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Abstract

Intelligent personal assistants (IPAs) such as
Amazon Alexa, Google Assistant and Apple
Siri extend their built-in capabilities by sup-
porting voice apps developed by third-party de-
velopers. Sometimes the smart assistant is not
able to successfully respond to user voice com-
mands (aka utterances). There are many rea-
sons including automatic speech recognition
(ASR) error, natural language understanding
(NLU) error, routing utterances to an irrele-
vant voice app or simply that the user is ask-
ing for a capability that is not supported yet.
The failure to handle a voice command leads
to customer frustration. In this paper, we intro-
duce a fallback skill recommendation system
to suggest a voice app to a customer for an un-
handled voice command. One of the promi-
nent challenges of developing a skill recom-
mender system for IPAs is partial observation.
To solve the partial observation problem, we
propose collaborative data relabeling (CDR)
method. In addition, CDR also improves the
diversity of the recommended skills. We eval-
uate the proposed method both offline and on-
line. The offline evaluation results show that
the proposed system outperforms the baselines.
The online A/B testing results show significant
gain of customer experience metrics.

1 Introduction

Intelligent personal assistants such as Alexa, Siri,
and Google Assistant have been becoming more
and more popular and making people’s daily lives
convenient. IPAs can fulfill users’ requests by an-
swering questions ranging from weather to stock
price. To enrich user experience, a large amount of
third-party (3P) voice apps (aka skills) have been
developed. These voice apps extend IPAs built-in
capabilities to better serve customers. They can
perform operations like ordering food, playing a
game, or helping a user sleep by playing soothing
sounds. The supported 3P skills can number up to
hundreds of thousands.

IPAs understand user’s request using spoken lan-
guage understanding (SLU) system. The request
goes through a series of components to get re-
sponse, as illustrated in Figure 1. The first compo-
nent is automatic speech recognition (ASR), which
converts speech to its transcription also called ut-
terance. At the second stage, the utterance is in-
terpreted by NLU system. NLU as the critical
component of SLU interprets the meaning of an
utterance by using several NLP technologies includ-
ing domain classifier (DC), intent classifier (IC),
and named entity recognition (NER). After NLU,
the arbiter is responsible to select the most relevant
voice app (skill) for a given NLU interpretation.
Sometimes the arbiter may fail to find a relevant
skill that can handle the user request. It could be
a system error such as automatic speech recogni-
tion (ASR) error, natural language understanding
(NLU) error. Another reason could be that the fea-
ture requested by the user is not supported yet by
the dialog system or the requested content is not
found such as music, video, book, recipe, etc. To
reduce customer friction and recover the conver-
sation, we propose a skill recommender system
which proactively suggests 3P skills to users for
unhandled requests, even if the users are not aware
of the skills.

The proposed skill recommender system is com-
posed of two components: a shortlister, and a
reranker. Figure 2 shows the system architecture.
Given an utterance, the shortlister, also known as
the candidate generator retrieves k most relevant
skills out of the skill catalog. The retrieved skills
are passed to the reranker that ranks the skill can-
didates by using skill specific information and the
utterance. Finally, the top-1 skill is presented to
the user. This system is not meant to replace the
original NLU or arbiter components. It is specifi-
cally designed to serve as a fallback for utterances
that are not handled by the existing system (i.e.,
unclaimed utterances) using the increasing catalog
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Figure 1: A high-level overview of an IPA.

of 3P skills.

Traditional recommender systems such as video
recommendation recommend a ranked list of items
to a user. The user scans the list and select the
one he/she likes the most (Covington et al., 2016).
The feedback from the user is treated as label (ac-
cept/reject) for learning a model. However, due to
the limitation of voice user interface (VUI), we can
only present the top-1 skill to users, as listening
to the playback of a long list is tedious and can
significantly degrade user experience (Cohen et al.,
2004). This limitation results in partial observation
problem. Namely, users cannot observe the full
recommendation list and make a decision, which
imposes difficulties in learning a ranking model.
To solve partial observation problem, we propose
a novel method called collaborative data relabel-
ing (CDR). CDR mitigates the partial observation
problem by trying to answer a counterfactual ques-
tion, "what if we present another skill to the user?".
CDR answers this question by matching a simi-
lar request and using feedback from that request
to relabel the original ranked list. Recommender
systems usually focus on optimizing the accuracy
of predictions while ignoring the diversity of the
recommended items, which can degrade user expe-
rience if similar items get recommended over and
over again (Ekstrand et al., 2014; Castagnos et al.,
2013; Knijnenburg et al., 2012; Ziegler et al., 2005;
Willemsen et al., 2016). CDR improves the diver-
sity of recommended skills by relabeling different
skill candidates that serve the same intent. The
relabeled skills force the model to learn to diversify
their prediction distribution among multiple skill
candidates.

At the beginning, we do not have data for train-
ing the model. To collect training data, we build a
rule-based system. Similar to the proposed system,
the rule-based system also has a two-stage architec-
ture. We use the data collected from this system to
train and evaluate our proposed model offline. The

proposed model is put into production for online
A/B testing after it has achieved satisfying offline
results. Online experimental results show signifi-
cant gains of user experience metrics such as higher
volume of acceptances, lower friction rates, etc.

Overall, the contributions of this work are sum-
marized as following:

• We propose a skill recommender system for
IPAs to handle unclaimed utterances by ex-
ploiting the ever-increasing 3P voice apps.

• To mitigate partial observation issue, we pro-
pose collaborative data relabeling inspired by
causal inference. Collaborative data relabel-
ing also has the advantage of improving rec-
ommendation diversity and thus improving
user satisfaction. Suggesting diverse skills to
users can help them explore and discover more
skills, which is also beneficial to third-party
skill developers.

• We conduct offline and online experiments.
Online experimental results show significant
gains of user experience metrics.

2 Skill Recommender System

Our skill recommender system consists of two com-
ponents, shortlister and reranker, as shown in Fig-
ure 2.

Given the input utterance text, shortlister selects
top-k relevant skills from the skill catalog. We
implement shortlister as a keyword-based search
engine. To build the skill search engine, we index
skill metadata including skill name, skill descrip-
tions, example phrases, and invocation phrases. At
retrieval time, the relevancy score between an utter-
ance and a skill is computed as the sum of TF-IDF
score (Rajaraman and Ullman, 2011) of every word
in the utterance. The skills with top k relevancy
scores are returned.
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Figure 2: A overview of skill recommender system.

The reranker model takes in the skill candidates
generated by shortlister and returns a ranked list of
skills based on the utterance and skill specific infor-
mation. The reranker is a deep learning model with
a listwise ranking loss function. Figure 3 shows
the reranker model architecture. The utterance is
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Figure 3: Model architecture of reranker.

encoded by a BERT encoder (Devlin et al., 2018).
The features of skills include skill id, skill name,
and skill score returned by shortlister. Skill id is
represented using an embedding vector; skill name
is encoded into an embedding vector by BERT. The
skill score feature is converted into a bin and en-
coded as an embedding vector. The skill feature em-
bedding vectors are concatenated to form a single
embedding vector. The utterance embedding vector
is concatenated with every skill embedding vector
to form a sequence of utterance-skill embedding
vectors. As the skill candidates returned by short-
lister is ordered by relevance score, to capture such
sequential information, these sequence of embed-
ding vectors are put into a Bi-LSTM layer (Hochre-
iter and Schmidhuber, 1997). The outputs from the
Bi-LSTM layer is converted to probability scores
by using softmax function. Each skill has a corre-

sponding probability score. The skills are reranked
according to the predicted probability scores. For
a list of skill candidates, the user feedback for the
skill candidates is y = {y1, ..., yk}, yi ∈ {0, 1}
indicating whether the user accepts or rejects the
skills and the predicted probabilities by the reranker
model is s = {s1, ..., sk}. We use listwise ranking
objective function (Cao et al., 2007). The objective
function is formulated as

L(y, s) =
1

k

k∑
i=1

[−yi log(si)−(1−yi) log(1−si)].

(1)
Due to the partial observation issue, the labels

of the unobserved skills are treated as negative.
However, this assumption is not realistic and can
bias the model, because the missing values are
not necessarily negative. In the next section, we
introduce collaborative data relabeling to mitigate
this issue.

3 Collaborative Data Relabeling

Compared to traditional recommender system such
as video recommendation where users view the full
recommended list and select the best one they like,
the skill recommender system has its unique chal-
lenge. Limited by VUI, we can only present the
top-1 ranked skill to user, which results in a par-
tial observation problem. With partial observation,
users have no chance to view and compare other
skills in the list. We do not know if the user would
like the other skills more than the top-1. Without
comparing the top-1 skill with the other skills, it is
hard to learn a ranking model, as ranking in essence
is about comparing. To solve partial observation
problem, we propose collaborative data relabeling
(CDR) approach.
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Figure 4: Illustration of collaborative data relabeling.
In skill recommendation, only the top-1 skill is pre-
sented to users. Given a user x who invoked voice
assistant with some utterance, to know her responses
to skills sy and sz that were not presented to her, we
found two users y and z who spoke similar utterances
and were suggested with skills sy and sz, respectively
and use their responses to relabel user x’s feedback to
skills sy and sz.

The intuition of CDR is to answer a counterfac-
tual question, namely, "what if we had presented
another skill to user?". To answer this question, we
find k nearest neighbors of a user request (utter-
ance) and use their feedback to relabel the original
ranked list of skill candidates, which is inspired
by matching method (Stuart, 2010) in causal infer-
ence. In causal inference, matching is an approach
to estimate the treatment effect by comparing the
treated units to non-treated units with similar char-
acteristics. CDR has a similar working mechanism.
Given a user utterance, to know the user’s response
to an unpresented skill, we find a similar utterance
whose invoker has interacted with that skill and use
his/her response to relabel it as either positive or
negative, as illustrated in Figure 4. Usually, there
are more than one neighbors that have interacted
with the skill, in which case we use majority vote
to decide the final label. As the final labels are
decided by multiple neighbors, they are more re-
liable than those of just one user, which results in
learning a more robust model.

Recommender systems are confronted with an
over-fitting problem that only a small portion of
items are recommended to users (Kunaver and
Požrl, 2017), which can hurt user satisfaction as
they can quickly get bored by always being sug-
gested with similar types of items. This problem
is especially relevant for skills that serve the same
intent with different content. For example, when
users ask to play a soothing sound to help them
sleep, always suggesting the same sleep sound can
get users bored, while there exist many types of

sleep sounds in the skill store such as frog, ocean,
rain, waterfall sleeping sound, etc. Suggesting di-
verse skills can improve user satisfaction (Castag-
nos et al., 2013). The proposed CDR method im-
proves diversity by relabeling different skill candi-
dates as positive, which forces the model’s predic-
tive distribution to be dispersed among more skills.
Diversified suggestions can lead to drop in accuracy
(McNee et al., 2006; Ziegler et al., 2005), which
imposes difficulties in faithfully evaluating the real
user satisfaction metrics. To evaluate how diversity
can influence user satisfaction, we use manual an-
notation. The detail of manual annotation schema
will be explained in Section 5.1.2.

To capture semantic meaning of utterances for
similarity measurements, we use fine-tuned BERT
encoder to encode utterances into embedding vec-
tors. The BERT model is fine-tuned using data with
a multi-task objective function, specifically, intent
classification and named entity recognition. We
also experiment with pre-trained BERT encoder
and find that it does not work well for capturing
semantics of an utterance, which has also been dis-
covered by several works such as (Reimers and
Gurevych, 2019) and (Li et al., 2020). We use the
average pooling of the contextual embedding vec-
tors in the last layer as the utterance embedding
vector. We measure the similarity score between
two utterances using cosine similarity between their
embedding vectors.

4 Experiments

4.1 Data Collection

At the beginning, we do not have data to train and
evaluate our system. To collect data, we build a
rule-based system which has similar architecture
as our proposed one. The rule-based system uses
the same shortlister but a rule-based reranker. The
rule-based reranker ranks the skill candidates by
using their historical acceptance rates. The skill
with the highest acceptance rate is selected. To
ensure high quality of recommendation, we only
suggest the top skill to customer if its acceptance
rate is higher than 0.5. We collect two-month
data from a commercial voice assistant traffic for
model training and evaluation. The data of the
last week is used for testing. The data of the
second last week is used for validation. The re-
maining is used for training. The proportions of
training, validation and testing data are around
80%, 10%, 10%, respectively. Each data sample is
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composed of an utterance ut, forty skill candidates
st,1, ..., st,40 generated by shortlister, and ground
truth label yt, denoted as (ut, (st,1, ..., st,40), yt),
where yt ∈ {st,1, ..., st,40}∪{N}, N is null which
means all the skill candidates are rejected by the
user. Note that for the sake of customer privacy, the
data is de-identified and we are not able to know
the identify of the user from the data.

4.2 Collaborative Data Relabeling

For CDR, the k-nearest neighbors of an utterance is
found from the training data. And only the training
data is relabeled. We keep the labels of the valida-
tion and testing data as it is. When relabeling the
skill candidates of an utterance, we select up to 200
neighbors and keep those whose similarity score is
above a certain threshold s. To avoid bringing noisy
labels from neighbors, a skill candidate is relabeled
if the number of its supportive neighbors are higher
than n. The supportive neighbors of a skill are the
neighboring utterances which relabel it as positive.
The intuition is that if there are multiple neighbors
confirming a skill candidate, the relabeled skill is
reliable. We treat s and n as hyperparameter and
choose the best value by using validation dataset.

4.3 Evaluation Metrics

To simulate the real application, we evaluate the
model by selecting the top-1 skill with predicted
probability higher than 0.5 and compare it with
the ground truth label. The evaluation metrics are
F1 scores, namely, F11 and F12 which are har-
monic means of Recall and Precision1, Precision2,
respectively. Precision1 calculates the number of
correct predictions over all the predictions, while
Precision2 means the number of correct predictions
over all the non-empty predictions. Recall calcu-
lates the number of correct predictions over the
number non-empty ground truth labels. Due to
company policy, in this paper, we report relative
performance numbers.

5 Experimental Results

5.1 Collaborative Data Relabeling

5.1.1 Comparative experimental results
Figure 5 shows the relative performance improve-
ments of collaborative data relabeling method with
the change of hyperparameters, the number of sup-
port n and similarity threshold s. The baseline
model is listwise reranker model trained with the
original training data. From the figures, we can see

Table 1: Manual annotation results.

Model Accuracy Score #suggestions

CDR-based model +19.21% +62.73% +112.13%

that with the increaseing of the number of support
and similarity score, the F1 scores are becoming
higher. With the increasing of s, the relabels we
obtain are from closer neighbors which tend to
bring cleaner labels. When the similarity score is
lower, the two utterances are less similar, which
even leads to wrong labels. With the increasing of
n, we require more neighbors to confirm the rela-
beling of a skill candidate, which leads to higher
quality of labels. Overall, the performance of the
models trained on relabeled data is higher than that
of the baseline model.

5.1.2 Manual evaluation
To evaluate how CDR impacts the model perfor-
mance, we manually compare the relabeled model
against the baseline model. We randomly sampled
2500 samples and asked human annotators to check
the suggested skills by relabeled and baseline mod-
els. We use two types of evaluation metrics. The
first one is accuracy which is the number of correct
predictions divided by the total number of predic-
tions. As the model only makes a suggestion if the
predicted probability is higher than 0.5, the model
can reject to make a suggestion if it is not confident
enough. To compare no suggestion with sugges-
tion, we use score. A model gets a score by the
following rules:

• If the model’s prediction is correct, it gets a
score.

• If the model doesn’t make a suggestion: a)
if the other model makes a wrong prediction,
the current model gets a score; b) if the other
model makes a correct prediction, the current
model does not get a score. The intuition
is that no suggestion is better than a wrong
suggestion and a correct suggestion is better
than no suggestion.

Table 1 shows the evaluation results based on
manual annotation. The baseline model is the
model trained on original data. From the results,
we can see that the relabeled model has higher accu-
racy, which indicates higher user satisfaction. The
relabeled model also gets higher score and make
more suggestions.
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Figure 5: Experimental results of collaborative data relabeling method by varying the number of support and
similarity threshold. The unit of vertical axis is percentage.

5.2 Online Experiments

After seeing performance gains in offline experi-
ments, we put our model into online A/B testing.
We compare it with the rule-based heuristic model.
The online experiments show that the proposed
model reduced friction rate by 0.35%. Friction
means the circumstances where the voice assistant
does not understand the user and cannot act on the
user’s request. The number of accepted skills in-
creased by 5.86%. The average number of new
skills enabled per customer increased by 0.98%.
A skill has to be enabled before it can be used by
the customer. In addition, the number of unique
suggested and accepted skills increased by 233%
and 98.75%, respectively, which indicates that the
new model makes more diverse suggestions than
the legacy system.

6 Conclusions and Future Work

In this work, we proposed a skill recommender
system to suggest skills for unhandled voice com-
mands in intelligent personal assistants that aims
to reduce the user friction and recover the con-
versation. Compared to traditional recommender
systems, the skill recommender system faces the
challenge of partial observation. To resolve this
challenge, we proposed collaborative data relabel-
ing. In addition, it improves the diversity of recom-
mended skills. Collaborative data relabeling as a
simple and effective approach is especially useful
for industrial deployment. We evaluated the pro-
posed system offline before put it online for A/B
testing. The online experimental results showed
significant gains of user experience metrics. In the

future, we will try contextual bandits and let the
model learn to explore the under-exploited skills.
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