
Look at that! BERT can be easily distracted
from paying attention to morphosyntax

Rui P. Chaves
Department of Linguistics

University at Buffalo, SUNY
rchaves@buffalo.edu

Stephanie N. Richter
Department of Linguistics

University at Buffalo, SUNY
snrichte@buffalo.edu

Abstract

Syntactic knowledge involves not only the
ability to combine words and phrases, but
also the capacity to relate different and yet
truth-preserving structural variations (e.g. pas-
sivization, inversion, topicalization, extraposi-
tion, clefting, etc.), as well as the ability to in-
fer that these syntactic variations all adhere to
common morphosyntactic rules, like subject-
verb agreement. Although there is some ev-
idence that BERT has rich syntactic knowl-
edge, our adversarial approach suggests that it
is not deployed in a robust and linguistically
appropriate way. English BERT can be tricked
to miss even quite simple syntactic generaliza-
tions, when compared with GPT-2, underscor-
ing the need for stronger priors and for linguis-
tically controlled experiments in evaluation.

1 Introduction

BERT (Devlin et al., 2019) has achieved very
high-quality results for a wide range of language
processing tasks, and there is growing evidence
that BERT’s internal representations are linguis-
tically rich (Tenney et al., 2019; Lin et al., 2019),
and include entire syntax trees implicitly embed-
ded in its deeper levels (Coenen et al., 2019; Clark
et al., 2019; Hewitt and Manning, 2019; Jawahar
et al., 2019; Manning et al., 2020).1

However, syntax is not just about arriving at
the correct sentence structure. It is also about the
process by which structures are recursively built,
and how superficially different constructions are
related to each other in deep and complex ways.
A model that has acquired rule-like knowledge
should be robust and prone to identifying gener-
alizations across related structure types, in con-
trast to a model that has instead learned superficial
heuristics. Indeed, McCoy et al. (2019) shows that

1But see Wu et al. (2020) who conclude that what BERT
learns is not very similar to linguistic annotated resources.

BERT can adopt shallow heuristics which end up
being valid for frequent patterns, but invalid for
less frequent ones. Moreover, Htut et al. (2019)
were unable to extract parse trees from BERT’s at-
tention heads, even with the gold root annotations,
and Yu and Ettinger (2020) found little evidence
of composition of phrasal representations.

In this work we focus on whether the large
(340 million-parameter) and base (110 million-
parameter) English BERT models deploy syntac-
tic constraints in a linguistically appropriate way,
using (adversarial) linguistic experiments. Our re-
sults suggest that both pre-trained and fine-tuned
models fail to robustly deploy basic English mor-
phosyntactic rules about subject-verb agreement
and syntactic transformation phenomena despite
the rich latent grammatical knowledge that such
models supposedly have. In Experiments 1 and 2
we show that BERT is misled by the mere pres-
ence of distracting structures that precede (and
therefore are completely irrelevant to) the agreeing
subject and verb. In Experiment 3 we go further
and show that although BERT seems to be able to
correctly classify complex syntactic paraphrases,
it does so in a completely unnatural way, ignor-
ing the particular words in sentences. We con-
clude that BERT’s linguistic abilities are difficult
to deploy in a linguistically motivated way, and
are prone to instead be rather brittle and shallow,
adding to similar findings by Htut et al. (2019) and
Yu and Ettinger (2020).

2 Evaluating the robustness of BERT’s
morphosyntactic knowledge

Goldberg (2019) probed BERT’s ability to com-
pute subject-verb agreement dependencies us-
ing both naturally-occurring and manually-created
stimuli drawn from Linzen et al. (2016), Gulor-
dava et al. (2018), and Marvin and Linzen (2018).
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For example, in relative clauses like (1) Goldberg
(2019) extracted the probabilities of the masked
token being is vs. are, and so on.

(1) The game that the guard hates [MASK] bad.

Goldberg (2019) found that (large and base)
BERT’s ability to accurately predict the correct
agreement verb form for the masked slot was very
high – higher than that of a state-of-the-art LSTM
RNN, and close to human-level performance.
Adopting a similar psycholinguistic paradigm, we
report experiments designed to test the robustness
of BERT’s syntactic ability. Throughout, we used
the Transformers library (Wolf et al., 2020).

2.1 Experiment 1: local agreement

Adopting a 2 × 2 × 5 factorial design, we con-
structed 5040 sentences varying systematically ac-
cording to: (i) the number inflection of the subject
noun (target) adjacent to the respective (masked)
verb; (ii) the number inflection of structurally
higher nouns (attractors); and (iii) the number of
clausal embeddings (E) from 0 to 4. The examples
in (2) serve to illustrate the conditions. The attrac-
tor nouns are underlined and the target nouns are
bold, for ease of exposition. Attractors always had
the same number inflection as each other.

(2) a. The lawyer(s) [MASK] upset.
[Attractors-pl/sg, E0, Target-sg/pl]

b. The engineer(s) handling the asbestos
removal(s) from our building(s) said the
lawyer(s) [MASK] upset.
[Attractors-pl/sg, E1, Target-sg/pl]

c. The engineer(s) handling the asbestos
removal(s) from our building(s) said that
I/we thought the lawyer(s) [MASK] upset.
[Attractors-pl/sg, E2, Target-sg/pl]

d. The engineer(s) handling the asbestos
removal(s) from our building(s) said
someone/people claimed that I/we
thought the lawyer(s) [MASK] upset.
[Attractors-pl/sg, E3, Target-sg/pl]

e. The engineer(s) handling the asbestos
removal(s) from our building(s) said
that someone/people claimed that I/we
thought the audience believed the
lawyer(s) [MASK] upset.
[Attractors-pl/sg, E4, Target-sg/pl]

N number Embedding S(V-sg) vs. S(V-pl)

N-sg 0 < 2.2e−16 *
N-pl 0 < 2.2e−16 *
N-sg 1 = 0.0002 *
N-pl 1 < 6e−5 *
N-sg 2 = 0.1
N-pl 2 < 5e−7 *
N-sg 3 = 0.1
N-pl 3 < 5e−8 *
N-sg 4 = 0.5
N-pl 4 < 1e−7 *

Table 1: Large uncased BERT verb form surprisal dif-
ferences (p-values), according to target noun number
inflection, up to 4 levels of clausal embedding

All items were based on attested sentences from
English corpora (COCA, BNC, and Brown), ma-
nipulated so that the target subject noun (in bold)
is always adjacent to the respective masked verb
that must agree with it. Thus, the agreement
should be trivial to model. The presence of higher
clauses containing other nominals (the attractors,
underlined) should have no effect on the inflection
of the masked verb since the actual subject is al-
ways immediately adjacent to the agreeing masked
verb, and attractors are further away.

We fed our items into BERT (base/large un-
cased) and extracted the softmax activation of 7
singular linking verb forms (i.e., is, was, seems,
gets, becomes, looks, and sounds) as well as that
of the corresponding 7 plural verb forms (i.e., are,
were, seem, get, become, look, and sound). Next,
we transformed the activations to surprisal mea-
sures (Hale, 2001; Levy, 2008; Smith and Levy,
2008). Following Wilcox et al. (2018), the sur-
prisal S(w) of a word w was estimated as the log
of the inverse probability of w according to the
softmax activation h before consuming w, given
all other words in the sentence:

(3) S(w) = −log2(p(w|h))
A large surprisal value corresponds to low prob-

ability; a small surprisal value corresponds to
high probability. Although both base and large
BERT models obtain perfect accuracy on the base-
line items like (2a), the model systematically fails
to model subject-verb agreement when the target
subject noun is singular, across levels of clausal
embedding 2–4 as shown in Table 1. The last col-
umn shows the p-values of one-tailed t-tests pit-
ting the surprisal values of the correct verb forms
against those of the incorrect verb forms.
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Figure 1: Overall verb form surprisal and target subject noun agreement (top: BERT large; bottom: GPT-2 med.)

Verb S(V-sg)<S(V-pl) :N-sg S(V-pl)<S(V-sg) :N-pl

be < 2.2e−16* < 1.303e−15*
become 0.95 < 1.697e−10*
seem 0.07 0.003*
get 0.91 1.286e−8*
sound 0.83 0.0001*
look 0.93 5.605e−7*

Table 2: BERT large verb surprisal significance

Further analysis indicates that BERT’s perfor-
mance is very sensitive to the verb, as shown in
the top panel of Figure 1, and in Table 2. Al-
though BERT’s accuracy for was/were is statis-
tically significant in the correct direction across
all embedding levels and conditions, for all other
verbs BERT systematically fails to identify the
right verbal agreement form when the subject is N-
sg, in all embedding levels. Thus, BERT is good at
subject-be agreement, but not so good at subject-
verb agreement in general, perhaps because past
tense indirect speech verbs like say are more likely
to combine with present tense be clauses than with
other linking verbs (in both Google N-grams and
COCA, the sequence ‘X said Y seems’ is 2–3 or-
ders of magnitude less frequent than ‘X said Y is’).
See Marvin and Linzen (2018) for a similar result
and explanation for LSTM agreement errors.

Verb S(V-sg)<S(V-pl) :N-sg S(V-pl)<S(V-sg) :N-pl

be < 2.2e−16* < 2.2e−16*
become 0.04* < 2.2e−16*
seem < 2.2e−16* < 2.2e−16*
get 6.815e−5* < 2.2e−16*
sound 3.195e−5* < 2.2e−16*
look 0.02* < 2.2e−16*

Table 3: GPT-2 medium verb surprisal significance

For comparison purposes, we ran Experiment
1 on the (small) 124 million and the (medium)
345 million-parameter pre-trained English GPT-2
models (Radford et al., 2019).2 We computed the
surprisal of the critical verbs from their softmax
activation after giving the model the preceding
words in the sentence, up to the target noun. GPT-
2 (small/medium)’s performance was excellent in
predicting the correct verb forms. All surprisals
were significant in the expected direction, over-
all and across all embeddings (all p’s < 6.87e−7).
See bottom panel of Figure 1 and Table 3. GPT-2
may be more robust in part because it is prone to
memorize rare sequences (Carlini et al., 2020).

2Although BERT and GPT-2 cannot be directly compared
since they were trained with different objectives and on dif-
ferent datasets, the results at the very least suggest that the
present subject-agreement task is not fundamentally prob-
lematic for other transformer models of like size.
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The engineers handling the asbestos removal from our buildings said the lawyer becomes upset
.
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The engineers handling the asbestos removal from our buildings said the lawyer seems upset
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The engineers handling the asbestos removal from our buildings said the lawyer was upset
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Figure 2: Inconsistent dependency parses obtained via structural probing (BERT large)

BERT’s poor performance might have to do
with the quality of syntactic representations (Wu
et al., 2020). Indeed, using the structural prob-
ing of Hewitt and Manning (2019) to examine our
items, we found that the subordinate clauses of-
ten get different parses depending on the verb, as
Figure 2 illustrates for becomes, seems, and was.

Another reason for BERT’s shortcomings is that
it may be attending to the wrong parts of the input.
Abnar and Zuidema (2020) propose to visualize
attention in transformers by viewing the model as
an attention graph in which the attention weights
are flow capacities. The maximum flow algorithm
can then be used to compute the maximum atten-
tion flow from any node in any of the layers to
any of the input nodes. Thus, the weight of a sin-
gle path is the minimum value of the weights of
the edges in the path. This maximum-flow-value
works as an approximation of the attention to in-
put nodes, and can indicate the set of input to-
kens that are important for the model’s final de-
cision. Abnar and Zuidema (2020) show that at-
tention flow is superior to inspecting raw atten-
tion weights, especially in deeper layers of the net-
work.3 We therefore performed an analysis of at-
tention flow for BERT using our items, and the
results suggest that the function words in the at-
tractor region have an undue influence on the verb
prediction. For example, in Figure 3 we can see
that there are at least three words preceding the tar-
get subject which contribute a lot of information to
the prediction of the masked verb. BERT’s hyper-
sensitivity to verb forms and to irrelevant expres-
sions in higher subordinating clauses suggests it
has not truly learned subject-verb agreement.

2.2 Experiment 2: long-distance agreement

In this second experiment, we go one step fur-
ther and probe the ability of BERT and GPT-2 to

3Although some research suggests attention does not ex-
plain BERT’s predictions; see Rogers et al. (2020).
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Figure 3: In large uncased BERT, attention flow to the
masked verb comes from words in the higher clauses

compute subject-agreement when the target noun
and the verb are separated by a long-distance de-
pendency. For example, in (4) the singular noun
lawyer is the agent of the verb in bold font. There-
fore, the two must agree in person and number, as
if the noun had been realized at the ‘ ’ gap site
instead, three clauses deep into the sentence.

(4) a. It was the lawyer who [the witness stated
[that Alex said [ was/*were upset]]].

b. It was the lawyers who [the witness stated
[that Alex said [ were/*was upset]]].

According to Jawahar et al. (2019) and Da Costa
and Chaves (2020), BERT can handle subject-
verb agreement, even in long-distance dependen-
cies like (4). To test the robustness of BERT’s abil-
ity to compute agreement in such constructions in
a more adversarial way, we adopted a similar de-
sign to Experiment 1, but with a few differences.
The attractor was the matrix subject, the complex-
ity of which had three conditions: ‘none’, ‘sim-
ple’, and ‘complex’. In (5) we illustrate items
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Figure 4: Bert large (uncased) verb form surprisal given a singular/plural extracted subject filler phrase, separated
by embedded clauses (1 to 4), and with matrix subjects of varying complexity (none, simple, complex)

in the ‘simple’ condition. Finally, the inflection
in the matrix attractor subject nouns (underlined)
was always mismatched with that of the target sub-
ject nouns (in bold).

(5) a. Some employer(s) decided that it was the
cousin(s) who I think [MASK] upset.
[simple, D-pl/sg, E1, Target-pl/sg]

b. Some employer(s) decided that it was the
cousin(s) who I think you said [MASK]
upset.
[simple, D-pl/sg, E2, Target-pl/sg]

c. Some employer(s) decided that it was
the cousin(s) who I think you said you
thought [MASK] upset.
[simple, D-pl/sg, E3, Target-pl/sg]

d. Some employer(s) decided that it was the
cousin(s) who people believe I think you
said you thought [MASK] upset.
[simple, D-pl/sg, E4, Target-pl/sg]

The ‘none’ condition items simply lacked the ma-
trix subordinator clause (i.e. the ‘none’ counter-
parts of (5) lacked some employer(s) decided that).
For all items in the experiment, the material em-
bedding clauses between the (target) extracted
subject and the masked verb were very simple,
with pronominal or bare nominal subjects (e.g., ...
who people believe I think you said ...) and never
exceeded 8 words. In (6) are items in the ‘com-
plex’ condition. The masked verbs were was and
were, for a total of 960 stimuli (20 per condition).

(6) a. The guy(s) who did not even warm up
with the team prior to the game said it was
the cousin(s) who I think [MASK] upset.
[complex, D-pl/sg, E1, Subj-pl/sg]

b. The guy(s) who did not even warm up
with the team prior to the game said it
was the cousin(s) who I think you said
[MASK] upset.
[complex, D-pl/sg, E2, Subj-pl/sg]

c. The guy(s) who did not even warm up
with the team prior to the game said it was
the cousin(s) who I think you said you
thought [MASK] upset.
[complex, D-pl/sg, E3, Subj-pl/sg]

d. The guy(s) who did not even warm up
with the team prior to the game said it was
the cousin(s) who people believe I think
you said you thought [MASK] upset.
[complex, D-pl/sg, E4, Subj-pl/sg]

As in Experiment 1, the presence of a subor-
dinating clause and the complexity of its subject
phrase should be irrelevant for the subject-verb
agreement dependency between the target noun
and the masked verb, located in the subordinate
clause. If BERT can model the subject-agreement
dependencies in question, then the surprisal of a
singular verb like was in the presence of a plu-
ral subject filler phrase should be higher than that
of was in the presence of a singular subject filler
phrase. Conversely, the surprisal of a plural verb
like were in the presence of a singular subject filler
phrase should be higher than that of were in the
presence of a plural subject filler phrase. The
results are in Figure 4. BERT models subject-
agreement correctly for the baseline condition (E1
through E4) and for the simple condition up to
E3. This is consistent with prior studies (Jawahar
et al., 2019; Da Costa and Chaves, 2020). How-
ever, BERT systematically fails to identify the cor-
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Figure 5: GPT-2 medium verb form surprisal given a singular/plural extracted subject filler phrase, separated by
embedded clauses (1 to 4), and with matrix subjects of varying complexity (none, simple, complex)

Verb BERT (large) GPT-2 (medium)

be 80% 100%
become 50% 72%
get 53% 92%
look 56% 82%
seem 68% 100%
sound 65% 87%

Table 4: Verb form prediction accuracy (E4, complex)

rect verb inflection form in the complex condition.
In other words, agreement patterns like (5d) and
(6) are not correctly captured.

Analogously to Experiment 1, we ran the same
stimuli through GPT-2 (small and medium). We
computed the surprisal of was and were after feed-
ing the model the preceding words in the sentence.
GPT-2’s performance was excellent, with all con-
ditions statistically significant in the expected di-
rection (all p’s < 2.57e−15). GPT-2 was again
immune to the presence of attractors, as Figure 5
illustrates. As in Experiment 1, BERT is far more
sensitive to the verb, as can be seen by the ac-
curacy results for the language models shown in
Table 4. These results are consistent with other
research suggesting that GPT-2 is linguistically
more robust than BERT, such as Warstadt et al.
(2020) and Da Costa and Chaves (2020).

To obtain a rough estimate for a human base-
line accuracy, we recruited 52 participants via the
Amazon Mechanical Turk marketplace, and asked
them to select the correct singular/plural be verb
form for the 40 masked items in the complex E4
condition (interspersed with 40 filler sentences).
The human accuracy was 77% overall (74% for
the plural verb condition and 80% for the singu-
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Figure 6: Attention flow targeting masked verb

lar verb condition). So, although BERT does very
well for be, its accuracy plunges unreasonably for
rarer verbs, which argues against a rule-like gen-
eralization for the computation of agreement.

Post hoc analysis of BERT’s attention flow sug-
gests that the matrix subject plays an undue role
in the prediction of the masked verb in the em-
bedded clause, as illustrated in Figure 6. The only
linguistically relevant noun for the verb agreement
should be cousin, but for BERT, parts of the com-
plex higher subject (e.g. five) play a bigger role.

2.3 Experiment 3: syntactic paraphrase task

To further probe BERT’s morphosyntactic abili-
ties, we fine-tuned it with two datasets, separately.
The first dataset consisted of 30K syntactic para-
phrase sentence pairs from PAWS (Zhang et al.,
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2019), where half were true paraphrases. Of the
30K pairs, 15% were randomly extracted as a test
set. The second dataset was our own, and con-
sisted of syntactic paraphrases exhibiting a much
wider range of complex syntactic transformations,
including passivization, object/subject clefts, in-
version, and multiple combinations thereof. One
remarkable property of filler-gap dependencies is
that they can compound with a wide variety of
other syntactic transformations, while preserving
truth-conditional equivalence. Thus, the sentences
in (7) are paraphrases of each other: in any given
context, they are either all true or all false.

(7) a. I think Sam saw Alex.
(active)

b. Who I think Sam saw was Alex.
(active + object wh-cleft)

c. I think Alex was who Sam saw.
(active + (reversed) object wh-cleft)

d. I think Alex was seen by Sam.
(passive)

e. Who I think was seen by Sam was Alex.
(passive + subject wh-cleft)

f. Alex was who I think was seen by Sam.
(passive + (reversed) subject wh-cleft)

By reversing the nominal arguments, we can cre-
ate sentences that are not paraphrases of (7) but
which have very high lexical overlap, e.g., I think
Alex saw Sam or Who I think was seen by Alex
was Sam. To our knowledge, the compounding of
syntactic transformations has not been systemati-
cally included in any paraphrase training dataset,
including datasets created with the specific goal
of generating text satisfying certain structural re-
quirements (Iyyer et al., 2018; Wiseman et al.,
2018; Colin and Gardent, 2018; Zhang et al.,
2019). In all datasets we know of, any syntac-
tic transformations are clause-bounded, i.e., lo-
cally restricted to word reordering within the same
clause. This is illustrated in the sentence pairs in
(8), from the PAWS (Zhang et al., 2019) dataset.

(8) a. When comparable rates of flow can be
maintained, the results are high. The re-
sults are high when comparable flow rates
can be maintained.

b. Lebilaango is a city in the central Somalia
region of Hiran. Lebilaango is a town in
the central Somalia region of Hiran.

2.3.1 Syntactic paraphrase generation
We generated our paraphrase dataset as follows.
First, 11761 animate NPs (with 1 to 38 words
comprising each NP, averaging 4.6 words) were
extracted from various parsed corpora (COCA,
BNC, etc.), along with 1033 two-argument verbs.
84 adjunct PPs, 47 parenthetical insertions, and 87
sentence embedding strings were also variably in-
cluded in any combination (including none).

Next, we randomly generated over 6K sen-
tence seeds (roughly) of the form NP1 VB NP2,
where NP1,2 are unique nominal phrases. For
each of these 6K sentence seeds, we generate 28
total sentences (active/passive vs. (reversed/non-
reversed) it-/wh-cleft, subj/obj extraction, embed-
ded/nonembedded) using a controlled generator
that ensures the correct structure and inflection of
the phrasal components. These sentences are di-
vided into two groups of 14 sentences; each group
is identical, except the ordering of the NPs is
swapped relative to the other group. Thus, all sen-
tences within one group are paraphrases, yet are
reciprocal non-paraphrases across groups. Exam-
ples of these paraphrases and non-paraphrases are
in (9a) and (9b) respectively.

(9) a. [CLS] Tim thought that a career expert
was going to tell the nearest stranger who
he was, what he had done, and what he
proposed to do here. [SEP] A career ex-
pert was who Tim thought was going to
tell the nearest stranger who he was, what
he had done, and what he proposed to do
here.
(paraphrases)

b. [CLS] James claimed each registered
nurse, midwife or health visitor surprised
some workers at the newspaper. [SEP]
Who James claimed was surprised by
some workers at the newspaper was each
registered nurse, midwife or health visi-
tor.
(non-paraphrases)

Training and test sets were created by randomly
sampling two sentences from each block of 28
sentences, with replacement, for all items. Sen-
tences coming from the same group were labeled
‘1’ (therefore, paraphrases); those coming from
opposite groups were labeled ‘0’ (therefore, non-
paraphrases). In total, 5292 sentence pairs for
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training were randomly generated at a time, as
well as 588 sentence pairs for testing.

Throughout, no NPs or (non-sentence embed-
ding) verbs are repeated, although there are NPs
with similar words. This was intended to force
BERT to deploy abstract syntactic knowledge,
rather than rely on token distribution. The gener-
ated sets consist of 5880 total sentence pairs, 50%
of which were paraphrases like (9a), labeled as ‘1’,
and 50% of which that were not, like (9b), labeled
as ‘0’. Sentence pairs were separated with [SEP]
tokens, and [CLS] tokens were inserted at the be-
ginning of every input sentence pair.

We fine-tuned base uncased BERT for binary
classification multiple times, and on multiple re-
generated training/test datasets, for 4–6 epochs, on
a Tesla T4 GPU, using Adam (Kingma and Ba,
2015) (η =5e−5, ε =1e−8), and batch size of 32.

2.3.2 Fine-tuning results
For our syntactic paraphrase dataset, BERT tended
to converge by epoch 5, and for the 25K PAWS
training data, it tended to converge by epoch 7.
In both cases, the fine-tuned models respectively
achieved over 98% and 92% accuracy on their test
sets. The high accuracy on our paraphrase dataset
is particularly striking given the (apparent) syntac-
tic complexity of the task, and given the minimal
lexical overlap between training and test stimuli.

We next fed the models fine-tuned with our
complex paraphrases with sentence pairs that were
more complex than those which the model was ex-
posed to during training. Recall that in the original
training and test sets, there was at most one clausal
embedding between the filler phrase and the gap
site, as in (9). We thus hand-constructed 365 sen-
tence pairs (50% true paraphrases) with the same
multifactorial design as the original dataset, except
that all items either had 1, 2, or 3 clausal embed-
dings (E) between the wh-phrase and the gap site.
An E3 paraphrase pair is seen in (10).

(10) [CLS] Who we hoped the reporters wrote
that Mary thought the girl in red slapped
yesterday was the cashier from the corner
store. [SEP] We hoped the reporters wrote
that Mary thought the girl in red slapped the
cashier from the corner store yesterday.

Surprisingly, BERT performs very well, obtaining
a mean accuracy of 91%, across all three levels of
clausal embedding, even though the stimuli con-
tained longer dependencies than those with which

Figure 7: Fine-tuned base uncased BERT’s attention

the model was originally fine-tuned with. Using
Bertviz (Vig, 2019), we extracted attention values
from the fine-tuned models for various sentences
and found that deeper layers usually showed ev-
idence that the fronted wh-phrase specifically at-
tends to the verb that it is an argument of. Figure
7 illustrates this, where who attends to the verb
slapped. Such a set of results is impressive, but a
closer look reveals a more complex picture.

2.3.3 Adversarial testing results
Adversarial examples are inputs that are designed
to cause poor performance in machine learning
models, and have been used in various kinds of
natural language processing tasks including text
classification, machine translation, and question
answering. Using a word-level adversarial ap-
proach, we found that replacing one word for an-
other with an incompatible meaning had little ef-
fect on the models’ behaviour. For example, in
the word-flip in (11), the second occurrence of the
noun nun was replaced with cop. Yet, the fine-
tuned BERT models still deemed the sentence pair
a paraphrase. Replacing the verb insulted with met
similarly yielded no change in classification.

(11) [CLS] It was a nun who a student insulted.
[SEP] A student insulted a cop.

We took the original test sets that were used to
evaluate the fine-tuning stage and changed at ran-
dom one noun, adjective, or verb, in only one of
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the sentences in each pair, creating new test sets
of the same size as the original, but now entirely
consisting of non-paraphrases, as in (12).

(12) a. [CLS] A senior water scientist was who
the Ecuadorian government educated.
[SEP] Who a senior water scientist was
energized by was the Ecuadorian govern-
ment.

b. [CLS] It was a viable minority candidate
who a retired wind was quizzed by. [SEP]
who a viable minority candidate quizzed
was a retired player.

c. [CLS] A hard worker with a quick mind
was who was equipped by silly author-
ities. [SEP] It was a hard worker with
a quick mind who French authorities
equipped.

The word replacement candidates were found by
using spaCy’s en core web lg word similarly
model, with the requirement that the word re-
placement and the original work have a similarity
score somewhere between .15 and .70, and have
the same part-of-speech. We found that 100%
of sentence pairs that were originally paraphrases
and suffered a word flip were systematically still
classified as paraphrases, with an overall accuracy
drop to at-chance performance. In sum, the fine-
tuned BERT model was completely insensitive to
word substitutions. We subsequently discovered
that switching the order of subject+verb sequences
was enough to lead our models to systematically
miss-classify the input. Thus, BERT deems pairs
like (13) as paraphrases, despite the ordering mis-
match between the underlined strings.

(13) a. [CLS] It was those three players who
Mary thought we denied that the kids
replaced yesterday. [SEP] We denied
Mary thought that the kids replaced those
three players.

b. [CLS] Someone claimed Mia thought
that Sam wrote that a lady in red men-
tioned these scientists yesterday. [SEP] It
was a lady in red who someone claimed
Sam wrote that Mary thought that men-
tioned these scientists.

The BERT model fine-tuned on the 25K PAWS
dataset was just as susceptible to word-level ad-
versarial attacks on its test set, with a drop to 55%

accuracy. Even though the PAWS dataset included
word reversals and synonym replacements, as in
(8b), it is possible that the high amount of lexi-
cal overlap between paraphrase sentence pairs eas-
ily misled BERT into adopting fallible syntactic
heuristics, like those explicitly identified by Mc-
Coy et al. (2019) on a similar BERT fine-tuning
task, whereby the model is distracted by parts of
the input, and deems others of little importance.

3 Conclusions

Although there is evidence that BERT’s inter-
nal representations are syntactically rich (Tenney
et al., 2019; Lin et al., 2019; Coenen et al., 2019;
Clark et al., 2019; Hewitt and Manning, 2019;
Jawahar et al., 2019), there is also a growing body
of research suggesting that BERT does not deploy
that knowledge effectively (Htut et al., 2019; Yu
and Ettinger, 2020). In particular, our results indi-
cate that BERT deploys shallow (though usually
effective) processing heuristics when processing
English morphosyntactic dependencies. We found
that BERT fails to correctly model surprisingly
trivial subject-verb agreement patterns, such as
those in Experiment 1, in contrast to GPT-2. This
should not be taken to mean that GPT-2 is linguis-
tically richer than BERT, since its superior perfor-
mance may simply be the result of the model’s ten-
dency to memorize rare sequences (Carlini et al.,
2020). Further research is needed to probe GPT-
2’s linguistic representations.

Our results suggest BERT misses significant ab-
stract syntactic generalizations, and likely deploys
excessively shallow heuristics like those discussed
in McCoy et al. (2019). This outcome under-
scores the need for multi-pronged linguistically
controlled experiments in the evaluation of lan-
guage models, as advocated by Warstadt et al.
(2019), among others.

All data and code are at https://osf.io/ad62v/.
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