
Proceedings of the Second Workshop on Scholarly Document Processing, pages 66–72
June 10, 2021. ©2021 Association for Computational Linguistics

66

Bootstrapping Multilingual Metadata Extraction:
A Showcase in Cyrillic

Johan Krause and Igor Shapiro and Tarek Saier and Michael Färber
Institute AIFB, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

{johan.krause,igor.shapiro}@student.kit.edu
{tarek.saier,michael.faerber}@kit.edu

Abstract

Applications based on scholarly data are of
ever increasing importance. This results in dis-
advantages for areas where high-quality data
and compatible systems are not available, such
as non-English publications. To advance the
mitigation of this imbalance, we use Cyrillic
script publications from the CORE collection
to create a high-quality data set for metadata
extraction. We utilize our data for training
and evaluating sequence labeling models to ex-
tract title and author information. Retraining
GROBID on our data, we observe significant
improvements in terms of precision and recall
and achieve even better results with a self de-
veloped model. We make our data set covering
over 15,000 publications as well as our source
code freely available.1

1 Introduction

The use of scholarly data becomes more and more
important as the rate of academic publications
keeps increasing and automated processing gains
relevance, such as scientometric analysis and schol-
arly recommendation (Sigurdsson, 2020; Zhang
et al., 2020). Consequentially, limitations of schol-
arly data and approaches based thereon directly
translate into disadvantages for the affected publica-
tions, in terms of, for example, discoverability and
impact. One particular limitation of scholarly data
nowadays is an underrepresentation of non-English
content (Vera-Baceta et al., 2019; Moskaleva and
Akoev, 2019). While supporting multiple lan-
guages poses challenges, such as language-specific
preprocessing requirements (Grave et al., 2018;
McCann, 2020), disregarding non-English work
is problematic (Amano et al., 2016; Lynch et al.,
2021). To further the availability of high-quality
scholarly data beyond the anglophone publication
record, we showcase the creation and application
of a data set for training and evaluating sequence
labeling tasks on Cyrillic publications.

Figure 1: Schematic overview of our approach.

Recent years have seen an increased focus on
multilinguality in natural language processing ap-
proaches, such as language models (Devlin et al.,
2019) and data sets (Caswell et al., 2021). Fur-
thermore, there are efforts to specifically support
languages that use non-Latin scripts (Roark et al.,
2020; Pfeiffer et al., 2021). With regards to Cyril-
lic script languages, approaches concerned with
named entity linking in Web documents (Piskorski
et al., 2021), as well as approaches to extracting
keywords from scientific texts (Bolshakova et al.,
2019) exist. Model training for these types of infor-
mation extraction tasks is increasingly done using
automatically generated high-quality training data.
This has, for example, been done for tasks such
as text extraction from scholarly PDF files (Bast
and Korzen, 2017), identification of publication
components such as figures and tables in scanned
documents (Ling and Chen, 2020), and the pars-
ing of bibliographic references (Grennan and Beel,
2020; Thai et al., 2020).

We extend this approach to non-English schol-
arly data. To this end, we use Cyrillic script docu-
ments from the CORE data set (Knoth and Zdrahal,
2012) to train and evaluate sequence labeling mod-

1See https://github.com/IllDepence/
sdp2021.

https://github.com/IllDepence/sdp2021
https://github.com/IllDepence/sdp2021
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els for identifying publications’ metadata (title and
authors) in unlabeled text, as illustrated in Figure 1.

Overall, the contributions we make with this
paper are as follows.

1. We showcase an effective method for creating
high-quality data for training and evaluating
metadata extraction sequence labeling models
on multilingual scholarly data.

2. We provide a data set for Cyrillic, comprising
15,553 publications spanning three languages
and 27 years.

3. We create sequence labeling models that out-
perform available methods on Cyrillic data.

2 Data Set Creation

2.1 Data Selection
Although many large scholarly data sets exist nowa-
days, most are restricted in terms of language cov-
erage, language related metadata, or availability of
full text documents. The PubMed Central Open
Access Subset,2 for example, only contains Latin
script publications,3 the Semantic Scholar Open
Research Corpus (Lo et al., 2020) is restricted to
English, and the Microsoft Academic Graph (Sinha
et al., 2015; Wang et al., 2019) contains no full
texts. Furthermore, none of the aforementioned of-
fers metadata on publications’ language. We chose
to use the CORE data set4 (Knoth and Zdrahal,
2012)—a large scholarly data set consisting of PDF
documents and metadata aggregated from institu-
tional and subject repositories—for our approach
because it is not restricted by language, offers full
papers and partly provides language metadata.

To obtain Cyrillic script publications, we first
filter the whole collection for the language labels
of four Cyrillic script languages, namely Russian,
Ukrainian, Bulgarian, and Macedonian, resulting in
23,850 documents. Noticing that a lot of the items
we identified are clustered in certain ID ranges of
CORE, we extend our data to roughly 48,000 pa-
pers by applying language detection on the PDF
files of documents adjacent in the set of CORE
IDs. After removal of duplicates (papers with dif-
ferent CORE ID but identical PDF) we end up with
27,755 documents.

2See https://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/.

3See https://www.ncbi.nlm.nih.gov/pmc/
about/faq/#q16.

4Specifically, we use the 2018-03-01 full text data set
version of CORE containing 123,988,821 documents.

Number of tokens

(a) Distribution before keyword filtering.

Number of tokens

(b) Distribution after keyword filtering.

Figure 2: Change in document title length due to key-
word filtering.

Examination of our data at this point reveals
that it contains documents other than scientific pa-
pers, such as lecture notes, lecture schedules, and
untypically long documents such as whole confer-
ence proceedings. To remove these, we perform
two filtering steps. First, we remove documents
whose title contains either of the words студентiв
(UKR: “student”), Конспект лекцiй (UKR: “lec-
ture schedule”), Програма (RUS: “program”, as
in study program) and Диплом (RUS: “diploma”),
leaving around 22,000 documents and changing
the distribution of document title lengths as shown
in Figure 2. Second, we drop documents whose
length exceeds the 95% quantile (68 pages). Fi-
nally, we remove papers for which CORE does not
provide basic metadata, and papers for which the
plain text was not extractable from the PDF. This
leaves us with 15,553 papers, which form the basis
for our work and the provided Cyrillic data set.

2.2 Data Preparation

To prevent having to remove large portions of the
identified Cyrillic papers due to missing metadata
(see previous section), we decide to focus on publi-
cations’ title and list of authors. In order to create
training data for sequence labeling tasks, we obtain
the JSON metadata and PDF of each of the selected
publications from CORE. From the PDF, we ex-
tract the plain text contained in the first page using
PDFMiner5, identify the title and authors from the
JSON metadata and insert labels accordingly (see
Section 3.2.1 for details).

5See https://github.com/euske/pdfminer.

https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://www.ncbi.nlm.nih.gov/pmc/about/faq/#q16
https://www.ncbi.nlm.nih.gov/pmc/about/faq/#q16
https://github.com/euske/pdfminer
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2.3 Data Set

The resulting data set comprises 15,553 papers
spanning 27 years and three languages. For each
paper, we provide ground truth sequence labeling
output in TEI6 format and as annotated plain text.7

A detailed breakdown of languages, obtained
using fastText (Joulin et al., 2016, 2017) language
detection is shown in Table 1. Languages with
less than five occurrences throughout the data set
are not included. The distribution of papers by
publication year is shown in Figure 3. A breakdown
of the topics8 covered by the data set is shown in
Table 2. Analysing the origin of papers, we note
that 90% originate from either the “A.N.Beketov
KNUME Digital Repository”9 or the “Zhytomyr
State University Library.”10

Language #Documents
Ukrainian 11,708
Russian 3,786
Bulgarian 54

Table 1: Distribution of languages.

Topic #Documents
Engineering 2,472
Economics 2,429
Urban Planning/Infrastructure 2,263
Education 2,255
Other (Linguistics,
Zoology, Psychology ...) 6,134

Table 2: Distribution of topics.

#
D
o
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m
e
n
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Figure 3: Distribution of publication years of the final
data set.

6See https://tei-c.org/.
7See https://zenodo.org/record/4708696.
8For details of how topics were determined see https:

//github.com/IllDepence/sdp2021.
9See https://eprints.kname.edu.ua/.

10See http://eprints.zu.edu.ua/.

3 Application

To assess the utility of our data set, we use it to
retrain GROBID (Lopez, 2008–2021), a widely
used metadata extraction tool (Nasar et al., 2018),
as well as a standalone sequence labeling model,
and evaluate their performance against an off-the-
shelf version of GROBID.

3.1 GROBID Training

GROBID utilizes several models for different tasks,
each of which can be retrained. Our use case—
the extraction of title and author information—
concerns the header model, which is based on con-
ditional random fields (CRF). Retraining the header
model from scratch using our data set, we note that
for a significant portion of PDFs, GROBID is not
able to produce plain text on which the CRF would
then be applied. Because of this, we are only able
to use 9,620 papers (62% of the data set) for re-
training.

3.2 Standalone Sequence Labeling Model

3.2.1 Data Preprocessing
For our standalone model we decide to label the
textual content of the first page of each paper using
four tags, namely Author, B-title (beginning of the
title, i.e. the first title token), I-title (tokens inside
the title) and Misc (everything else).

To this end, we extract the plain text from the
PDF using PDFMiner, tokenize the text accord-
ing to whitespace, and replace newlines with a
NEWLINE token. The publication’s title is then
identified using the JSON metadata and each to-
ken labeled accordingly. NEWLINE tokens within
a sequence of title tokens are preserved.

For the matching of authors, we split the au-
thor strings from the metadata into surname and
given names. We first locate the surnames in the
token sequence, and label the occurrence closest
to the title as Author. Because given names can
appear written-out as well as abbreviated in the
form of initials, we heuristically identify the latter
as follows. Given an identified surname, we search
within a window of eight tokens before and after
the surname11 for uppercase characters followed
by a period. Matching initials are then labeled ac-
cordingly. Written-out given names are normally

11Eight being given in the edge case where a sur-
name is followed by a separating comma, two ini-
tials and a newline somewhere in-between. E.g.:
“<surname>, <initial>. <newline><initial>.”.

https://tei-c.org/
https://zenodo.org/record/4708696
https://github.com/IllDepence/sdp2021.
https://github.com/IllDepence/sdp2021.
https://eprints.kname.edu.ua/
http://eprints.zu.edu.ua/
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Figure 4: Network architecture.

matched just like surnames.
From the tokens we derive vectorized embed-

dings using fastText. Following Chiu and Nichols
(2016) we use representations with 100 dimensions.
In addition to the embeddings, we add five addi-
tional feature dimensions to the word vectors as
done by Huang et al. (2015). These contain infor-
mation about whether a token is uppercase, capi-
talized, contains punctuation, contains a line break
or is styled like an author initial (uppercase and
ending in a period character).

3.2.2 Model Training
For our standalone model we choose to use a
BiLSTM network, as is commonly done for se-
quence labeling tasks (Huang et al., 2015).

We trim input sequences to the first 1,000 tokens,
resulting in an input space of 1, 000× 105 dimen-
sions per document, as each token is represented by
a 100-dimensional vector with a set of five added
features per token. The output space is of equal
length and contains a one-hot-encoded representa-
tion of one of the four labels Author, B-title, I-title
and Misc.

Because title and authors only make up a small
fraction of the words at the beginning of a publica-
tion, tokens with the Misc label make up a majority
of our data. To prevent the trivial prediction of
the Misc label playing too much of a role in train-
ing, each input word token is given an individual,
heuristically determined weight value of either 1
for Misc. or 5 for Author and *-title labels.

The final network, as shown in Figure 4, consists
of a BiLSTM layer followed by a ReLU activated
dense layer, a dropout layer and a final dense layer
with softmax activation. For training, categorical
cross entropy serves as the model’s loss function
and recall is employed as the target metric. Further-
more, the Adam optimizer (Kingma and Ba, 2017)
with a learning rate of 0.0001 is used.

Model Precision Recall F1
GROBID vanilla 0.06 0.06 0.06
GROBID retrained 0.85 0.81 0.83
BiLSTM 0.84 0.96 0.90

Table 3: Overall evaluation scores.

Modellabel Precision Recall F1
GROBID retr.title 0.90 0.90 0.90
BiLSTMtitle 0.88 0.96 0.92
GROBID retr.author 0.81 0.74 0.77
BiLSTMauthor 0.80 0.95 0.87
GROBID retr.misc - - -
BiLSTMmisc 0.99 0.99 0.99

Table 4: Evaluation scores per label.

4 Evaluation

To assess the performance of both the off-the-
shelf and retrained GROBID as well as the stan-
dalone BiLSTM model, we perform five-fold cross-
validations and measure the overall precision, re-
call, and F1 score.12

Because GROBID retraining is only possible on
roughly two thirds of our data (see Section 3.1)
we evaluate the off-the-shelf (“vanilla”) GROBID
model on the same subset in order to maximize
comparability of the evaluation results.

Regarding the comparability to our standalone
BiLSTM model, a key difference lies in the fact
that we use four labels (Author, B-title, I-title and
Misc) instead of GROBID’s two (Author and Title).
To adjust for this difference, we decide to disregard
the Misc label and combine the two types of *-title
label by a weighted average.

The overall evaluation scores resulting from this
are shown in Table 3. We note that off-the-shelf
GROBID is only able to determine a small frac-
tion of title and author tokens correctly. Retraining
GROBID using our training data, however, signifi-
cantly improves the performance from an F1 score
of 0.06 to 0.83, on par with GROBID’s perfor-
mance on English documents (Nasar et al., 2018).
Our standalone BiLSTM model outperforms the re-
trained GROBID due to significantly higher recall
with a F1 score of 0.90. Looking at the evalua-
tion results per label for the retrained GROBID and
standalone BiLSTM model, as shown in Table 4,
we can see that the largest performance difference

12Since off-the-shelf GROBID does not have to be retrained,
it is simply evaluated on 100% of the data instead of five folds.
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Language Precision Recall F1
Ukrainian 0.83 0.95 0.89
Russian 0.88 0.97 0.92
Bulgarian 0.51 0.70 0.58

Table 5: BiLSTM evaluation scores per language.

is given in the recall of the author label (measuring
0.74 and 0.95 respectively).

For further assessment of the BiLSTM model’s
performance, we evaluate its predictions per lan-
guage as shown in Table 5. We can observe that
the model achieves higher scores for Russian docu-
ments compared to the results for Ukrainian. This
is especially notable since the amount of Ukrainian
documents in the data set is significantly higher
than that of Russian papers. One possible expla-
nation of this performance gap could be a more
consistent structure among the Russian documents.
Performance on the 50 Bulgarian documents within
the data set is comparatively low. While this could
likely be due to the vast majority of the respec-
tive training data being in a different language, the
informativeness of the score itself has to be con-
sidered keeping in mind that there are merely 50
documents for testing available.

5 Conclusion

Inspired by recent approaches creating high-quality
data for training and evaluating information ex-
traction tasks involving scholarly publications, we
utilize this approach to tackle the problem of under-
represented non-English scholarly (training) data.
To this end, we use Cyrillic script documents found
in the CORE data set to train sequence labeling
models for identifying publications’ metadata.

We create a data set of 15,553 papers spanning
27 years and three languages. Using this data set,
we retrain GROBID and thereby greatly improve
its performance. Furthermore, we train and evalu-
ate a separate sequence labeling model that is less
constrained by PDF parsing restrictions (see Sec-
tion 3.1), showing even better overall performance
results than the retrained GROBID model.

By showcasing the use of freely available non-
English publications to improve the availability of
high-quality data and models covering areas be-
yond the anglophone publication record, we hope
to inspire similar efforts for other languages. For
our own approach, we plan to extend it to the ex-
traction of bibliographic references in the future.
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