
Free-talk
64.42% 4.39%

Abstract

Voice-driven communication aids are one of 
the methods commonly used by patients with 

dysarthria. However, this type of assistive 
devices demands a large amount of voice 
data from patients to increase the 
effectiveness. In the meantime, this will sink 
patients into an overwhelming recording 
burden. Due to those difficulties, this 
research proposes a voice augmentation 
system to conquer the aforementioned 
concern. Furthermore, the system can 
improve the recognition efficiency. The 
results of this research reveal that the 
proposed speech generator system for 
dysarthria can launch corpus to be more 
similarities to the patient's speech. Moreover, 
the recognition rate, in duplicate sentences, 
has been improved and promoted to the 
higher level. The word error rate can be 
reduced from 64.42% to 4.39% in the case of 
patients with Free-talk. According to these 
results, our proposed system can provide 
more reliable and helpful technique for the 
development of communication aids.
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