps, learning rate reduction
on plateau, and a batch size of 2. We use a label
smoothing value of 0.1, and clip the gradient norm
to 1.

We use the implementations provided at https:
//github.com/shijie-wu/neural-transducer/ for all
neural models.

C.2 WFST
We use the implementation the WFST models avail-
able at https://github.com/sigmorphon/2020/tree/

master/task1/baselines/fst for the WFST models.
We train a model for each pair of columns. We
report the results for models of order 5, which were
found to perform the best on the test data (highest
EXACT score) among models of order 3 to 9.

https://github.com/shijie-wu/neural-transducer/
https://github.com/shijie-wu/neural-transducer/
https://github.com/sigmorphon/2020/tree/master/task1/baselines/fst
https://github.com/sigmorphon/2020/tree/master/task1/baselines/fst

