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Abstract

We seek to create agents that both act and com-
municate with other agents in pursuit of a goal.
Towards this end, we extend LIGHT (Urbanek
et al., 2019)—a large-scale crowd-sourced fan-
tasy text-game—with a dataset of “quests”.1.
These contain natural language motivations
paired with in-game goals and human demon-
strations; completing a quest might require di-
alogue or actions (or both). We introduce a re-
inforcement learning system that (1) incorpo-
rates large-scale language modeling-based and
commonsense reasoning-based pre-training to
imbue the agent with relevant priors; and (2)
leverages a factorized action space of action
commands and dialogue, balancing between
the two. We conduct zero-shot evaluations
using held-out human expert demonstrations,
showing that our agents are able to act consis-
tently and talk naturally with respect to their
motivations.

1 Introduction

There has been a recent improvement in the quality
of natural language processing (NLP) and gener-
ation (NLG) by machine learning (ML) (Vaswani
et al., 2017; Devlin et al., 2018); and in parallel,
improvement to goal-oriented ML driven agents in
the context of games (Vinyals et al., 2019; Schrit-
twieser et al., 2019). However, agents that can com-
municate with humans (and other agents) through
natural language in pursuit of their goals are still
primitive. One possible reason for this is that
many datasets and tasks used for NLP are static,
not supporting interaction and language ground-
ing (Brooks, 1991; Feldman and Narayanan, 2004;
Barsalou, 2008; Mikolov et al., 2016; Gauthier and
Mordatch, 2016; Lake et al., 2017). Text-based
games—where players see, act upon, and com-
municate within a dynamic world using natural

1Data can be found here https://parl.ai/
projects/light/

language—provide a platform on which to develop
such goal-driven agents.

LIGHT (Urbanek et al., 2019), a large-scale
crowdsourced fantasy text-adventure game, consist-
ing of a set of locations, characters, and objectsa
possesses rich textual worlds, but without any no-
tion of goals to train goal-driven agents. We present
a dataset of quests for LIGHT and demonstrations
of humans playing these quests (as seen in Fig-
ures 2 and 3), providing natural language descrip-
tions in varying levels of abstraction of motivations
for a given character in a particular setting.

To complete these quests, an agent must reason
about potential actions and utterances based on in-
complete descriptions of the locations, objects, and
other characters. When a human is placed in a
fantasy setting such as LIGHT, they already know
that kings are royalty and must be treated respect-
fully, swords are weapons, etc.—commonsense
knowledge that a learning agent must acquire to en-
sure successful interactions. To equip agents with
relevant priors in such worlds, we domain-adapt
the large-scale commonsense knowledge graph
ATOMIC (Sap et al., 2019) to the LIGHT fantasy
world—to build ATOMIC-LIGHT.

We then introduce a reinforcement learning
(RL) system that incorporates large-scale language
modeling and the above commonsense-based pre-
training. We show that RL is superior to behavior
cloning or other supervised training on our data;
and that carefully combining pre-training with RL
is superior to either.

However, we find that although pre-training can
be an effective tool in this setting, it requires more
finesse than in the standard supervised setting. In
particular, we find that simply pre-training a model
on a large “generic” corpus (Sap et al., 2019; Baum-
gartner et al., 2020) of commonsense/language data
or pre-training on the domain specific LIGHT cor-
pus, and then fine-tuning via RL is less effective
than training RL from scratch. Furthermore, by

https://parl.ai/projects/light/
https://parl.ai/projects/light/


808

Setting You are in the Dangerous Precipice. The dangerous precipice overlooks the valley below. The ground slopes down to the edge here. Dirt crumbles
down to the edge of the cliff. There’s a dragon crescent, a knight’s armor, a golden dragon egg, and a knight’s fighting gear here. A knight is
here.You are carrying nothing.

Partner: Knight.
Persona I am a knight. I come from a lower-ranking noble family. I serve under the king, as my father did before me. In times of war, I fight on horseback.

Carrying knight’s armor, golden dragon egg, knight’s fighting gear
Self: A dragon.
Persona I am a dragon living in the mountains. I enjoy hoarding treasure. I terrorize the local populace for fun.

Carrying Nothing.

Figure 1: Setting and character information for both self and partner characters as taken from LIGHT.
Motivations: Timeline:

-4 hours go to dangerous precipiceShort I need to recover the dragon egg that was stolen and punish the knight. -15 min get knights armor from knight
-10 min get golden dragon egg

Now hit knightMid I need to return the golden dragon egg to my treasure hoard.
+5 min put dragon egg on back

+15 min eat the knightLong I need to build the largest hoard ever attained by any one dragon. +2 hours go to the mountains

Figure 2: Motivations with different levels of abstractions and corresponding sequence of timeline actions in
chronological order for the self character in LIGHT-Quests. There are 7486 quests in total.

Insssssolent pessst! I should immolate you for this tresssspasss.

And why is that, dragon?

Ssstealing my preccciousss golden egg! I’ll tell you what, I’ll give you 10 sssseconds to amussse me with your sssstory and THEN I’ll burn you alive!

You said you wanted to attack me, dragon, did you not?

Go ahead, I’m lisssssstening.
get golden dragon egg

Now now! I would have given you that had you asked!

Assssssk for my own property back? What a riduculousss notion

Look here, I told you to watch your mouth and you didn’t, so leave or I’ll make you leave.

And now threatsss! Thisss is proving to be a mossst engaging conversssation.
hit knight

Give my regardsss to the valley floor below!

Figure 3: Example of a demonstration of a human (blue shaded) completing the above quest while role-playing
as the self character with a partner agent (grey shaded). There are 2111 such human demonstrations of average
sequence length 12.92, consisting of 22672 dialogues in total.

carefully combining general and domain-specific
pre-training, we observe large improvements over
RL from scratch.

In short, the contributions of this paper are three-
fold: (1) A dataset of quests, LIGHT-Quests, and a
companion fantasy themed commonsense knowl-
edge graph ATOMIC-LIGHT; (2) a reinforcement
learning architecture and training methodology that
use these datasets to create goal-driven agents that
act and speak in the LIGHT environment; and (3)
Empirical zero-shot evaluations based on human
quest demonstrations and an analysis of large-scale
transformer-based pre-training trends in static vs.
interactive settings, showing that we have trained
agents that act consistently and speak naturally with
respect to their motivations.

2 Related Work

We focus on four major areas of related work:
text-based game-playing, goal-oriented dialogue,
commonsense reasoning in language, and general
language-informed RL.

Text-based game-playing. (Côté et al., 2018)

introduce TextWorld, a framework for procedurally
generating text-based games via grammars, and
(Yuan et al., 2018; Yin and May, 2019; Adolphs
and Hofmann, 2019; Adhikari et al., 2020) build
agents that operate in this environment—focusing
on aspects such as efficient exploration and zero-
shot generalization to new, procedurally generated
environments. Similarly, (Hausknecht et al., 2020)
introduce Jericho, a framework and series of base-
line agents for interacting with human-made text-
games such as Zork (Anderson et al., 1979). This
resulted in agents developed by works such as (Za-
havy et al., 2018; Ammanabrolu and Hausknecht,
2020), aiming to learn to execute contextually rel-
evant actions. Other works such as (Narasimhan
et al., 2015; He et al., 2016) explore how to best
factorize such text-game action spaces. None of
these works consider agents with motivations and
personas nor require any dialogue.

Goal-oriented dialogue. This form of dialogue
has traditionally been closely related to specific
tasks useful in the context of personal assistants
with dialogue interfaces (Henderson et al., 2014;
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El Asri et al., 2017). RL has been studied for
such tasks, usually to improve dialogue state man-
agement (Singh et al., 2000; Pietquin et al., 2011;
Fatemi et al., 2016) and to improve response qual-
ity (Li et al., 2016). In particular, the negotiation
tasks of (Yarats and Lewis, 2017; Lewis et al.,
2017), where two agents are trying to convince
each other to perform certain actions, are related to
the tasks in LIGHT-Quests. These works all lack
environment grounding and the notion of diverse
agent motivations.

Commonsense reasoning in language. Works
such as (Bosselut et al., 2019; Guan et al., 2020)
focus on pre-training transformer-based language
learning systems with large-scale commonsense
knowledge graphs such as ATOMIC (Sap et al.,
2019) and ConceptNet (Speer and Havasi, 2012)
for use in knowledge graph completion and story
ending generation respectively. (Fulda et al., 2017;
Ammanabrolu and Riedl, 2019; Ammanabrolu
et al., 2020; Murugesan et al., 2020) look at com-
monsense reasoning in interactive environments,
with the former focusing on affordance extrac-
tion using word embeddings and the latter three
on transferring text-game playing skills via pre-
training using question-answering and large-scale
knowledge graphs.

Language-informed reinforcement learning.
(Luketina et al., 2019) provide an overview of RL
informed by natural language. Of these works,
the ones most related to ours are those falling into
the category of instruction following—where an
agent’s tasks are defined by high level instructions
describing desired policies and goals (MacMahon
et al., 2006; Kollar et al., 2010). Visual and embod-
ied agents using natural language instructions (Bisk
et al., 2016; Kolve et al., 2017; Anderson et al.,
2018) or in language-based action spaces (Das
et al., 2017) utilize interactivity and environment
grounding but have no notion of agent motivations,
nor make any attempt to explicitly model common-
sense reasoning. Perhaps closest in spirit to this
work is (Prabhumoye et al., 2020), where they use
artificially selected goals in LIGHT and train RL
agents to achieve them. Similarly to the others, this
work does not contain the motivations provided by
LIGHT-Quests nor any modeling of commonsense
reasoning. Further, they limit their RL problem to 1
and 3-step trajectories that only involve speech, and
no actions—compared to the human demonstra-
tions in LIGHT-Quests which contain both actions

and speech sequences of average length 12.92.

3 LIGHT-Quests and ATOMIC-LIGHT

This section first provides a brief overview of the
LIGHT game environment, followed by descrip-
tions of the LIGHT-Quests and ATOMIC-LIGHT
datasets used in this paper.

Background. The LIGHT game environment is
a multi-user fantasy text-adventure game consisting
of a rich, diverse set of characters, locations, and
objects (1775 characters, 663 locations, and 3462
objects). Characters are able to perform templated
actions to interact with both objects and characters,
and can speak to other characters through free form
text. Actions in text games generally consist of verb
phrases (VP) followed optionally by prepositional
phrases (VP PP). For example, get OBJ, put OBJ,
give OBJ to CHAR, etc.. There are 13 types of
allowed verbs in LIGHT. These actions change the
state of the world which is expressed to the player
in the form of text descriptions.

3.1 LIGHT-Quests

Figures 1, 2, and 3 summarize the data that we
collected for LIGHT-Quests. Data is collected via
crowdsourcing in two phases, first the quests then
demonstration of humans playing them. During the
first phase, crowdworkers were given a setting, i.e.
situated in a world, in addition to a character and its
corresponding persona and asked to describe in free
form text what potential motivations or goals could
be for that character in the given world. The kind
of information given to the crowdworkers is seen in
Figure 1. Simultaneously, they were also asked to
provide a sequence of seven timeline actions—one
action that needs to be completed now and three
before and after at various user-defined intervals—
for how the character might go about achieving
these motivations.

Given the information in Figure 1, the crowd-
workers completed the above outlined tasks and
produce data as seen in Figure 2. Motivations
come in three levels of abstraction—short, mid,
and long—corresponding to differing amounts of
the timeline. For example, the short motivation is
always guaranteed to correspond most closely to
the now position on the timeline. Action annota-
tion is pre-constrained based on the classes of verbs
available within LIGHT. The rest of the action is
completed as free form text as it may contain novel
entities introduced in the motivations. There are
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5982 training, 756 validation, and 748 test quests.
Further details regarding the exact data collection
process and details of LIGHT-Quests are found in
Appendix A.1.1.

After collecting motivation and timelines for the
quests, we deployed a two-player version of the
LIGHT game, letting players attempt the quests for
themselves in order to collect human demonstra-
tions. Figure 3 shows an example human expert
demonstration of a quest. Players were given a char-
acter, setting, motivation, and a partner agent and
left to freely act in the world and talk to the partner
in pursuit of their motivations. The partner agent is
a fixed poly-encoder transformer model (Humeau
et al., 2020) trained on the original LIGHT data
as well as other human interactions derived via
the deployed game—using 111k utterances in total.
Players first receive a role-playing score on a scale
of 1-5 through a Dungeon Master (DM), a learned
model that ranks how likely their utterances are
given the current context. Once they have accumu-
lated a score reaching a certain threshold, they are
allowed to perform actions. We employ this gamifi-
cation mechanism to encourage players to role-play
their character persona and its motivations, lead-
ing to improved user experience and data quality
(Horsfall and Oikonomou, 2011). They are then
given further reward if the actions they perform se-
quentially match those on the timeline for the given
quest. The game ends after a maximum of six turns
of dialogue per agent, i.e. twelve in total. The aver-
age sequence of a human demonstration is 12.92,
with an average action sequence length of 2.18 and
dialogue of 10.74. There are 1800 training, 100
validation, and 211 test human expert demonstra-
tions after the data was filtered. Additional details
and examples are found in Appendix A.2.

3.2 ATOMIC-LIGHT

Commonsense reasoning is a critical cornerstone
when building learning agents that navigate spaces
such as LIGHT-Quests. To this end, we domain-
adapt the large-scale commonsense knowledge
base ATOMIC (Sap et al., 2019) to LIGHT.
ATOMIC contains information relevant for every-
day commonsense reasoning in the form of typed
if-then relations with variables. ATOMIC is orga-
nized into a set of events, e.g. “X puts X’s trust in
Y” and annotated relation types such as “needs”,
“wants”, “attributes”, and “effects” that label the
effects. It is designed to be a general atlas of com-

monsense data and so is neither dependent on a
specific environment or a character’s persona and
motivations.

To construct ATOMIC-LIGHT, we specif-
ically use the relations for “intents”, “ef-
fects”, “wants” and ”needs” and expand the
〈subject, relation, object〉 triples found in the
graph into templated natural language sentences.
These sentences are then rewritten to better
reflect the fantasy LIGHT domain. Named
entities and other noun phrases in ATOMIC
are masked out and filled in using BERT (De-
vlin et al., 2018) fine-tuned using a masked
language model loss on the entire LIGHT and
LIGHT-Quests data. We investigate the benefits
of such domain adaptation on downstream tasks
in Section 4.3. An example of a clause using the
wants relation in ATOMIC is as follows, “PersonX
puts PersonX trust in PersonY, wants, rely on
PersonY.” In ATOMIC-LIGHT, this is rewritten
to: “The merchant puts the merchant’s trust in the
guard, as a result the merchant wants to
rely on the guard.” Similarly, an example of
an effect using the needs relation is, “Before,
the merchant puts the merchant’s trust in the
guard, the merchant needs to be friends
with the guard.” ATOMIC-LIGHT contains
216686 training, 35340 validation, and 38565 test
samples. Further details of the construction of this
dataset are found in Appendix A.4.

4 Agents that Act and Speak

This section describes the creation of the agents
that learn to act and speak conditioned on their mo-
tivations in the LIGHT environment. The overall
architecture and training are first outlined, followed
by a detailed discussion on types of encoder pre-
training.

4.1 LIGHT RL Environment

The environment as seen in Figure 4 consists of
three components. The first is a partner agent,
which is a model trained to play other agents in
the game, as in (Prabhumoye et al., 2020). Next
is the game engine, which determines the effects
of actions on the underlying game graph (Urbanek
et al., 2019). Finally, there is the Dungeon Master
(DM), which is trained to score the naturalness of
dialogue.

Partner Agent. The partner agent is a poly-
encoder transformer model (Humeau et al., 2020)
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that is pre-trained on the Reddit dialogue corpus,
then on LIGHT and the human demonstrations of
LIGHT-Quests. Following the format seen in Fig-
ure 3, the partner agent does not have a motivation
itself but is trained to react to agents with motiva-
tions. Following (Prabhumoye et al., 2020), we
keep the partner model fixed during the episodes
where the LIGHT agent trains to ensure that it
retains natural English semantics—avoiding the
problem of language drift by learning an emergent
language with that must agree with the partner’s
usage (Lee et al., 2019).

Action Rewards via the Game Engine. All ac-
tions, either those of the agent-in-training or the
partner agent, are processed by the engine, check-
ing for goal state completion—hence known as act
goals. For example, if the LIGHT agent had the
motivation to acquire a sword, the goal could be
completed via a:

1. self act completion: where the agent acquires
a sword itself by picking it up, stealing it,
convincing the partner to drop theirs so you
can pick it up, etc.

2. partner act completion: where the agent
uses speech to convince their partner to
achieve the goal for them (e.g., by persuading
the partner to give them the sword).

Reaching an act goal provides reward ra of 1 and
0 otherwise. At each step, the engine also provides
us with the set of valid actions. These are the subset
of the action space A which are guaranteed to be a
valid change to the world from the current state st,
i.e. an action to give your partner a sword cannot
be valid unless you possess the sword.

Speech Rewards via the Dungeon Master.
Following prior works on using transformers for

automatic evaluation of natural language gener-
ation (Sellam et al., 2020), we utilize a learned
model–the Dungeon Master (DM)—to score the
agent’s ability to speak. The DM used here is a
poly-encoder model trained on collected human
quest demonstrations as well as the original con-
versations in LIGHT. It is conditioned on quests
and motivations and thus able to provide a (noisy)
indication of how natural the agent’s dialogue utter-
ances are given its immediate context, similarly to
the function of the DM during the data collection
process. Given the dialogue portion of a human
quest demonstration of length n, the DM returns a
reward ru of 1

2n if an utterance was in the demon-
stration (for a maximum of one time per episode
for each utterance from the demonstration). A fur-
ther 1

2n is given each time the utterance is scored as
being within the top-k most likely utterances by the
DM. This naturalness objective will be hence re-
ferred to as a speech goal. These rewards thus also
denser than act goals, helping the agent learn over-
all. Further, similarly to the game engine, the DM
also provides a set of M valid utterances which are
the M most likely dialogue candidates from the
candidate set for the current context.

4.2 Training a LIGHT agent with Switch
Reinforcement Learning

The overall architecture of our agent is shown in
Figure 4. It consists of an encoder, a switch, an
action network, and a dialogue network. First, we
construct the action spaces—factorized into actions
and utterances. The possible actions are the set of
all actions taken in the demonstrations (4710 total)
and the possible utterances are all utterances from
the demonstrations (22672 total). The encoder net-
work processes the setting, persona, motivation, as
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well as the full history of actions and dialogues per-
formed by the agent and the partner, input as a text
sequence. The features from the encoder, which
here are the hidden states at the final layer of a
transformer, are used as input by all following com-
ponents of the agent. In Section 5 we show how
different encoder training data affects the model.

Next, a switch module makes the decision re-
garding whether the agent should act or talk in
the current context and activates the correspond-
ing policy network. In this work, the switch is
simple: it outputs an action every k dialogue utter-
ances; where during training k is chosen to match
the ratio of utterances to actions on that particular
quest from the human demonstrations, and during
testing, k is chosen to match the average action
to utterance ratio. Both the action and dialogue
policies consist of a a single GRU layer followed
by an n-layer feed-forward network given input
features from the encoder. Once the LIGHT agent
has output an utterance or action, it is processed
by the environment—the partner agent, the game
engine and the DM.

We use A2C (Mnih et al., 2016) to train the
LIGHT agent, treating the two policy networks
as two separate actors with a shared critic. The
shared critic is motivated by the concepts of self
act completion and partner act completion seen in
Section 4.1 where the LIGHT agent can speak to
convince the partner to achieve an act goal. Each
agent in a batch is initialized via priority sampling
(Graves et al., 2017) with a different quest, i.e.
quests that the agent has historically successfully
completed less often are given a greater weight
when sampling from the pool of all possible train-
ing quests. In addition to a normal entropy regu-
larization term, we also add a regularization term
that encourages the models to produce “valid” out-
puts as judged by the game engine and the DM
for actions and utterances respectively. Additional
training details are found in Appendix B.2.

4.3 Encoder Pre-training Tasks

Prior work on commonsense reasoning in super-
vised natural language learning (Bosselut et al.,
2019) suggests that the encoder is key to over-
coming the challenges posed by the LIGHT-Quests
dataset even in an RL setting. We describe a series
of encoder pre-training tasks, designed to help the
LIGHT agent either act more consistently or speak
more naturally.

ATOMIC-LIGHT As seen in Section 3,
ATOMIC-LIGHT is a (domain-adapted) fantasy
commonsense knowledge graph, and as such pro-
vides priors for an agent on how to act consistently
in the world. For example, given a clause such
as “The knight wishes to slay the dragon, as a re-
sult the knight needs to acquire a sword,” the task
would be to predict the underlined text—a form of
knowledge graph completion (Wang et al., 2017).

Reddit We use a previously existing Reddit
dataset extracted and obtained by a third party and
made available on pushshift.io (Baumgartner et al.,
2020) seen in (Roller et al., 2020). This dataset
has been used in several existing dialogue-based
studies and has been shown to result in more natu-
ral conversations (Yang et al., 2018; Mazaré et al.,
2018).

LIGHT-Original The original LIGHT
dataset (Urbanek et al., 2019) is organized
similarly to the human demonstrations found in
LIGHT-Quests, i.e. an interspersed sequence
of dialogue and actions collected from humans
role-playing a character. The task itself is to
predict the next action or utterance given the prior
dialogue history as well as the current setting and
persona for a character. They are collected in a
chit-chat fashion, with no notion of objectives,
and so provide priors on how to generally act
consistently and speak in a fantasy world, but not
directly how to complete quests.

LIGHT-Quests Pre-training with this newly in-
troduced dataset consists of three tasks. (1) Bag-of-
action timeline prediction in which, given a quest
consisting of setting, persona, and motivations, any
one of the actions in the timeline must be predicted.
(2) Sequential timeline prediction in which, given
a quest consisting of setting, persona, motivations,
and the first n actions in the timeline, the n+ 1th

action must be predicted. (3) Predict the next dia-
logue utterance given a human demonstration in a
manner similar to the LIGHT-original tasks. The
first two tasks are designed to help the agent act
consistently and the third to help it speak naturally
with respect to its motivations.

5 Evaluation

We conduct two ablation studies, (1) to compare
the effects of the encoder pre-training tasks in RL
settings vs. supervised behavior cloning, and (2) to
analyze the interplay between actions and dialogue
for self and partner act completions.
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Model Reinforcement Learning Behavioral Cloning
Act Goals Speech Goals Act & Speech Goals Act & Speech Goals

Scratch 0.418 0.118 0.103 0.0003
General 0.146 0.040 0.028 0.00226
Light 0.115 0.028 0.022 0.0934
General+Light 0.251 0.094 0.081 0.115
Adaptive 0.420 0.330 0.303 0.147

Table 1: Encoder Type RL Zero-Shot Evaluations averaged over 3 independent runs. Act goals and speech goals
are as described in Section 4.1. Standard deviations for all experiments are less than 0.01. The “Act & Speech
Goals” column refers to quests where the agent has simultaneously achieved both types of goals within the episode.
Human act goal completion = 0.6 as measured during the second phase of the LIGHT-Quests data collection.

5.1 Encoder Pre-training Type Ablation
Study

Pre-training is done on the tasks described in Sec-
tion 4.3 by training a 12 layer transformer with
256 million parameters using a cross-entropy loss
as seen in (Humeau et al., 2020). These weights
are then transferred to the Blue shaded portion of
the encoder as seen in Figure 4 and frozen. A fur-
ther three randomly initialized-layers are appended
on to the end, indicated by the Red portions, into
which gradients flow. This is done as optimizing all
the parameters of such a model via RL over a long
horizon is both data inefficient and computationally
infeasible. Additional hyperparameter details are
found in Appendix B.1. We investigate the follow-
ing five different pre-training models to see how
they compare on act and speech goal completions
when trained with RL and in a supervised manner
with behavior cloning:

Scratch No pre-training is done, the encoder
is a 3-layer randomly initialized transformer and
trained along with the policy networks.

General Multi-task trained using both
pushshift.io Reddit and the commonsense dataset
ATOMIC-LIGHT, giving the agent general priors
on how to act and speak.

Light Multi-task trained on all tasks in LIGHT-
original and LIGHT-Quests, giving the agent priors
on how to act and speak with motivations in the
LIGHT fantasy domain.

General+Light Multi-task trained on all tasks
used in the General and Light models.

Adaptive Here we adaptively train a Gen-
eral+Light model that is first initialized itself from
a General model, providing additional regulariza-
tion to help balance between Light and General
tasks.

Table 1 describes the results for this ablation.
Models were each zero-shot evaluated on 211 hu-
man demonstrations from the LIGHT-Quests test

set for a single episode per quest across three in-
dependent runs. Figure 5 shows learning curves
during training for each encoder type. We first
see that performance when trained with RL, i.e.
with interactivity and environment grounding dur-
ing training, results in higher performance than
behavioral cloning for all the models. In both RL
and behavior cloning settings the Adaptive model
outperforms all others in all the metrics.

When trained supervised (behavioral cloning),
we see trends mirroring standard pre-training in
static text corpora. Transfer is easy and the Scratch
model performs significantly worse than all oth-
ers; and each new task added improves the agent’s
ability to speak and act. In particular, we see that
Light outperforms General, showing that the more
similar the pre-training tasks are to the downstream
tasks, the better the supervised performance.

However, these trends do not hold in the RL set-
ting. The Scratch model outperforms everything
except the Adaptive model and General outper-
forms Light. In part, this may be due to specifi-
cation gaming (Krakovna et al.); however Adaptive
does strongly outperform Scratch in goals with dia-
logue. This suggests that transfer (and fine-tuning)
is not as simple in the RL setting as in the super-
vised setting, but still can be useful if carefully
done. We note that domain adapative pre-training
(intermediate task transfer) has previously been
shown to give modest gains in supervised learning
(Phang et al., 2018; Gururangan et al., 2020), but
not with the large effects seen here for RL. Figure 5
further shows that with the right combination of
tasks, not only is the generalization performance
better, but training itself is more sample efficient—
requiring fewer steps before reaching asymptotic
performance.

5.2 Ability Type Ablation Study
To better understand the interplay between acts and
speech resulting in self and partner act goal com-
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Figure 5: Encoder types RL reward curves averaged over 3 independent runs.

Ability Scratch Adaptive
Act Goals Speech Goals Act & Speech Act Goals Speech Goals Act & Speech

Act+Speech 0.418 0.118 0.103 0.420 0.330 0.303
Act Only 0.478 - - 0.469 - -
Speech Only 0.036 0.165 0.028 0.0398 0.341 0.030
-No Speech Goals 0.0526 0.0521 0.0331 0.0673 0.0947 0.041

Table 2: Ability type ablations averaged across 3 runs with standard deviations less than 0.01.

pletions, we perform an ablation study selectively
dropping either the agent’s ability to talk or act. We
train the agent to either only act, only speak, only
speak with only action rewards. In the scenarios
when the agent can only speak, the agent has to
convince the partner to help achieve the agent’s
goal.

The results are outlined in Table 2. Unsurpris-
ingly, when trained to only act, the act goal com-
pletion rate increases over when it can both act and
speak. Similarly, when trained to only speak the
speech goal completion rates also increase. We
can draw two conclusions from these results: (1)
It is much easier to do an action yourself than to
convince the partner to do it (2) Removing speech
goals increases the act goal completion rates corre-
sponding to higher partner act completions. Thus,
the sequences of dialogue utterances required to
convince the partner to achieve the agent’s goal are
likely often at odds with those sequences required
to maximize speech goals.

6 Conclusion

Operating on the hypothesis that interactivity is key
to language learning, we introduce two datasets—a
set of quests based on character motivations in fan-
tasy worlds, LIGHT-Quests, and a large-scale com-
monsense knowledge graph, ATOMIC-LIGHT—
and a reinforcement learning system that leverages
transformer-based pre-training to facilitate develop-
ment of goal-driven agents that can act and speak

in situated environments. Zero-shot evaluations on
a set of novel human demonstration show that we
have trained agents that act consistently and speak
naturally with respect to their motivations. A key
insight from our ablation study testing for zero-shot
generalization on novel quests is that large-scale
pre-training in interactive settings require careful
selection of pre-training tasks—balancing between
giving the agent “general” open domain priors and
those more “specific” to the downstream task—
whereas static methodologies require only domain
specific pre-training for effective transfer but are
ultimately less effective than interactive methods.

7 Broader Impacts

The ability to speak and act in these textual fan-
tasy worlds has implications for domains beyond
text-games. We view text-games as an platform on
which to teach agents how to communicate effec-
tively using natural language, to plan via sequential
decision making in situations that may not be antic-
ipated. Given that our methods rely on deep- and-
reinforcement learning techniques operating on lan-
guage, they are prone to the same pitfalls as other
contemporary dialogue and text-game systems. We
mitigate, though do not entirely eliminate, the two
main pitfalls that our particular system is prone
to: (1) non-normative language usage—describing
situations that fictional characters may engage in
inappropriate for the real world—by restricting our
system to a retrieval rather than a generative sys-
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tem, enabling us to filter the possible outputs of
the agent; and (2) dataset bias via curation through
controlled crowdsourcing in the case of LIGHT-
Quests—the methods to debias the original LIGHT
dataset can be found in Dinan et al. (2020) and
crowdsourcing methods for the original ATOMIC
work can be found in Sap et al. (2019). Further
details regarding crowdsourcing data collection
methodology for LIGHT-Quests can be found in
Appendix A.1.1.
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A Appendix - Datasets

A.1 LIGHT-Quests
A.1.1 Mechanical Turk Data Collection
Crowdworkers are required to first pass an on-
boarding test before they are allowed to perform the
actual task. Figures 6, 7, 8, 9, and 10 describe first
the instructions given to the crowdworkers and then
4 phases of the on-boarding test. We paid workers
$2.75 per task. This amount was determined by
first running the task ourselves to estimate a com-
pletion time of 10-12 minutes per task, and then
running pilot tasks that confirmed the average task
duration for workers was close to 10 minutes.

Figure 11 shows the example of the actual task
given to the crowdworkers and Figure 12 shows
the user interface for the first phase of the LIGHT-
Quests data collection task described in Section 3.1.

Figure 6: On-boarding test instructions.
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Figure 7: Phase 1 of the on-boarding test.

Figure 8: Phase 2 of the on-boarding test.
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Figure 9: Phase 3 of the on-boarding test.

Figure 10: Phase 4 of the on-boarding test.
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Figure 11: Example for the first phase of the LIGHT-Quests data collection task described in Section 3.1 given to
the crowdworkers.
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Figure 12: User interface for the first phase of the LIGHT-Quests data collection task described in Section 3.1.
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A.2 Human Demonstration Collection
In order to collect the human completions of quests
in the LIGHT environment, we created a game
setup where humans could interact with models
while playing LIGHT characters in LIGHT set-
tings. We trained a ranking dialogue model on the
utterances in the LIGHT dataset.

Using this, players could now assume the role of
a LIGHT character and interact with the model. In
order to try to control for quality of the quest com-
pletions, we used the same ranking model to rank
the scores of the player in the dialogues. Players
who gave responses that the model ranked as likely
candidates would receive more points.

Only after scoring enough cumulative points
were players allowed to try completing quests. The
quest setup was a slight variation of the conver-
sation setup. First, the player was given one of
the collected quest scenarios rather than just a chat
setup. Players receiving a quest would be provided
with one of the motivations alongside their persona.

In the dialogue that followed, players were given
the chance to take action after enough in-character
dialogue turns. If the player took the correct action,
they were awarded with more points to confirm
they completed their given quest.

A.3 Examples
We present 3 randomly selected examples of quests
and corresponding human demonstrations.
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Setting You are in the swamp. The swamp is glowing with wonder and color. There are parts that range from dark red to bright yellow. People often
visit here to speak with the gods and claim it can be both harmful to those it dislikes and healing to those who it deems worthy. There’s a pit of
quicksand and a swamp flower here. A witch is here.

Partner: Witch.
Persona I grew up in a nearby village, and was exiled when it was found that I had special abilities. My parents were ostracized as well. Since then, I’ve

been on my own, but could never quite let go of my family.
Carrying Nothing.
Wielding gold necklace, robe, knife, staff
Self: Swamp monster.

Persona I am a swamp monster of the bog. I eat people. I swim around.
Carrying Nothing.
Wielding stick, rock
Motivations: Timeline:
Short I need some thick foliage to begin construction of my concealed swamp hut. -2 hours go to swamp

-15 min eat people
-10 min follow princess

Now get impassable vegetation from pit of quicksand
Mid I will completely camouflage my swamp hut, so that the King’s men won’t be able

to drive me out even further from the castle.
+15 min use impassable vegetation with swamp hut

Long I must live close to the castle, so that I can take the princess away from the evil
King.

+1 hours follow king

+2 hours follow princess

What are you doing here witch? GET OUT OF MY SWAMP

I was taken from my family when I was 8 and I need to get out of here! Can you assist me?

Help? HA! I help no one but myself. Speaking of...you look rather plump and tasty witch

Plump?! I’m healthy. I’ll tear you up then and make scraps. You watch.

get impassable vegetation from pit of quicksand
You would make a great addition to my stew

It’s going to just be gross!

drop impassable vegetation
Get out of my way so I can make my hut. Can’t a swamp monster get any peace around here?!

I’ll help you, but only so you won’t eat me!

That’s it, you’re coming with me!
get impassable vegetation

I don’t trust you. Get off of me!

Setting This is the hidden workshop of the most powerful wizard in the land. There are ornate tapestries on the walls depicting wizards using their powers
and potions in battle. Mordak, the wizard, constructed this powerful workshop after the death of the most famous king, Henry of Silverton. Any
who enter here immediately become enchanted with the wizard’s power, giving them advanced healing powers. There’s a tapestry, a potion, and
a tome here. The wizard is here.

Partner: Wizard.
Persona I am a wizard who develops my own spells. Most of them aren’t particularly effective spells, but I’m curious about all the magical possibilities.

People are afraid to participate in my experiments.
Carrying Nothing.
Self: Apprentice.
Persona I am your apprentice. Please tell me what I can help you with. I will cook and serve your meals. I will clean the castle. I can do anything you ask.

You have hired me to make your life easier.
Carrying Nothing.
Motivations: Timeline:
Short I need to get the tapestry to clean it. -2 hours get hired from wizard

-15 min go to secret magician’s workshop
Now get tapestryMid I need to make this workshop suitable for the wizard. +5 min wield tool

+10 min hit tapestry
Long I was hired to keep this place cleaned and in perfect condition for the wizard. +30 min put tapestry in wall

+4 hours drop tool

Good day Ser Wizard. Your tower is decorated with beautiful tapestries, though their colors appear to be dulled due to dust. May I take it and clean it?

Why not, it is infused isn’t it. Just don’t be waving it around this room, it might get dangrous

Of course, I will handle it with the utmost care.

How long have you been an apprentice?

get tapestry
3 years Ser. I’m hoping to learn to be a wizard or to become a knight. Or both! Wouldn’t that be grand?

How wonderful. What encouraged you to pursue it?

Curiosity mostly. I hope to make the world a better place, and one of the best ways to do that is vanquishing evil

What got you into that occupation then? I was born with affinity for magic so it was my calling.

hug wizard
As I said, curiosity. I am a high born boy, the third son, so I cannot inherit my father’s lands. So I must make my mark on the world another way

You are well suited to it and I am sure your parents are proud of you.
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Setting You are in the The Queen’s Chamber. This is a beautiful room inside of the palace that is decorated with the finest silk and velvet. The color
scheme used represents royalty, royal blue, red, green and purple. The walls are covered in gold and in each corner of the room are golden statues
of Greek art. The floors are covered in marble, and despite the patterns, shine so brightly you can even see your own reflection in them! There’s
also a bed big enough to fit five people on! There’s two statues, an a bed big, a the finest silk and velvet, an a bed, and a finest silk and velvet here.
The butler is here.

Partner: Butler.
Persona I serve my masters quietly. I know all the secrets of the elite but will never tell a soul. I have lived in this home since I was 12.

Carrying Nothing.
Self: Jester.
Persona I am the fun guy. I like to entertain others in the village. I am the local jester.

Carrying Nothing.
Motivations: Timeline:
Short I want to hug the butler to cheer him up. -2 hours wear Jester’s Hat

-30 min go Queen’s Tower
-5 min follow the butler

Now hug the butler
Mid I need to cheer him up because the Queen has just chastised him for dirtying the marble floors. +5 min go dining hall

+10 min get beef stew
Long It is my job to cheer up courtiers who are unhappy, and I will lose my home in the kingdom if I don’t cheer

them up!
+4 hours give beef stew to butler

Why hello there Butler my man

Hello jester! I’m happy to see you, since I hate my life.

Why so down with the life feels huh

I can’t complain (because the king will punish me) everyone wishes they could be the king.

hug butler

I appreciate the kind words, dear jester.

I’m here for ya. To cheer you up

That is kind of you, not everyone has liked me here, I am the queen’s least favorite person.

Well I like you much more than the queen.
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A.4 ATOMIC-LIGHT
ATOMIC-LIGHT is constructed by first fine-tuning
a BERT-large model (Devlin et al., 2018) on all
setting, object, and descriptions in LIGHT in addi-
tion all the human demonstrations found in LIGHT
and LIGHT-Quests. As seen in Section 3.2, all
nouns (e.g. PersonX or PersonY) and noun phrases
are masked out and we the tuned BERT model
to fill it in a manner similar to (Lawrence et al.,
2019). When filling in tokens, the BERT model is
restricted to a vocabulary consisting of all nouns (N
or NN) in LIGHT and to a vocabulary constructed
from all of LIGHT for the rest of the noun phrase
(NP).

Here we present 3 examples from ATOMIC-
LIGHT as seen in Section 3.2 for each of the 4
relation types used: “wants”, “needs”, “intents”,
and “effects”.
[Effect] princess explains briefly the situation , as a

result, princess points finger
[Effect] goblin king’s healer provides care for patients ,

as a result, goblin king’s healer assists patients
[Effect] witch changes men’s appearance , as a result, witch

causes men stress
[Want] prince plays a commander in the war, as a result,

prince wants to win
[Want] repentant person focuses purely on issues, as a

result, repentant person wants to help others
[Want] undead warrior hardens pharaoh’s mind, as a result,

undead warrior wants to make pharaoh punish people
[Intent] bandit plays a hand in the war because bandit

wanted to participate
[Intent] ambassador focuses only on issues because

ambassador wanted events to play out a certain way
[Intent] son proposes another plan because son wanted to be

helpful
[Need] shipwrecked survivor proposes another wayward plan

because shipwrecked survivor needed to leave this place
[Need] general proposes another way because general needed

to come up with a proposal
[Need] citizen kills animals for food because citizen needed

to learn to hunt

B Appendix - LIGHT-Quests
Experiments

B.1 Supervised Tasks
This section describes results from the LIGHT-
Quests tasks that are described in Section 4.3.
Model-types are the same as those used in the en-
coders in Section 5 in the main paper. All retrieval
results reported are Hits@X/100. Results are re-
ported for all timeline actions, all actions with the
exception of the easiest action—the action at the
“now” position in the timeline, corresponding most
closely to the short motivation as a result of the
framing of Mechanical Turk task in Figure 12—
and only the easiest action prediction. Table 3
gives details on hyperparameters used to train the
poly-encoders. Encoders were trained until valida-
tion accuracy across all the tasks did not improve
for 5 epochs or 24 wall clock hours on a machine
with 8 V100 GPUs.

Hyperparameter type Value
Dictionary Tokenizer Byte-pair encoding
Num. layers 12
Num. attention heads 12
Feedforward network hidden size 3072
Input length 1024
Embedding size 768
Batch size 32
Dropout ratio 0.1
Poly-n-codes 64
Gradient clip 1.0
Optimizer Adam
Learning rate 1 × 10−6

Table 3: Hyperparameters used to train all poly-
encoders in the supervised experiments. All models
have 256 million total parameters. The same trained
models were then frozen and used for the RL experi-
ments.

Some notable common trends across these tasks
are:

1. Removing motivations from the input context
results in significantly lower performance—
on average ≈ 7 points lower accuracy for Bag
of Actions Timeline prediction and on aver-
age ≈ 18 percentage points lower for Sequen-
tial Timeline prediction when averaged across
Scratch and Adaptive models. Further, the
short motivations proves to be the most useful
for timeline prediction tasks.

2. Pre-training on ATOMIC-LIGHT produces
an average gain of ≈ 4 percentage points in
accuracy in both tasks than when trained on
ATOMIC without domain adaptation alone.

3. Performance across the board increases with
an increase in the number of training quests,
as seen in Figures 13, 14, with the Scratch
model receiving the greatest benefit from hav-
ing more training data.

4. The Scratch model performs “best” on evalua-
tions for the easiest action only but no others—
indicating that it has overfit to predicting the
easiest action which closely corresponds to
short motivation. Likewise, the Adaptive gen-
erally has the lowest performance for the eas-
iest action—indicating that pre-training with
the other tasks has provided sufficient regular-
ization to enable it to not overfit to the easiest
action.
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Model All Actions Easiest Action Leave Easiest Out
Hits@1 Hits@5 Hits@10 Hits@1 Hits@1

Scratch 0.2332 0.7491 0.9176 0.4013 0.2546
No Motivations 0.1132 0.5412 0.5771 0.1886 0.164

Short Motivations 0.1856 0.6479 0.678 0.261 0.223
Long & Mid Motivations 0.1452 0.598 0.631 0.2241 0.1272

Light 0.3156 0.7854 0.9226 0.236 0.2968

General+Light 0.311 0.7772 0.9229 0.2173 0.2995
Untuned ATOMIC 0.274 0.761 0.909 0.1912 0.2677

Adaptive 0.4168 0.8012 0.9332 0.342 0.4194
No Motivations 0.16 0.6286 0.6415 0.2838 0.1966

Short Motivations 0.225 0.6592 0.8245 0.305 0.2106
Long & Mid Motivations 0.1682 0.6397 0.6499 0.281 0.1595

Table 4: Sequential supervised timeline prediction.
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Figure 13: Sequential supervised timeline prediction learning curves.

Model All Actions Easiest Action Leave Easiest Out
Hits@1 Hits@5 Hits@10 Hits@1 Hits@1

Scratch 0.9791 1 1 0.7122 0.9721
No Motivations 0.901 1 1 0.554 0.8823

Short Motivations 0.934 1 1 0.622 0.9211
Long & Mid Motivations 0.921 1 1 0.5679 0.956

Light 0.9721 1 1 0.6552 0.9682

General+Light 0.9818 1 1 0.6472 0.9708
Untuned ATOMIC 0.9421 1 1 0.6272 0.9508

Adaptive 0.9829 1 1 0.6353 0.9768
No Motivations 0.9175 1 1 0.5756 0.9523

Short Motivations 0.9794 1 1 0.6578 0.9682
Long & Mid Motivations 0.9523 1 1 0.5812 0.9576

Table 5: Bag of Actions supervised timeline prediction.
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Figure 14: Bag of Actions supervised timeline prediction learning curves.

B.2 Reinforcement Learning

This section contains first the equations referenced,
hyperparameters used as well as additional results
for the reinforcement learning tasks as seen in Sec-

tion 4.

The additional entropy loss terms over the valid
actions are designed to speed up exploration, as
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seen in (Ammanabrolu and Hausknecht, 2020).

LA(st, at; θAt) =
N∑
i=1

(yai logπA(ai|st) (1)

+(1− yai)(1− logπA(ai|st))

yai =

{
1 ai ∈ Avalid(st)
0 else

LU(st, ut; θUt) =
M∑
i=1

(yui logπU(ui|st) (2)

+(1− yui)(1− logπU(ui|st))

yui =

{
1 ai ∈ Uvalid(st)
0 else

Each of these loss terms are only applied to the
relevant policy network, i.e. LA to the action net-
work and LU to the dialogue network. These terms
provide an additional training signal to the policy
networks regarding which actions and dialogue are
contextually relevant via additional entropy regu-
larization over the valid actions. Similarly to the
results found in (Ammanabrolu and Hausknecht,
2020), preliminary experiments in our domain sug-
gest that these terms reduce the number of envi-
ronment steps required to reach asymptotic perfor-
mance by a couple orders of magnitude.

Overall training is done via A2C (Mnih et al.,
2016) a policy gradient algorithm that maximizes
long-term expected reward by comparing the ad-
vantage A(st, a∗t ) of taking an action in a state to
the average value of taking a valid action as pre-
dicted by the critic V (st).

A(st, a
∗
t ) = E[rt + γV (st+1)]− V (st) (3)

where rt = rAt + rUt

Here, a∗t is either an action or an utterance out-
putted by the respective policy networks. It is
also worth noting that on steps where an action
is performed, rUt is always 0, but on steps where
a dialogue utterance is spoken rAt may not be 0.
This corresponds to the concepts of self act comple-
tion and partner act completion seen in Section 4.1
where the LIGHT agent can speak to convince the
partner to achieve an act goal. Both policies are

then updated according to the gradient

−∇θ



logπA(at|st; θAt)A(st, at)
+
∑

a∈A P (a|st)logP (a|st)
+LA(st, at; θAt) πS(st) = πA

logπU (ut|st; θUt)A(st, ut)
+
∑

u∈U P (u|st)logP (u|st)
+LU(st, ut; θUt) πS(st) = πU

Where πS : O → {πA, πU} is the switch policy
that selects whether the agent acts according to πA
or speaks according to πU based on the encoded
state st. The additional terms seen are an overall
entropy loss over the entire actionA or utterance U
spaces, designed to prevent premature, sub-optimal
policy convergence. Boltzmann exploration (Sut-
ton et al., 1998) is used to sample actions from both
actor networks during training.

B.2.1 Hyperparameters
Table 6 has the hyperparameters used in the RL
experiments. Loss coefficients are separated by
action and speech types, note that the ratio between
the loss coefficients matches the ratio between the
sizes of the action spaces. RL experiments were
performed on a machine with 8 V100 GPUs for 1
million environment interactions for each actor in
a batch of 32.

Hyperparameter type Value
General
Discount γ 0.99
Valid Action loss coefficient 10
Action entropy coefficient 0.01
Valid Speech loss coefficient 40
Speech entropy coefficient 0.04
Batch size 32
Gradient clip 1.0
Steps per episode 100
Policy Networks (Actors)
Num. Layers 3
Feedforward network hidden size 768
GRU hidden size 768
Value Predictor (Critic)
Num. Layers 2
Feedforward network hidden size 768
Appended Encoder
Num. layers 3
Num. attention heads 3
Feedforward network hidden size 768

Table 6: RL experiments hyperparameters. All pre-
training encoder hyperparameters are as found earlier
in Table 3.

B.2.2 Learning Curves
The first set of results, seen in Figure 15 shows
that both Scratch and Adaptive models gain perfor-
mance across the board in terms of their ability to
act and speak given more training quests. Unlike
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the supervised tasks, the Scratch model generally
benefits less than the Adaptive model from having
more data.

B.2.3 Switch Type Ablations
The second set of results involve ablating having
a learned switch that uses the input training data
and a hardcoded switch- The learned switch is as
described in Section 4: it outputs an action every
k dialogue utterances; where during training k is
chosen to match the ratio of utterances to actions
on that particular quest from the human demonstra-
tions, and during testing, k is chosen to match the
average action to utterance ratio. The hardcoded
switch is where the agent outputs an action cho-
sen every N steps across all quests—here N = 3
is the chosen hyperparameter. Table 7 shows that
having a learned switch increases zero-shot gener-
alization performance and Figures 16, 17 show that
having a learned switch improves sample efficiency
by enabling the LIGHT agent to reach asymptotic
performance in fewer steps in both the Scratch and
Adaptive models.

Model Reinforcement Learning
Act Goals Speech Goals Act & Speech Goals

Scratch 0.418 0.118 0.103
Hardcoded Switch 0.295 0.0947 0.066

Adaptive 0.42 0.33 0.303
Hardcoded Switch 0.274 0.294 0.236

Table 7: Encoder Type RL Zero-Shot Evaluations av-
eraged over 3 independent runs. Act goals and speech
goals are as described in Section 4.1. Standard devia-
tions for all experiments are less than 0.01. The “Act &
Speech Goals” column refers to quests where the agent
has simultaneously achieved both types of goals within
the allotted one episode.
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Figure 15: Encoder Types RL Learning Curves averaged over 3 independent runs.
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Figure 16: Switch Types Reward Curves for the Scratch Model averaged over 3 independent runs.
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Figure 17: Switch Types Reward Curves for the Adaptive Model averaged over 3 independent runs.
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B.2.4 Self Act Completion Transcripts
We pick 3 transcripts of the LIGHT agent playing
the quests. Each of these transcripts are from the
Adaptive model on the test set of human demon-
strations during zero-shot evaluations. We pick
samples where the agent achieves the act goal it-
self and also simultaneously achieves the speech
goal. The blue and right aligned text is the LIGHT
agent trained with RL and the gray and left aligned
text is the partner agent.

Setting The fishing store is a small one room stone building with wares laid about on tables. One can see fishing poles, wooden buckets with dirt and
bait inside, along with some mounted trophies, and a skeleton.

Partner: Fish seller.
Persona I sell fish in the kingdom. I usually perch on the high seas. I catch thousands of fish each year.

Carrying fish
Self: Mermaid hunter.

Persona I am a fierce hunter. I bring down mermaids. I spend most of my time on the high seas.
Carrying crossbow, skeleton, coins

Motivation I will hit the fish seller to remind them who I am.

I’ll get them!!

follow fish seller

hit mermaid hunter

That’s it! I am going to eat you. Say your last words.

hug mermaid hunter

Do you see these skeletons I am carrying? They are mermaids I’ve already devoured!

get skeleton

Get away from my skeletons! The bones are my trophy!

give skeleton to mermaid hunter

It is all your fault my last mermaid got away!

And you are a simpleton, just take this fish. I do not even care about payment.

I DONT WANT YOUR DAMN FISH

get coins from fist

hit fish seller

Setting The king’s bedroom. The walls are tall and stone. They are coated with colorful tapestries showing the kings of years past. A large stone
fireplace across from the bed that is large enough to keep the king warm even on the coldest nights. A double thick wooden door with a large
lock on each side of the room.

Partner: Royal dog.
Persona I am the royal dog, fat, incontinent, and lazy. I eat off my own porcelain plate, when I am not hand fed by the queen. I pee where I like. I stole

food from the poor when I was young, but I cannot waddle up to them fast enough these days. I sleep between the royal couple.
Carrying Nothing.

Self: Queen.
Persona I was the daughter of a high ranking nobleman overseas. To make a trade alliance with the King, my parents offered me in marriage. It wasn’t

my idea, but it has turned out very well. I’ve produced two living sons as heirs, and the king treats me kindly. I spend my time doing embroidery
and talking with my ladies in waiting.

Carrying Nothing.
Motivation I want to get to the large stone fireplace.

I am having turbulent thoughts regarding my faith and own morality.

I want to jump into the fireplace.

Don’t, lets go to the fireplace and sit.

I go to fireplace.

get large stone fireplace
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Setting The sheriff’s office is a small building on the southern edge of the farm. There is a desk with decrees from the king and other papers strewn
about. Hanging on the wall are swords and other weapons. The room is small and cluttered, with various books and other things strewn about.
There is a guard here.

Partner: Lawyer.
Persona I am a very good lawyer. I always win in my cases. I would like to work as a district attorney.

Carrying Nothing.
Self: Sheriff.

Persona I keep our town safe. I make sure to check the caravans for bandits. If the King needs anything extra hands in the kingdom he can count on me.
Carrying Nothing.

Motivation I want to remove the shield and hit the lawyer with it.

Next time I’ll hit you with this shield! Tell the truth, it was you that went after the king! I don’t buy the frame story. No matter how good a lawyer you are.
You aren’t fooling me!

get shield

remove knife

Hahahahaha. I’m off, don’t like to fight! You are a fool sheriff. I can run faster than you can ever imagine.

follow lawyer

This is my shield now! Goodbye! I’m off.

Stop!!

put shield on large and well stocked wine rack

get shield from large and well stocked wine rack

hug sheriff

hit lawyer

Goodbye.

Alright, lawyer. You may go now.

B.2.5 Partner Act Completion Transcripts
Similarly to the previous section, these transcripts
are from the Adaptive model on the test set of hu-
man demonstrations during zero-shot evaluations.
We pick samples where the act goal is achieved via
the partner and the agent simultaneously achieves
the speech goal itself. The blue and right aligned
text is the LIGHT agent trained with RL and the
gray and left aligned text is the partner agent.

Setting Up at the top of the tower, among the gray clouds, is the prison room. The room is round, with a circumference of about 15 feet. The walls are
barren and made of stone; only one barred window gives a view out onto the vast landscape. A small bed and a dirty wooden bucket are the
only decorations. The desolate fairy spends day and night laying on that small bed, wondering where things went wrong.

Partner: Fairy.
Persona I’m a fairy that lives in the forest. I like to fly around with my siblings and play games. I try to hide from humans. If they find me, I’ll grant

their wishes.
Carrying Nothing.

Self: Witch.
Persona Halloween is my favorite time of the year. My familiar is a cat named Helix. I have a spell book that is 300 years old. I search the forest for

herbs and berries for my potions.
Carrying Nothing.

Motivation I need the dirty wooden bucket to make a potion.

Take the doll

hug fairy

I will take this doll back to the palace with me.

You do you fairy.

hug witch

You know whats going on w/ the princess?

She just disappeared suddenly late at night without a sound heard

Anyway, I will make this potion and drink it, but I do not think it will help me.

I will drink the potion but why make it.

Because we’re in a prison tower. Duh. Also give me that bucket or I’ll feed you to my cat!

give dirty wooden bucket to witch
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Setting The throne room. Very luxurious, with details of 12 carat gold and diamonds with a very comfortable cushions where the king usually takes a
break.

Partner: Powerful but aged wizard.
Persona I am the official wizard to the king. I give him advice on how to run the kingdom. I enjoy and love using magic in my everyday life. I’m getting

old now but I still have a zest for life. I really enjoy doing magic for the local peasants in the village.
Wielding robe, staff

Self: King’s trusted adviser.
Persona I am the king’s trusted adviser. I hold the discretion of the king. I guard the secrets and strategies that make my kingdom thrive. I live a lonely

life because others cannot be trusted.
Wielding slippers, robes

Motivation I need to bring the king’s pet to him

Well, I was doing what you told me to do. I was going to eat him but there was hardly any meat on him.

I killed him before he could grow.

Carry me to pond.

Yes, milord, I shall do as you command.

remove slippers

Where is King Fulmer’s pet?

Is he not in his bed?

Yes, I guess you need to bring him in.

follow powerful but aged wizard

I want to become the new head wizard.

Nope he just probably throw you overboard.

The wizard is evil? Dang it. Help me.

You’re not the lion, I need to get the lion out.

give large pet lion to king’s trusted adviser

Setting The Tent. Shabby, torn fabric, stained by weeks of travel and bleached from the harsh sun. Long, thin sticks held the fabric up so it formed a
triangle with the earth. The sticks were buried deep within the shifting orange sand to hold off the blistering wind.

Partner: Person.
Persona I’m just a guy. I work at the saw mill every day. I’m a good villager.

Carrying Nothing.
Self: Military Commander.

Persona I am the military commander of the village. It is my duty to train and lead our soldiers into battle. I am a stern commander and I expect the best
from my troops.

Carrying sword
Motivation I need to get sand to use as a tactical planning prop.

Just ensure the home front is properly protected.

hug person

Perfect! God speed commander.

Yes. I need to prepare.

Now. I heard the enemy is coming.

pick up stick

get stick

Where’s the sand?

give sand to military commander




