@inproceedings{lee-etal-2021-unifying,
title = "On Unifying Misinformation Detection",
author = "Lee, Nayeon and
Li, Belinda Z. and
Wang, Sinong and
Fung, Pascale and
Ma, Hao and
Yih, Wen-tau and
Khabsa, Madian",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-main.432",
doi = "10.18653/v1/2021.naacl-main.432",
pages = "5479--5485",
abstract = "In this paper, we introduce UnifiedM2, a general-purpose misinformation model that jointly models multiple domains of misinformation with a single, unified setup. The model is trained to handle four tasks: detecting news bias, clickbait, fake news, and verifying rumors. By grouping these tasks together, UnifiedM2 learns a richer representation of misinformation, which leads to state-of-the-art or comparable performance across all tasks. Furthermore, we demonstrate that UnifiedM2{'}s learned representation is helpful for few-shot learning of unseen misinformation tasks/datasets and the model{'}s generalizability to unseen events.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-etal-2021-unifying">
<titleInfo>
<title>On Unifying Misinformation Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nayeon</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Belinda</namePart>
<namePart type="given">Z</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sinong</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pascale</namePart>
<namePart type="family">Fung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Madian</namePart>
<namePart type="family">Khabsa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-jun</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we introduce UnifiedM2, a general-purpose misinformation model that jointly models multiple domains of misinformation with a single, unified setup. The model is trained to handle four tasks: detecting news bias, clickbait, fake news, and verifying rumors. By grouping these tasks together, UnifiedM2 learns a richer representation of misinformation, which leads to state-of-the-art or comparable performance across all tasks. Furthermore, we demonstrate that UnifiedM2’s learned representation is helpful for few-shot learning of unseen misinformation tasks/datasets and the model’s generalizability to unseen events.</abstract>
<identifier type="citekey">lee-etal-2021-unifying</identifier>
<identifier type="doi">10.18653/v1/2021.naacl-main.432</identifier>
<location>
<url>https://aclanthology.org/2021.naacl-main.432</url>
</location>
<part>
<date>2021-jun</date>
<extent unit="page">
<start>5479</start>
<end>5485</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On Unifying Misinformation Detection
%A Lee, Nayeon
%A Li, Belinda Z.
%A Wang, Sinong
%A Fung, Pascale
%A Ma, Hao
%A Yih, Wen-tau
%A Khabsa, Madian
%S Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2021
%8 jun
%I Association for Computational Linguistics
%C Online
%F lee-etal-2021-unifying
%X In this paper, we introduce UnifiedM2, a general-purpose misinformation model that jointly models multiple domains of misinformation with a single, unified setup. The model is trained to handle four tasks: detecting news bias, clickbait, fake news, and verifying rumors. By grouping these tasks together, UnifiedM2 learns a richer representation of misinformation, which leads to state-of-the-art or comparable performance across all tasks. Furthermore, we demonstrate that UnifiedM2’s learned representation is helpful for few-shot learning of unseen misinformation tasks/datasets and the model’s generalizability to unseen events.
%R 10.18653/v1/2021.naacl-main.432
%U https://aclanthology.org/2021.naacl-main.432
%U https://doi.org/10.18653/v1/2021.naacl-main.432
%P 5479-5485
Markdown (Informal)
[On Unifying Misinformation Detection](https://aclanthology.org/2021.naacl-main.432) (Lee et al., NAACL 2021)
ACL
- Nayeon Lee, Belinda Z. Li, Sinong Wang, Pascale Fung, Hao Ma, Wen-tau Yih, and Madian Khabsa. 2021. On Unifying Misinformation Detection. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 5479–5485, Online. Association for Computational Linguistics.