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Abstract

Recently, there has been an interest in factual
verification and prediction over structured data
like tables and graphs. To circumvent any false
news incident, it is necessary to not only model
and predict over structured data efficiently but
also to explain those predictions. In this pa-
per, as part of the SemEval-2021 Task 9, we
tackle the problem of fact verification and evi-
dence finding over tabular data. There are two
subtasks. Given a table and a statement/fact,
subtask A determines whether the statement is
inferred from the tabular data, and subtask B
determines which cells in the table provide ev-
idence for the former subtask. We make a com-
parison of the baselines and state-of-the-art ap-
proaches over the given SemTabFact dataset.
We also propose a novel approach CellBERT
to solve evidence finding as a form of the Nat-
ural Language Inference task. We obtain a 3-
way F1 score of 0.69 on subtask A and an F1
score of 0.65 on subtask B.

1 Introduction

Textual Inference, also known as natural language
inference (Bowman et al., 2015), plays an impor-
tant role in the study of natural language under-
standing and semantic representation. Due to the
unprecedented amount of information generated
over the internet, it becomes essential for machines
to comprehend new information based on previ-
ous knowledge. Recent social events like political
elections and pandemic spread have also shown
the need for intelligent fact-checking systems that
majorly depends on textual Inference over the sci-
entific data.

Though Textual Inference is well explored, the
current works mainly deal with unstructured Evi-
dence in the form of sentences (Dagan et al., 2005).

∗ Authors equally contributed to this work. Names in
alphabetical order.

Verification under structured and semi-structured
Evidence, such as tables, graphs, and databases,
remains unexplored. Tables are ubiquitous in doc-
uments and presentations for concisely conveying
important information; however, Inference on struc-
tured data like tables or graphs is much more diffi-
cult than simple text format due to complex struc-
ture and non-universal schema for the representa-
tion of data. Though recently, there has been work
on Tabular Inference problems ( Zhong et al., 2020;
Cho et al., 2018; Sun et al., 2018; Wenhu Chen
and Wang, 2020; Eisenschlos et al., 2020; Pasupat
and Liang, 2015; Wang et al., 2018 ) explaining the
prediction, evidence finding is still an unexplored
area.

Through the SemEval-2021 Task 9 (Wang et al.,
2021) we have tried to solve the Tabular Inference
problem over scientific tables by providing an an-
swer as well as a solution to our reasoning. In
other words, given the structured table data and
statement, we aim to classify the statement as en-
tailed, unknown (neutral), or contradiction. In ad-
dition, we also aim to classify each cell of the ta-
ble whether it is relevant or irrelevant in making
the aforementioned prediction. Our contribution is
three-fold:

• We perform an empirical study of current
state-of-the-art models on the SemTabFact
dataset for the task of statement verification
(see Section 5.1).

• We implement TableSciBERT, TableR-
oBERTa and develop a heuristic-based
classifier. We achieve a 3-way F1 score of
0.69 on statement verification by ensembling
TableSciBERT and TAPAS with our heuristic
method (see Section 3.1).

• We propose a new model CellBERT, for the
task of Evidence finding from the tables. We
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achieve an F1 score of 0.65 on Evidence
finding by ensembling CellBERT with our
heuristic-based approach (See Section 3.2).

The code for all our experiments and pre-trained
models are available on GitHub1.

2 Background

2.1 Related Work

Recently, Wenhu Chen and Wang (2020) proposed
TabFact, a dataset with 16k Wikipedia tables and
118k human-annotated natural language statements,
labeled as either ENTAILED or REFUTED. The
authors proposed the TableBERT model for the task
of fact-checking. TableBERT uses the pre-trained
BERT (Devlin et al., 2018) model and fine-tunes
it using the TabFact dataset as a simple NLI task
by linearizing the table along with the fact. The
linearized table is then concatenated with the state-
ment which after tokenization is given as input to
the BERT model which is used for binary classifi-
cation to predict the nature of the statement.

The paper also proposed LPA (Latent Program
Algorithm) to formulate the table fact-checking as
a program synthesis problem. LPA uses reinforce-
ment learning to optimize the task reward of this
structured prediction problem directly, as was done
in Neural Symbolic Machines (NSM) (Liang et al.,
2016). Zhong et al. (2020) used the combination
of the linguistic and symbolic reasoning integrated
with an understanding of a given table’s structural
format.

Herzig et al. (2020) developed the TAPAS model
that performs question-answering over tables with-
out generating logical forms. It uses weak supervi-
sion and predicts the answer by selecting table cells
and optimally applying aggregation operators (for
example: count, sum, average etc.) to the selected
cells . An input instance to the model is the com-
bination of the tokenized question and flattened
table, separated by an [SEP] token (see Figure 1).
In addition to BERT embeddings, TAPAS incor-
porates the table’s structural information via row,
column, and rank embeddings. Since TAPAS uses
flattened tables, it also suffers from the limitation
of self-attention computation over long input se-
quences like BERT. Due to this reason, it fails to
capture information over large tables or /databases
containing/ multiple tables.

1https://github.com/vijit-m/TablEval

Figure 1: Flow chart explaining the functioning of
TAPAS model using the two classification layers.

Besides this, the model’s expressivity is limited
to a form of aggregation over a few cells of the
table; hence, it fails to handle questions requiring
multiple aggregation operations properly.
Recently, Eisenschlos et al. (2020) adapted TAPAS
for the task of fact-checking. They introduced two
intermediate pre-training tasks learned from the
MASK-LM model. The first task is based on coun-
terfactual statements, generated by creating one
positive and one negative from every relevant State-
ment extracted from Wikipedia statements and ta-
bles. The second task is based on synthetic state-
ments that generate a sentence by sampling from a
set of logical expressions.

Let S and T represent the statement/fact and the
table, respectively, which are given as input to the
model. Furthermore, let ES and ET represent the
corresponding input embeddings. The sequence
of statement and the table given by E = [E[CLS];
ES;E[SEP];ET] is passed through the transformer,
f and a contextual representation is obtained for
every token. The entailment probability P (S|T ) is
modeled using a single hidden layer neural network
obtained by computing the output of [CLS] token:

P (S|T ) =MLP (f[CLS](E)) (1)

To handle large size tables, Table pruning is done
using Heuristic exact match (HEM). In this method,
the columns are ranked by a relevance score and
added in order of decreasing relevance. Columns
that exceed the maximum input length are skipped.

Our task for statement verification differs from
the works mentioned above in the aspect that we
have a third label, ‘unknown’, where the table fails

https://github.com/vijit-m/TablEval


329

to provide any information to infer the Statement.
Moreover, no prior work has been performed con-
cerning the task of evidence finding.

2.2 Problem Defintion
The problem statement is articulated around the
following two related subtasks.
Subtask A - Table Statement Support: Given
a statement/fact, some of which will be directly
adapted from the linking text, and a table, deter-
mine whether the table’s information supports the
Statement. In this classification problem, a state-
ment is assigned one of the following labels:

• Fully Supported: Statement is supported by
data found within the table (denoted by 1).

• Refuted: Statement is contradicted by table
(denoted by 0).

• Unknown: Not enough information in table
to assess statement veracity (denoted by 2).

Mathematically, the problem can be described as,
given a table T and a statement S, we need to learn
a mapping FA to the output yA, where y ∈ {0, 1, 2}.
See examples in table 1 and table 2.
Subtask B - Relevant Cell Selection: Given a
statement and a table, determine which table cells
form relevant evidence for the Statement (if any).
A table cell is evidence for a statement if it helps
support or refute a part of the statement. In this sub-
task each cell of the table is assigned the following
labels:

• Relevant: the cell must be included (denoted
by 1).

• Irrelevant: the cell must not be included (de-
noted by 0).

Mathematically, each cell xij ∈ T (where i, j cor-
respond to row and column number respectively),
needs to be assigned a value yB ∈ {0, 1}. See
examples in table 1 and table 2.

Body Sensation Agoraphobic Pleasant
number museum lovely
palpitation shop happiness
heartbeat boat Joyous

Table 1: 2 A sample table and statement with correct
results for subtask B. violet: Relevant Cell, red: Irrele-
vant Cell

Statement Label
Palpitation is a bodily sensation Supported

Joyous and boat have same strength Unknown
Lovely is an agoraphobic situation Refuted

Table 2: Statements and Labels corresponding to Sub-
task A

Corpus Collection: The training and testing data
is sourced from open-access scientific articles with
tables using APIs provided by Science Direct for
data mining. The data is procured in XML for-
mat and each table is also provided in image
format since the size and styling of table con-
tents are useful in understanding the table struc-
ture. Two separate datasets (with varying com-
plexity) are provided, one in which the statements
are automatically-generated, the second one where
statements are generated manually by humans. The
automatically generated statements are relatively
more complex (Wang et al., 2021) and more in
number as compared to the Manually generated
statements.

Annotation Process: Each statement in the
SemTabFact dataset is adapted from existing text
and verified by at least one human reader. Multi-
ple readers verify a smaller proportion to assess
inter-annotator agreement.

Data Preprocessing: The Tables in the dataset
have multiple sub-columns, unlike the Wikipedia
tables in the TabFact dataset. The Training dataset
had few errors like label classification errors and
Grammatical errors. To overcome this, data is pre-
processed and cleaned before feeding it into the
models. During the Data Cleaning, statements with
no labels are removed, and subcolumns are inter-
polated to handle the tables’ complex header struc-
ture.

The subcolumns are also merged with the table
headers in the case of multiple Table headers that
improve the results. The tables are provided with
surrounding text along with the captions. During
preprocessing, the surrounding text is combined
with captions which together serve as captions to
the subtask A model. Refer to Section 3.1 for our
system description for subtask A. (See Appendix
A for preprocessing details). We also discuss the
result of this step on our model’s performance in
Section 6
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Source #Tables #Entailed #Refuted #Unknown #Relevant #Irrelevant
Manual 981 2818 1688 0 0 0

Auto-gen. 1980 92136 87209 0 1039058 15467957
Development 52 250 213 93 3048 28495

Test 52 274 248 131 3458 26724

Table 3: Dataset statistics for different datasets within SemTabFacts.

Figure 2: Approach for Subtask B

3 System Desciption

3.1 Subtask A

Our proposed model for subtask A is an ensemble
of TableSciBERT, TAPAS, and a heuristic-based
approach. We first use a similarity-based approach
to predict and segregate ‘unknown’ statements, and
then we predict the remaining statements using
an ensemble of TableSciBERT and TAPAS. Given
a statement, S and table, T , in order to classify
whether S is ‘unknown’ or not, we first calculate
the similarity score between S and each cellC ⊂ T
using equation 2. Here, Sim is a similarity func-
tion, C is the content of the cell, si is i-th token of
the statement S after removing stop words and cj
is the j-th token of cell (for handling multi-word
cells). We use the nltk library (Bird et al., 2009) to
tokenize the statement and cell contents. The simi-
larity function takes as input two tokens and outputs
the similarity between them in 0 to 1 (higher score
representing more similar). For each token in the
statement, we first iterate through all the tokens
of the cell and compute the maximum of scores
obtained by Sim function for each token in the
cell and the particular token of the statement. We
then sum it over all the tokens of the statement to
compute the score, sc. We obtain the aggregated
score, ss over the whole table T by adding score
sc, of each cell c ⊂ T (see equation 3). Refer to
Section 4.1 for more information about the types
of similarity functions we experimented with.

sc =
∑
i

max
j

(Sim(cj , si)), si ⊂ S, cj ⊂ C (2)

ss =
∑
c

sc, where C ⊂ T (3)

We use ss as the similarity score between state-
ment S and table T . If ss < λa, we label the

statement as ‘unknown’ where λa is a hyperparam-
eter. If ss ≥ λa we proceed with the two-way
classification using our ensemble of TableSciBERT
and TAPAS.

Note that these TableSciBERT and TAPAS mod-
els were fine-tuned upon two labels only (viz-a-vis
Entailed and Refuted). The ensemble is done by ap-
plying weighted average upon prediction probabili-
ties of TAPAS and TableSciBERT. TableSciBERT
(from TableBERT) was developed by replacing the
BERT base model with SciBERT (Beltagy et al.,
2019). SciBERT is a pre-trained language model
based on BERT, which is fine-tuned upon large
scale scientific data. Since the SemTabFact dataset
is from scientific articles, using SciBERT makes
sense intuitively.

TAPAS and TableSciBERT were trained on
the training set (both autogenerated and manual
dataset) and the development set. The table pruning
method using the Heuristic exact match (HEM) was
applied for the large complex tables in an Autogen-
erated dataset to handle the input embedding size.
We also experimented with other transformers mod-
els like BioBERT (Lee et al., 2020), CovidBERT3

but SciBERT gave the best result. Furthermore, we
experimented with training them as a 3-label clas-
sifier as well. Refer to the Section 3.2 for details.

For training TableSciBERT and other table trans-
former 3-label variants we augmented the training
data with statements having ‘unknown’ label, in or-
der to balance the scarcity of unknown labels in the
provided data. The augmentation for a table was
done by randomly sampling statements from other
tables provided in the dataset having ‘entailed’ or
‘refuted’ as the true label. The motivation behind
using this strategy was that these statements served
as statements with an ‘unknown’ label for this ta-
ble. During sampling, we ensured that entailed and

3https://huggingface.co/gsarti/covidbert-nli

https://huggingface.co/gsarti/covidbert-nli
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refuted statements are equal in number to prevent
any bias.

Overall, given a table T and statement S, the
complete pipeline is a two-step process:

• We first perform the binary classification of
whether S is ‘unknown’ or not using the Sim-
ilarity heuristic. If the predicted label is ‘un-
known’, it is taken as the final prediction; oth-
erwise, we proceed to the next step.

• We use the ensemble of TAPAS and Ta-
bleSciBERT models to predict the ‘entailed’
or ‘refuted’ label of S. Here, S are the state-
ments that were NOT classified as ‘unknown’
in the previous step.

3.2 Subtask B

For subtask B, we developed an ensemble of two
different techniques:

• CellBERT: We propose a new method Cell-
BERT as a BERT-base model that is fine-
tuned upon an individual cell-based Natural
Language Inference Task. We preprocess the
training data given to us in Subtask B (which
consists of only auto-generated statements) to
generate NLI input samples of the form de-
scribed in Figure 2. Mathematically, given a
statement S and a table T , we need to label
each cell c in the table as relevant or irrelevant.
For CellBERT, each cell’s label is individually
determined along with the supporting infor-
mation of row and column headers. In other
words, if the coordinates of a cell c are given
by (x, y), where x is the row number and y
is the column number, the coordinates of the
row header and column header cells are given
by (x, 1) and (1, y) respectively.

The motivation behind using row and column
headers information is that these capture the
‘type’ of data present in the cell. The com-
bination of the row header, the cell, and the
column header’s contents represent the NLI
task’s premise. The hypothesis is taken as the
statement provided. Note that using this ap-
proach, we ended up with around a million
data points to train upon. Due to the unavail-
ability of adequate computational resources,
we restricted to using only 0.1% of the prepro-
cessed training data.

• Similarity: We observed that Scientific Ta-
bles contained many entities for which pre-
trained word embeddings are unavailable, and
thus supervised approaches like CellBERT,
fails to capture the required relationship. To
overcome this, we used a cell-wise similarity
algorithm, which calculates the score sc of
each cell C with the statement S same as in
equation 2. We used sc as the similarity score
between statement S and cell C. If sc < λb
we label the cell as ‘irrelevant’, where λb is a
hyperparameter. Otherwise, we label the cell
as ‘relevant’.

4 Experiments

4.1 Subtask A
Following the TabFact’s TableBERT, we fine-tuned
our own TableBERT model on the SemTabFact
dataset for Subtask A. We also experimented
with mutations of TableBERT by using RoBERTa
(TableRoBERTa), XLNet (TableXLNet), and SciB-
ERT (TableSciBERT) as well. We also experi-
mented with implementing BiGRU layers on top
of these table transformers. All our experiments
were conducted using PyTorch (Paszke et al., 2019)
Deep Learning library.

We experimented with a dataset (D1) which con-
tained the Manual dataset along with the Autogen-
erated statements. A caveat to D1 was that auto-
generated statements that have common tables with
the manual dataset were only used. This was done
because every model we trained upon only on the
manual dataset was overfitting. The overfitting was
due to an insufficient number of statements, i.e.,
4056 in the Manual Dataset. After preparing the
dataset D1, we had a total of 72k statements.
For the similarity-based approach, we manually
experimented with various non-semantic similarity
approaches like edit distance and binary-matching4

as well as embedding space-based semantic simi-
larity approaches by first computing the word vec-
tor. We computed word vectors using GloVe (Pen-
nington et al., 2014), BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019) . Cosine similar-
ity and euclidean distance was used to compute
similarity between two vectors. The non-semantic
based binary-matching approach outperformed oth-
ers upon the validation set; therefore, we used it

4We define binary matching score between two tokens t1
and t2 as 1 if the lower-cased, lemmatized and stemmed form
of both the tokens is the same otherwise it is taken as 0.
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to evaluate our results on the test set. In our final
submitted model, SciBERT was fine-tuned for 3
epochs upon the combined dataset D1 and develop-
ment dataset, with learning rates as 5e− 5, 5e− 6
and 1e− 6 for each epoch. Batch size was kept as
6 with maximum sequence length of 512 tokens.
TAPAS was fine tuned upon the auto-generated,
manual and development datasets separately for 6,
12 and 5 epochs respectively. Learning rate was
kept the same as 2e− 5 for each epoch with maxi-
mum sequence length as 512. Dropout probability
was set to 0.07. For ensemble, we used weights 0.7
and 0.3 for TAPAS and TableSciBERT respectively.
We set the hyperparameter λa as 2 in our similarity
heuristic.

4.2 Subtask B

For Subtask B, we preprocessed the dataset into
input samples as shown in Figure 2, and fine-tuned
a BERT base model. Since the number of state-
ments given corresponding to the auto-generated
dataset is large and also accounting for the fact that
each cell in the table is a separate input example,
the number of tuples of (cell, statement) were very
large (over ten million data points). Therefore, only
0.1% of all tuples (≈ 30k data points) were used
to train CellBERT, and the rest of the data was
discarded. Note that the 0.1% of the data that we
selected to train CellBERT was kept completely
balanced with respect to true labels. We also exper-
imented with including and not-including header
information during fine-tuning as well. See table 5.

Here as well, for the similarity-based approach,
we manually experimented with the same non-
semantic similarity approaches like edit distance
and binary-matching as well as embedding space-
based semantic similarity approaches we used in
Section 4.1. In Subtask B too, the non-semantic
based binary-matching approach outperformed oth-
ers upon the validation set, hence we used the same
to evaluate our results on the test set. For our final
model, the hyperparameter λb was set to 1. For
CellBERT we fine-tuned a BERT base model for
5 epochs with batch size 16 and learning rate as
2e− 5.

5 Results

5.1 Subtask A

The organizers use two evaluation metrics for sub-
task A:

• 3-way-F1: This is a standard precision/recall
evaluation (Three-Way) of a multi-class classi-
fication that evaluates whether each statement
is classified as Entailed / Refuted / Unknown.

• 2-way-F1: The second evaluation method is
a Two Way method in which statements with
the unknown ground truth label are not taken
into consideration.

In both methods, first F1 scores are calculated for
each table, which is then averaged across all tables
for the final F1 score. The results of subtask A on
the test set are shown in table 4:

Model Task A 2-way
F1

Task A 3-way
F1

(TAPAS+TableSciBERT)-
2-Label+Similarity 0.7681 0.6931

BERT-3-Label 0.5963 0.5295
TAPAS -2-Label

+ Similarity
0.7547 0.6824

SciBERT-2-Label
+ Similarity

0.6172 0.5534

RoBERTa-3-Label 0.6186 0.5271
(RoBERTa+BiGRU)

3-Label
0.5986 0.5113

Table 4: Test Data Result (Average F1-scores) for sub-
task A

Confusion Matrix of Test set on
(TAPAS+TableSciBERT)-2-Label+Similarity
is shown in fig. 3
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Figure 3: Confusion Matrix of Testset on
(Tapas+TableSciBERT)-2-Label+Similarity.

The best results for subtask A were obtained us-
ing (TAPAS+TableSciBERT)-2-Label+ Heuristic-
based Similarity with 0.768 as 2-way F1 and 0.693
as 3-way-F1. TAPAS-2-Label+ Heuristic Based
Similarity also gave second-best results with 0.755
as 2-way F1 and 0.682 as 3-way-F1. We have
experimented with other table transformers like
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RoBERTa, BERT, and XLNet, but none of these
gave promising results. Models like RoBERTa-
3-Label, BERT-3-Label have been trained on the
three labels and gave 0.527 and 0.529, respectively,
as 3-way-F1. From the experiments, we observed
that the models trained on 3 label classification
performed poorly in classifying statements with
‘unknown’ label.

5.2 Subtask B

The metric used by the organizers calculates the
recall and precision for each cell, with “relevant”
cells as the positive category. Similar to Task A, the
score is averaged over all statements in each table
first, before calculating average across all tables.
The results for subtask B on test data are shown in
table 5. We obtained the best F1 of 0.6517. We
have also shown the results of other variants of
Cell-BERT, which are classified on the basis of row
and column headers (see Table 5).

S.No Method F1
1. Similarity 0.6414
2. CellBERT 0.5380
3. CellBERT - DevT 0.6465

4. CellBERT - DevT
+ Similarity Ensemble 0.6517

5.
CellBERT

(only cell context)
0.4891

6.
CellBERT

(cell+row header
information)

0.5213

7.
CellBERT

(cell+column header
information)

0.5199

8.
CellBERT

(cell+row+column
header information)

0.5380

Table 5: Test Data Result (Average F1-scores) for sub-
task B

6 Error Analysis

Subtask A: On analyzing the training dataset, we
realized that many statements require aggregation
methods like sum, count, max, and min over the
tabular data to determine whether a statement is en-
tailed or refuted (or if it is ‘unknown’). It requires
a symbolical understanding of the text that can not
be understood using simple NLI based approaches

like Table-BERT and other table transformers. On
the other hand, TAPAS outperforms other models
primarily due to pre-training on the corpus of syn-
thetic and counterfactual statements, as discussed
in Section 2.1.

We noticed that TableSciBERT performed well
as compared to other Table Transformers on sub-
task A. It makes intuitive sense as the dataset is cre-
ated from scientific texts and consequently has sci-
entific statements. The organizers also mentioned
that the training and testing data is sourced from
open access scientific articles with tables using
APIs provided by Science Direct for data mining
in the task description.

Further, we improved the F1 score on the
TAPAS model by 2% by using the multiple header
merging technique (See Appendix A). The reason
being that the merged headers have more semantic
information as they contain the sub-headers too.
We have explained the pre-processing step of
tables with multiple headers and sub-columns
in the Appendix. For 3-way classification, the
table transformers gave unsatisfactory results, for
example, RoBERTa 3-Label with F1 of 0.527
primarily due to two reasons, first we need
complete domain knowledge of the related table
to tag a statement to be unknown, and second,
no data were available for the unknown label in
the training set. We obtain 3-way F1 of 0.693,
with (TAPAS+SciBERT)-2-Label+Similarity
model, as our similarity heuristic was successfully
able to classify 91% of the statements predicted
unknown as true unknown labels. This might
be possible because many unknown statements
in the development and test set are completely
independent of the table given.

Subtask B: We noticed that CellBERT performs
best when header information is included while
fine-tuning. An interesting point to note is that
CellBERT trained only on autogenerated dataset
provides an F1 score of 0.538, whereas when it
was later fine-tuned upon the Development Dataset
which had Manual based dataset (CellBERT-DevT),
it boosted the results on the test set to F1 score of
0.646. The reason being the Test Dataset being
a Manual based dataset, whereas the earlier Cell-
BERT model was trained on the more complex
autogenerated dataset.

The heuristic-based Similarity approach was per-
forming surprisingly well on the test set as well,
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giving us a comparable result of 0.641 F1. Al-
though both the approaches are entirely different,
the scores are comparable. This motivated us to
analyze each method’s predictions, but we could
not come up with a convincing hypothesis for what
might be the reason for this observation. However,
we noticed a common trend in both methods. When
the number of cells in a table is large, and the num-
ber of relevant cells is very less, both models failed
to identify relevant cells in such cases. In other
words, both models had difficulty in identifying
true positives.

7 Conclusion

This paper attempts a solution to an under-explored
but essential problem: Statement Verification and
Evidence Finding with Tables. There have been
various works related to a binary classification of
statements. Still, evidence finding for these classi-
fications is a difficult and novel challenge. We are
successfully able to present an ensemble of TAPAS
model, table transformer-based TableSciBERT, and
similarity heuristic trained for subtask A with 2-
way F1 of 0.768 and 3-way F1 of 0.693. In subtask
B, we implemented the CellBERT - DevT+ Simi-
larity Ensemble method as our best model with an
F1 score of 0.652.

In the future, we plan to progress in implement-
ing new models that can tackle both linguistic and
symbolic reasoning. We aim to extend the TAPAS
model to 3 labels, requiring large data for training
in unknown labels for good results. In the case
of subtask B, we are planning to experiment with
other NLI techniques and models. Besides, we
will be looking into using more data for training
CellBERT and other NLI models as well.
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Appendix

A Preprocessing of the Multiple Header
files

The provided dataset had many Tables with multi-
ple headers and subcolumns, as shown in table 6.

Since most of our models take a single header as
input only and with an equal number of columns in
every row, we had to convert such tables to suit our
input type. There were two processes involved for
preprocessing such Tables.

Intrapolation: For one table, we would calcu-
late the maximum numbers of columns in the Ta-
ble and then interpolate all other rows with less
columns to eventually have an equal number of
columns in every row. Resulting table 7 obtained
by interpolation of table 6 is shown below

ExperMatter
UserB UserC

Base1 Base2 Base1 Base2
Gold 5.6 7 8
Silver 3.4 6.7 8.0 6.7

Table 6: Table with multiple headers and subcolumns

ExperMatter UserB UserB UserC UserC
Base1 Base2 Base1 Base2

Gold 5.6 7 8
Silver 3.4 6.7 8.0 6.7

Table 7: Table after Intrapolation
Header Merging: Since the input our model

has to be a single header file we had to merge such
rows as shown below. Final table obtained after
Preprocessing is shown in table 8.

ExperMatter UserB
Base1

UserB
Base2

UserC
Base1

UserC
Base2

Gold 5.6 7 8
Silver 3.4 6.7 8.0 6.7

Table 8: Table after preprocessing

B Other Experiments with training data

We have also provided the results for 2-way F1 on
the development set, which we have created out
of the training dataset in table 9 were trained on
only two labels. We divided both the Manual and
Auto-generated training data into Train and Dev
set with a split of 90 : 10, respectively. Various
combinations of Train and Dev data were used
to train different models. The models given in
table 9 were trained on only two labels as both of
the training datasets do not contain unknown labels,
and this is also the reason why we have not shown
3-way F1.
TAPAS model gave us the best here too, with an
F1 score of 97.1 when the Autogenerated train set
and Dev set were used, while it gave us the best F1
score of 76.7 when the Autogenerated + Manual
train set and Manual Dev set were used. We have
not included any of the models trained only on the
Manual train dataset because the provided Manual
data is very small in numbers and the results of
any model trained on manual train set were not
very promising. Clearly TAPAS outperforms all
the models and gives the best results on both the
Datasets.
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Model Train
set

Dev
set

Metrics (On Dev set)
Precision Recall F1 Accuracy (%)

TAPAS Auto Auto 99.4 94.7 97.1 94.32
TAPAS Auto+Manual Manual 82.6 71.5 76.7 70.83
TableBERT Auto Auto 87.5 85.9 86.7 86.00
TableRoBERTa Auto Auto 63.5 63.1 63.3 64.05
TableRoBERTa +

BiGRU
Auto Auto 64.7 63.4 66.0 67.13

TableSciBERT Auto Auto 71.0 69.8 70.4 70.74
TableBERT Auto Manual 58.8 58.2 58.5 58.95
TableRoBERTa Auto Manual 52.9 50.7 51.8 51.95

Table 9: Results on the Development set created by us


