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Abstract

We present DART, an open domain structured
DAta-Record-to-Text generation dataset with
over 82k instances (DARTs). Data-to-text an-
notations can be a costly process, especially
when dealing with tables which are the ma-
jor source of structured data and contain non-
trivial structures. To this end, we propose a
procedure of extracting semantic triples from
tables that encodes their structures by exploit-
ing the semantic dependencies among table
headers and the table title. Our dataset con-
struction framework effectively merged hetero-
geneous sources from open domain semantic
parsing and spoken dialogue systems by uti-
lizing techniques including tree ontology an-
notation, question-answer pair to declarative
sentence conversion and predicate unification,
all with minimum post-editing. We present
systematic evaluation on DART as well as
new state-of-the-art results on WebNLG 2017
to show that DART (1) poses new challenges
to existing data-to-text datasets and (2) facil-
itates out-of-domain generalization. Our data
and code can be found at https://github.
com/Yale-LILY/dart.

1 Introduction

Automatically generating textual descriptions from
structured data improves the accessibility of knowl-
edge bases to lay users. Such applications include
explaining data records to non-experts (Cawsey
et al., 1997), writing sports news (Chen and
Mooney, 2008), summarizing information in mul-
tiple documents (Fan et al., 2019), and generating
dialogue responses (Wen et al., 2015).

While significant progress has been made in this
field, there are still several issues with existing
Data-to-Text datasets. First, they adopt a flat ontol-
ogy structure of the data, such as slot-value pairs
for data records (Lebret et al., 2016; Novikova et al.,
2017b) or flat schema for tables (Wiseman et al.,

∗Now at Facebook AI.

2017; Chen et al., 2020a; Parikh et al., 2020). This
flat structure is not powerful enough to encode rich
semantic relationships in the ontology of the struc-
tured data, especially tables, whose representation
can be further improved with these semantic knowl-
edge. Second, some of the datasets only focus on
a small number of domains or knowledge graphs,
therefore providing limited number of predicates
and data ontologies. For example, E2E (Novikova
et al., 2017b) on restaurants and WebNLG (Gar-
dent et al., 2017) on 15 categories from DBPedia.
Furthermore, some of them only have loose align-
ments between data input and sentence due to the
nature of the task (Wiseman et al., 2017) and the
automatic generation procedure (Vougiouklis et al.,
2018; Elsahar et al., 2018).

To address some of these issues and to encour-
age further research in natural language generation
from structured data, we introduce DART, a large
and open-domain structured DAta-Record-to-Text
generation corpus. The goal of DART is to har-
vest the diverse predicates occurred in Wikipedia
tables, which is significantly richer than those de-
fined in the domain specific ontologies E2E and
WebNLG were built on (Table 2). We also intro-
duce a novel tree ontology annotation approach on
tables, which converts a flat table schema into a
tree structured semantic frame. The tree ontology
reflects the core and auxiliary relations in the table
schema, and naturally occurs across many domains.
As a result, DART provides high-quality sentence
annotations to tree structured semantic frames ex-
tracted from various data sources, including Wik-
iSQL (Zhong et al., 2017) and WikiTableQuestions
(Pasupat and Liang, 2015), two open-domain ques-
tion answering datasets, as well as E2E (Novikova
et al., 2017b) and WebNLG (Gardent et al., 2017)
(Figure 1). We evaluated several state-of-the-art
data-to-text models on DART, and found that while
these models achieve impressive performance on
domain-specific datasets, their performance suffers

https://github.com/Yale-LILY/dart
https://github.com/Yale-LILY/dart
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on DART due to its open-domain nature and richer
semantic structures.

Our contributions are as follows. (1) We present
a large and open-domain corpus for structured data
record to text generation, annotated with tree on-
tologies converted from the table. This hierarchical
input differentiates our corpus from existing data-
to-text corpora. (2) We benchmark several state-
of-the-art data-to-text models to show that DART
introduces new generalization challenges. (3) We
demonstrate that using DART for data augmenta-
tion improves the performance of existing models
on the WebNLG 2017 dataset. We expect the re-
sults to generalize to other data-to-text datasets
given the open-domain nature of DART.

2 DART Data Collection

As shown in Figure 1, DART is constructed from
three different sources: (1) human annotation on
Wikipedia tables from two table semantic parsing
and question answering datasets WikiSQL and Wik-
iTableQuestions (§ 2.1), (2) automatic conversion
of questions in WikiSQL to declarative sentences
(§ 2.2), and (3) incorporation of existing datasets
including WebNLG 2017 and Cleaned E2E (§ 2.3).
After collecting the 〈triple-set, sentence〉 pairs from
various data sources, we manually canonicalized
the predicates and show that DART covers a broad
range of topics (§ 2.4). Finally, we discuss the data
split in § 2.5.

2.1 Tree Ontology and Sentence Annotation
on Tables

Tables are a major source of structured data that
contain a wealth of information complementary
to text and knowledge graphs. We aim to col-
lect 〈triple-set, sentence〉 pairs from open-domain
Wikipedia tables. However, table schema are
flat, making them not directly usable for building
subject-predicate-object triples to capture rich rela-
tionships in the data.

As shown in Figure 2, we propose a two-stage an-
notation process that involves two groups of anno-
tators: internal annotators and Amazon Mechanical
Turk1 workers. In the first stage, skilled internal an-
notators specify the parent of every column header
to construct a tree-structured ontology for each ta-
ble. In the second stage, both internal and external
annotators provide a sentential description of the

1https://www.mturk.com/

highlighted cells in a row that are automatically-
chosen based on the ontology.

Tree Ontology Annotation For each column in
a given table, our internal annotators labeled its
ontological parent. In Figure 2, for example, the an-
notator would provide the sequence {NULL, TEAM,
STADIUM, STADIUM, TEAM} as the parent of each
column — column TEAM has no parent, STADIUM

has parent TEAM, and so on. In many cases, the
relationship between a parent column and its child
column can be conceptualized as a "has-a" relation-
ship. For tables that are malformed or have dupli-
cate or missing column names (as shown in Figure
5 of the Appendix), annotators either changed or
added appropriate column names in order to fit
these patterns. For each table we generate an ontol-
ogy tree whose root is always [TABLECONTEXT].
This root node either has (1) one child node [TI-
TLE] in the cases where the table title is the subject
of entire table, or (2) column header node(s) and
a [TITLE] node as children, as shown in Figure 2.
This is because in some tables, the table title itself
is more appropriate to be the root of the ontology
tree (example shown in Figure 6 of the Appendix).
In these cases, annotators assigned the special to-
ken [TITLE] as the parent of the relevant column
nodes. For other tables, title usually provides im-
portant context for understanding the table’s rows
(example shown in Figure 7 of the Appendix). In
such cases, [TITLE] is made a child of [TABLE-
CONTEXT] together with the column headers that
are appropriate.

We evaluate the quality of the initial tree on-
tology annotation and made corrections with the
following procedure: (1) reject and request correc-
tions from the original annotators if the provided
ontology is disconnected or contains a cycle, (2)
verify that all column headers appear as a node in
the tree. For many tables, the determination of an
ontology is a subjective process with many "cor-
rect" answers - for example, swapping the positions
of TEAM and CITY in the tree in Figure 2 produces
an equally valid ontology for the referenced table.
If there are multiple ways to construct an ontology
based on annotators’ decisions of attribute relation-
ships among column headers, we manually unify
the annotations for similar tables (for examples,
tables about athletes in different sports). The on-
tologies exhibit a great deal of structural variety.
Relevant statistics are summarized in Table 7 and
Figure 3 of the Appendix.

https://www.mturk.com/
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Figure 1: DART data collection pipeline. MR: Meaning Representation.

Input Unit Examples Vocab Size Words per SR Sents per SR Tables

WikiTableText Row 13,318 — 13.9 1.0 4,962
LogicNLG Table 37,015 122K 13.8 1.0 7,392
ToTTo Highlighted Cells 136,161 136K 17.4 1.0 83,141
DART Triple Set 82,191 33.2K 21.6 1.5 5,623

Table 1: DART compared with other open-domain table-to-text datasets. DART takes triple sets as input by
incorporating the ontology of table headers and title, and its surface realizations tend to be longer with more than
single sentence verbalization. SR: Surface Realization.

DART: 62,659 train / 6,980 dev / 12,552 test

WikiTableQuestions WikiSQL
WebNLG Cleaned E2E

Internal MTurk Internal Declarative

Domains Wikipedia (open-domain) 15 DBPedia Categories Restaurants
Unique Predicates 1,950 1,403 493 2,008 347 7
Unique Triples 13,505 5,541 1,648 7,787 3,220 946
Tripleset-Sentence Pairs 4,902 2,120 772 4,204 27,731 42,462
Triples per Tripleset (min, med, max) 1, 3, 10 1, 3, 7 1, 2, 7 1, 2, 10 1, 3, 7 1, 4, 7
Vocab Size 13.4K 8.9K 3.0K 10.7K 8.0K 3.0K
Words per SR 15.2 16.5 14.0 12.6 22.5 22.9
Sentences per SR 1.0 1.1 1.0 1.0 1.4 1.6

Table 2: Statistics of DART decomposed by different collection methods. DART exhibits a great deal of topical
variety in terms of the number of unique predicates, the number of unique triples, and the vocabulary size.

Connected Component Extraction After we
annotated the ontology, we automatically choose
a subset of cells for a selected table row to form
the triple set. Randomly selecting cells leads to
poor quality annotation as the selected data could
lack a subject, lack cohesion, or would require in-
formation not encoded in the ontology to form a
coherent sentence. For example, in Figure 2, if only
two nodes CITY and CAPACITY were highlighted
then a coherent sentence cannot be produced as
there is no direct logical relationship (functional
dependency) between them. To solve these issues,
instead of randomly selecting cells in a row, we
extract connected components from the ontology.

The extracted components have two controllable
properties: size and shape. To create variation in
size, we randomly sampled between [2, 5]. The

shape is determined by two numbers: the number
of sibling node pairs and parent-child node pairs.
Increasing the number of sibling node pairs creates
a wider tree, while increasing the latter creates a
deeper tree. We created a sliding scale between
width and depth using an expansion parameter, p.
We recursively visit a node if it has children with
probability p and otherwise move to a sibling if it
exists. If p = 1, the search becomes a DFS and if
p = 0, it becomes BFS. We found that randomly
selecting p from 0.5 to 0.7 created a reasonable
variation in extracted component shapes. This en-
sures the balance between breadth and depth of
ontology coverage of the selected cells, therefore
ensuring the quality of the sentence annotation.

Sentence Annotation Given the table, title, and
connected highlighted cells of a row, annotators
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Figure 2: Overview of our human annotation procedure. Top panel: We collect the parent-child relations between
columns from internal annotators (yellow is parent, green is child). Then, we collect a surface realization of the
cells highlighted in orange. Middle panel: We use the provided parent-child relations to construct an ontology tree
on the columns, then select the nodes corresponding to the highlighted cells. We gather a connected subtree by
collecting all nodes leading up to the highlighted cells’ lowest common ancestor. Bottom panel: We extract a set of
triples from the subtree as shown. This triple-set is paired with the provided realization to form a DART instance.

were asked to write a description of the highlighted
cells. We encouraged the annotators to use di-
verse vocabulary and syntactic structures. To en-
sure quality, internal annotators reviewed every
crowd sourced sentence for correctness. They ei-
ther rewrote or discarded the sentences that were
nonsensical or incorrect. In some cases, they also
changed cell highlighting patterns to match the sen-
tence provided.

Build Tripleset-Sentence Pairs Finally, we con-
vert the highlighted cells to triplesets. For a row R,
we start with the table’s column ontology T . We
first place the cell values in R in their correspond-
ing slots in T , e.g. in Figure 2 we fill TEAM with
"Amsterdam Admirals". We then check that the
nodes of T corresponding to the highlighted cells
in R form a connected subtree. If not, we walk up
the tree and highlight each traversed node up un-
til the lowest common ancestor of the highlighted
nodes (inclusive) to form a connected subtree. For
each node N in the tree except the root node, we
can extract the triple (parent (N), title (N), N ).
For example, since STADIUM is highlighted in Fig-
ure 2, we extract the triple (Amsterdam Admirals,
STADIUM, Olympisch Stadion). A small number
of triple-sets contained more than 10 triples. We

discarded these because their associated surface
realizations were of poor quality. The numbers
of tripleset-sentence pairs annotated by different
annotators are shown in Table 2.

2.2 Automatically Converting Questions to
Declarative Sentences

High quality natural language questions in open
domain semantic parsing datasets such as Wik-
iSQL and QA2D techniques found in automati-
cally constructing NLI datasets (Demszky et al.,
2018) present themselves as an attractive opportu-
nity to semi-automatically construct an abundance
of declarative sentences and align to table cells. We
leveraged rule-based QA2D technique2 together
with manual screening to combine WikiSQL ques-
tions and SQL-retrieved-answers into declarative
sentences and manually filtered out bad sentences.

We only execute SQL queries without aggregate
commands3 to retrieve answers corresponding to
questions answerable by single rows. An example
of such conversion is as follows:

2We use the rule-based model from https://github.
com/kelvinguu/qanli (Demszky et al., 2018). The neu-
ral model code is not released.

3MAX, MIN, COUNT, SUM, AVG, JOIN, INTER-
SECT, UNION, GROUP BY, ORDER BY.

https://github.com/kelvinguu/qanli
https://github.com/kelvinguu/qanli
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Question: In which year did Greece hold its
last Summer Olympics?
Answer: 2004
Declarative Sentence: Greece held its last Summer
Olympics in 2004.

Alignment with table cells is done at two
stages. We first align sentences with corresponding
rows by changing SQL commands to SELECT
* and use string matching to obtain columns
and column headers relevant to the answer and
WHERE condition. After manually filtering out
bad sentences, bad alignments, or tables without
ontology annotations, we were able to get 4,204
sentences. Finally, the corresponding table cells
are then converted into triples in the same way as
we described in Section 2.1.

Examples of produced declarative sentences can
be found in Figure 10 of the Appendix.

2.3 Incorporating Existing Datasets

Since they provide a large amount of strictly
aligned data-text pairs with high quality sentences,
we incorporate the following existing datasets in
the same 〈triple-set, sentence〉 pair format with
some modifications.

WebNLG 2017 An instance of the WebNLG
dataset contains a set of triples extracted from DB-
pedia and the target text written by human. We
include the WebNLG 2017 dataset4 consisting of
27731 triple-set sentence pairs with up to 7 RDF
triples in a triple set covering 15 domains.

Cleaned E2E The original E2E dataset includes
dialogue act meaning representations (MR) and
natural language references in the restaurant do-
main. Later, Dušek et al. (2019) provide Cleaned
E2E5 by automatically fixing the dialogue acts to
account for omissions and hallucinations in the
text. We incorporate Cleaned E2E because of
its strict alignment between the meaning repre-
sentation and the text. To convert the MR to a
triple-set, we take the NAME slot (present in al-
most all the MRs) as the subject. For example,
the MR (NAME[ALIMENTUM], AREA[CITY CEN-
TRE], FAMILYFRIENDLY[NO]) is converted to the

4https://gitlab.com/shimorina/
webnlg-dataset/-/tree/master/webnlg_
challenge_2017

5https://github.com/tuetschek/
e2e-cleaning

triple-set {(ALIMENTUM, AREA, CITY CENTRE),
(ALIMENTUM, FAMILYFRIENDLY, NO)}. We drop
MRs which do not contain the NAME slot.

2.4 Predicate Unification

We canonicalized the predicates in our triple sets
such that those of the same meaning are also repre-
sented the same. We manually constructed a predi-
cate mapping table to achieve this. As an example,
our predicate mapping maps "Hometown," "Home
Town," and "Home Town/City" to the unified pred-
icate "HOMETOWN."

After unifying predicates, we evaluated the di-
versity of DART by counting the number of unique
predicates in its partitions. As shown in Table 2, we
see that the Wikipedia partition of DART contains
much more unique predicates than the WebNLG
and Cleaned E2E partitions combined, despite hav-
ing smaller number of 〈triple-set, sentence〉 pairs.
This contributes significantly to the domain di-
versity of DART. In addition, we can see that
DART exhibits a great deal of topical variety in
terms of number of unique triples and vocabulary
size.

2.5 Dataset Split

For WebNLG 2017 and Cleaned E2E, we use their
original data splits. For our annotation on Wik-
iTableQuestions and WikiSQL, random splitting
will make train, dev, and test splits contain similar
tables and similar 〈triple-set, sentence〉 examples.
Therefore, to increase the generalization challenge,
we compare the table title and the table header to
find similar tables, and make sure the model is eval-
uated on test split tables that are least similar to
those used for training. We first sample some ta-
bles as a seed test set, and then compute Jaccard
similarity6 with remaining tables based on the titles
and the headers. If a table has a Jaccard similarity
greater than 0.5 with any of the tables in the test
set, we add it into the test set. A similar process
is repeated to create the dev set, and the remain-
ing tables form the training set. This results in
62,659/6,980/12,552 sentences in the train/dev/test
sets, respectively.

3 Experimental Results

We conduct experiments on DART and the
WebNLG 2017 dataset, with an ablation study on

6https://en.wikipedia.org/wiki/
Jaccard_index

https://gitlab.com/shimorina/webnlg-dataset/-/tree/master/webnlg_challenge_2017
https://gitlab.com/shimorina/webnlg-dataset/-/tree/master/webnlg_challenge_2017
https://gitlab.com/shimorina/webnlg-dataset/-/tree/master/webnlg_challenge_2017
https://github.com/tuetschek/e2e-cleaning
https://github.com/tuetschek/e2e-cleaning
https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Jaccard_index
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WebNLG to show the benefits of using DART for
data augmentation.

3.1 Models
We investigate several state-of-the-art Data-to-Text
generation models. We report results of the fol-
lowing models on DART-testset: (1) Bidirectional-
LSTM with attention, for which we use 2-layer
bi-LSTM for encoder, with 300 dimensional word
embeddings (without using pretrained word vec-
tors), 512 hidden units and 0.3 dropout rate for the
decoder. (2) Transformer (Vaswani et al., 2017),
previously used by Castro Ferreira et al. (2019) on
the WebNLG dataset. The input is formed by lin-
earizing the unordered triple set. (3) BART (Lewis
et al., 2020), for which we report results of both
BART-base and BART-large. (4) T5 (Raffel et al.,
2020): we add the same prefix "translate Graph to
English:" to the input, as it is used in Ribeiro et al.
(2020). We report results of T5-small, T5-base and
T5-large models. For both BART and T5 models,
we use implementations of Ribeiro et al. (2020),
with same hyperparameter setting.

3.2 Evaluation Metrics
We use a variety of automatic metrics and human
evaluation (Section 4) to evaluate the quality of the
generated text. We report BLEU, METEOR, and
TER which are used in the official WebNLG chal-
lenge. However, these measures have limitations
in considering the semantic meanings of words or
phrases (Novikova et al., 2017a), therefore we also
report MoverScore (Zhao et al., 2019), BERTScore
(Zhang et al., 2020), and BLEURT (Sellam et al.,
2020) that incorporate semantics rather than sur-
face forms using contextual embeddings. Further-
more, we include PARENT (Dhingra et al., 2019)
which explicitly aligns n-grams from the reference
and generated text to the data contents.

3.3 Results
DART Our experimental results on DART are
summarized in Table 3. The T5-large model has
the highest performance among all models with a
BLEU score of 50.66. We attribute this to T5’s gen-
eralization and transfer learning ability due to pre-
training on multi-tasks. We can see that in general,
pretrained models outperform others by a large
margin, and increasing the model size seems to
further boost the performance on DART. However,
language models such as BART and T5 are pre-
trained by reconstructing text and, as a result, we

found that their output on DART often contains
hallucinated words (Parikh et al., 2020; Harkous
et al., 2020; Reiter, 2020), as shown in Figure 11.
In addition, while the pretrained model shows bet-
ter text generation quality due to its generalization
ability from pretraining, it does not fully capture
the hierarchical ontology nature of the triple sets
in their linearized input, therefore making DART
more challenging. We suspect that models that
are better at exploiting the ontology structure pre-
served in the input tripleset will achieve better per-
formance on DART.

WebNLG Furthermore, we investigate if
DART can improve pretrained models’ perfor-
mance on other Data-to-Text generation tasks.
To this end, we finetune the baseline transformer
model, BART-[base, large] and T5-[small, base,
large] on the WebNLG 2017 dataset, and augment
the training by adding instances in the DART train-
ing set. The experimental results can be found in
Table 4. We report performances of some competi-
tive models that are not pretrained, as well as the
state-of-the-art performances of pretrained models
on the WebNLG 2017 dataset by Ribeiro et al.
(2020). On the bottom panel, we include results
of experiments augmented with DART instances
whose triplesets are generated with table ontology
annotation, paired with human written sentences.
We are able to achieve new state-of-the-art results
on all WebNLG 2017 test set splits (seen, unseen
and all) by finetuning T5-large on DART. We
observe that using DART for data augmentation
consistently improves the performance across all
models, including the baseline transformer model
that is not pretrained. Furthermore, we observe
that more improvement is shown on unseen split of
the test set, due to DART’s open-domain nature.
See Figure 12 of the Appendix for example model
outputs aligned with their human references.

3.4 Ablation Study

We also conduct an ablation study on the WebNLG
dataset to investigate what part of DART con-
tributes most to improving the Data-to-Text tasks
in general. We report results of the study in Table 6
of the Appendix. We divide DART into 4 partitions,
where declarative sentence (auto-generated) parti-
tion and human annotated sentence partition con-
tain instances whose triplesets are extracted from
Wikipedia tables based on ontology. E2E parti-
tion contains instances converted from the E2E
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BLEU ↑ METEOR ↑ TER ↓ MoverScore ↑ BERTScore(F1) ↑ BLEURT ↑ PARENT ↑
LSTM with Attention 29.66 0.27 0.63 0.31 0.90 -0.13 0.35
End-to-End Transformer 27.24 0.25 0.65 0.25 0.89 -0.29 0.28
BART-base 47.11 0.38 0.46 0.51 0.95 0.37 0.55
BART-large 48.56 0.39 0.45 0.52 0.95 0.41 0.57
T5-small 47.69 0.39 0.46 0.52 0.95 0.40 0.56
T5-base 49.21 0.40 0.44 0.53 0.95 0.43 0.57
T5-large 50.66 0.40 0.43 0.54 0.95 0.44 0.58

Table 3: Model results on the test set of DART ↑: Higher is better. ↓: Lower is better.

BLEU ↑ METEOR ↑ TER ↓
SEEN UNSEEN ALL SEEN UNSEEN ALL SEEN UNSEEN ALL

Pipeline Transformer† (Castro Ferreira et al., 2019) 56.28 23.04 42.41 0.42 0.21 0.32 0.39 0.63 0.50
Pipeline GRU† (Castro Ferreira et al., 2019) 56.09 25.12 42.73 0.42 0.22 0.33 0.39 0.64 0.51
MELBOURNE (Gardent et al., 2017) 54.52 33.27 45.13 0.41 0.33 0.37 0.40 0.55 0.47
BestPlan † (Moryossef et al., 2019) 53.30 34.41 47.24 0.44 0.34 0.39 0.47 0.56 0.51
DualEnc (Zhao et al., 2020) 63.45 36.73 51.42 0.46 0.37 0.41 0.34 0.55 0.44
PlanEnc (Zhao et al., 2020) 64.42 38.23 52.78 0.45 0.37 0.41 0.33 0.53 0.42

Ribeiro et al. (2020)
BART-base ‡ 63.02 41.74 53.36 0.45 0.35 0.40 0.33 0.52 0.42
BART-large ‡ 63.71 44.17 54.95 0.46 0.39 0.42 0.33 0.51 0.41
T5-small ‡ 65.30 45.58 56.57 0.46 0.39 0.43 0.32 0.49 0.40
T5-base ‡ 64.89 52.86 59.44 0.46 0.42 0.44 0.33 0.42 0.37
T5-large ‡ 64.89 54.01 59.95 0.46 0.43 0.44 0.34 0.41 0.37

+ DART
BART-base 62.36 46.21 55.14 0.44 0.37 0.41 0.34 0.45 0.39
BART-large 64.51 50.20 58.06 0.46 0.40 0.43 0.32 0.44 0.38
T5-small 65.05 47.81 57.32 0.46 0.40 0.43 0.33 0.46 0.39
T5-base 65.42 50.71 58.80 0.46 0.41 0.44 0.32 0.43 0.37
T5-large 65.82 56.01 61.44 0.46 0.43 0.45 0.32 0.38 0.35

Table 4: The WebNLG 2017 results on the test set. †: We report results from Zhao et al. (2020) who use the
evaluation scripts that are strictly the same as the official challenge.‡: We report results calculated with the model
outputs on the WebNLG 2017 testset released by Ribeiro et al. (2020).

Tripleset source Sentence source % fluent % faithful % (fluent+
mostly fluent)

% (faithful+
mostly faithful)

WikiTableQuestions (§ 2.1)
human-written reference 75% 81% 96% 99%

BART-base 74% 57% 93% 84%
T5-base 72% 54% 94% 76%

WikiSQL (§ 2.2)
auto-generated reference 59% 56% 87% 88%

BART-base 66% 51% 92% 83%
T5-base 75% 65% 97% 90%

Table 5: Human evaluation over references and model outputs.

dataset, and WebNLG partition keeps the original
data format. In general, we observe that adding
DART instances that contain human written sen-
tences brings most improvement, especially on un-
seen split. While adding E2E partition boosts the
scores on seen test split and deteriorates the perfor-
mance on unseen test split. This trend is consistent
across all models. Comparing results of declarative
sentence partition and human written sentence par-
tition, we see that for most of the models, DART
instances with human written sentences have better
quality as it brings more improvement to the task.

4 Human Evaluation

In Table 5, we perform human evaluation on
DART based on two criteria: (1) fluency if a sen-
tence is natural and grammatical, and (2) semantic
faithfulness if a sentence is supported by the input
triples. We defined three levels of fluency: fluent,
mostly fluent, and not fluent, and the same for se-
mantic faithfulness. We ask 5 internal annotators to
evaluate on 100 triplesets sampled from declarative
sentence partition and another 100 triplesets sam-
pled from human written sentence partition. Each
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tripleset is paired with 3 sentences, one of them
is the reference sentence, and the other two are
outputs of BART-base and T5-base models.

The results in Table 5 attest to the high quality of
our annotations since the human written references
achieve highest fluency and faithfulness comparing
to outputs of two strong baseline models. The eval-
uation on faithfulness also demonstrates that there
is a considerable gap between the DART reference
and the outputs of the state-of-the-art pretrained
model, showing that there is a large room for im-
provement. We also noticed that the auto-generated
declarative sentences are not as fluent or faithful
as the model outputs because they are generated
with a rule-based system. However, we decided to
release this partition, along with other partitions of
DART because it demonstrates an economic way
to obtain large amounts of DART instances and it
also shows benefits for generalization due to the
diverse topics it contains.

5 Related Work

Data-to-Text Data-to-Text generation aims to
produce natural language output from structured
input. Applications include generating sports com-
mentaries (Chen and Mooney, 2008; Wiseman
et al., 2017), weather forecasts (Liang et al., 2009;
Konstas and Lapata, 2012), biographical texts (Le-
bret et al., 2016; Liu et al., 2018), knowledge-base
descriptions (Gardent et al., 2017), dialogue re-
sponse generation (Wen et al., 2015, 2016), and
commonsense reasoning (Lin et al., 2020). Yet,
most existing datasets are restricted to specific do-
mains and applications. In contrast, a major source
of DART is from Wikipedia tables covering various
domains and topics.

Representation of Data The input of the Data-
to-Text datasets take different formats, including
slot-value pairs, Abstract Meaning Representa-
tion (AMR) (Song et al., 2017; Ribeiro et al.,
2019), Minimal Recursion Semantics (MRS) (Ha-
jdik et al., 2019), Resource Description Framework
(RDF triples) (Gardent et al., 2017), and logic
forms (Chen et al., 2020b). There are also stud-
ies of converting tabular data to RDF triples in the
Semantic Web community (Kellogg et al., 2015).
Recently, some open-domain table-to-text datasets
have been proposed including WikiTableText (Bao
et al., 2018), LogicNLP (Chen et al., 2020a), and
ToTTo (Parikh et al., 2020), whose inputs are rows
or entire tables. In ToTTo, highlighted cells are

also provided as input, and the authors found using
only highlighted cells with flat row and column
headers led to higher performance than using the
entire table.

In contrast, DART is constructed by first annotat-
ing the tree-structured table ontology that encodes
the semantic dependencies among table headers,
and we could flexibly incorporate additional con-
texts such as the table title to the ontology tree.
We then use an automatic procedure to extract con-
nected components from the tree to form the input
of a DART instance. Our annotation framework
not only provides a flexible way of incorporating
any contexts to the representation of tables, but
also encodes hierarchical relationships among ta-
ble headers and contexts, ensuring the extracted
triples are logically consistent and can be described
in text without loss of information.

Model Traditional Data-to-Text models break
the generation progress into different stages such
as signal analysis, data interpretation, document
planning, microplanning, and realization (Reiter
and Dale, 2000; Reiter, 2007). Recently, neural
encoder-decoder models based on attention and
copy mechanisms have shown promising results
(Gehrmann et al., 2018; Puduppully et al., 2018,
2019; Castro Ferreira et al., 2019). Furthermore,
recent progress on pretrained models such as GPT-
2 (Radford et al., 2018), BART (Lewis et al., 2020)
and T5 (Raffel et al., 2020) has shown effective
results for text generation tasks on machine trans-
lation, summarization, and conversation response
generation. Chen et al. (2020c); Peng et al. (2020);
Kale (2020) also finetune pretrained models on
Data-to-Text tasks.

6 Conclusion

In this paper, we introduce DART, an open-domain
corpus for structured data record to text generation.
DART’s ontology-preserving representation of data
inputs differentiates itself from other open-domain
Data-to-Text corpora. We found that DART in-
troduces new challenges to several state-of-the-art
Data-to-Text models due to its open-domain nature
and its ontology structure of the semantic triple
input. Furthermore, we found that using it for data
augmentation improves other Data-to-Text tasks.
For future work, we will explore more controlled,
high-fidelity generation that better incorporates the
ontology hierarchy of data.
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7 Ethics Statement

Our dataset is constructed by accumulating and
processing resources from various existing datasets
that are open to the public. In addition, we collect
annotations on structure of tabular data and human
written sentences that describe data records.

The existing resources that we utilize mainly
consist of (1) tabular data from Wikipedia, (2) in-
formation of restaurants presented with dialogue-
act meaning representation and its textual descrip-
tion (E2E), and (3) information of various entities
and their relationship that are in 15 different cate-
gories of DBPedia, which is a knowledge base built
on contents created in various Wikimedia projects
(WebNLG). It is possible that there are biases in
these resources, either in the tabular data or the
textual description written by humans.

For additional annotations we collected, we have
two groups of annotators participating: internal
annotators who are the authors of this work, and
external annotators recruited from the Amazon Me-
chanical Turk platform. On MTurk, we use a pay
rate of $15 per hour approximately based on our
estimation of the time it takes to complete our anno-
tation tasks. In total, it took 125 hours to complete
all tasks on the Amazon Mechanical Turk platform.
There are three annotation tasks: (1) Annotators
are asked to specify ontological structure of the
table by indicating relationship between table col-
umn headers, (2) Annotators are asked to write
descriptions that are fluent and semantically faith-
ful to the data records presented to them, and (3)
Annotators are asked to evaluate sentences that are
either references or model generated outputs. We
acknowledge that it is also possible to have biases
in the sentences written by the annotators, or in the
data records that are presented to them.

We conducted experiments on our own dataset
and the WebNLG dataset using BART and T5, two
large-scale pretrained models. Both models are
trained on large amounts of textual data such as
news, books, and web text, which may contain any
kinds of biases. As a result, it is possible to insert
those biases into the models.

In total, we conducted 43 experiments: 7 on
DART and 36 for our ablation study on the
WebNLG dataset. We use a single NVIDIA V100
GPU for all experiments and each experiment took
from 5 to 40 hours depending on the model size.
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Appendix

The Appendix contains the following contents:

• Results of the ablation study on WebNLG 2017 testset.

• Statistics of the table ontology annotations.

• Examples of tables that help illustrate DART’s annotation procedure.

• Examples of model outputs.

Model Experiment BLEU ↑ METEOR ↑ TER ↓
SEEN UNSEEN ALL SEEN UNSEEN ALL SEEN UNSEEN ALL

Baseline
Transformer

[1] webnlg 49.81 5.51 31.81 0.39 0.09 0.24 0.47 0.86 0.64
[2] webnlg+dart_decl_sents 52.31 8.96 39.98 0.40 0.07 0.25 0.45 0.79 0.60
[3] webnlg+dart_human_annotated 53.68 7.02 36.36 0.40 0.09 0.26 0.43 0.79 0.59
[4] webnlg+dart_ontology 53.40 8.54 38.51 0.41 0.08 0.26 0.44 0.80 0.60
[5] webnlg+dart_e2e 51.76 5.92 32.36 0.40 0.09 0.25 0.45 0.86 0.63
[6] webnlg+dart_full 54.99 8.64 39.11 0.40 0.08 0.25 0.42 0.81 0.60

BART-base

[1] webnlg 63.02 41.74 53.36 0.45 0.35 0.40 0.33 0.52 0.42
[2] webnlg+dart_decl_sents 62.71 42.51 53.64 0.45 0.36 0.40 0.34 0.51 0.41
[3] webnlg+dart_human_annotated 62.36 46.21 55.14 0.44 0.37 0.41 0.34 0.45 0.39
[4] webnlg+dart_ontology 62.62 46.74 55.54 0.44 0.38 0.41 0.34 0.45 0.39
[5] webnlg+dart_e2e 64.00 35.07 51.17 0.45 0.33 0.40 0.33 0.61 0.46
[6] webnlg+dart_full 63.66 45.48 55.52 0.45 0.37 0.41 0.33 0.47 0.40

BART-large

[1] webnlg 63.71 44.17 54.95 0.46 0.39 0.42 0.33 0.51 0.41
[2] webnlg+dart_decl_sents 65.18 46.79 56.79 0.46 0.39 0.42 0.32 0.48 0.40
[3] webnlg+dart_human_annotated 64.51 50.20 58.06 0.46 0.40 0.43 0.32 0.44 0.38
[4] webnlg+dart_ontology 64.19 49.62 57.65 0.46 0.39 0.43 0.33 0.45 0.38
[5] webnlg+dart_e2e 65.06 30.17 48.24 0.46 0.33 0.40 0.32 0.69 0.49
[6] webnlg+dart_full 65.24 47.96 57.44 0.46 0.39 0.43 0.32 0.46 0.39

T5-small

[1] webnlg 65.30 45.58 56.57 0.46 0.39 0.43 0.32 0.49 0.40
[2] webnlg+dart_decl_sents 64.18 46.61 56.27 0.46 0.39 0.43 0.33 0.48 0.40
[3] webnlg+dart_human_annotated 65.05 47.81 57.32 0.46 0.40 0.43 0.33 0.46 0.39
[4] webnlg+dart_ontology 65.17 47.49 57.24 0.46 0.39 0.43 0.32 0.47 0.39
[5] webnlg+dart_e2e 65.56 41.28 54.56 0.46 0.38 0.42 0.32 0.54 0.42
[6] webnlg+dart_full 64.70 47.56 57.01 0.46 0.39 0.43 0.33 0.47 0.39

T5-base

[1] webnlg 64.89 52.86 59.44 0.46 0.42 0.44 0.33 0.42 0.37
[2] webnlg+dart_decl_sents 65.44 50.80 58.81 0.46 0.41 0.44 0.32 0.43 0.37
[3] webnlg+dart_human_annotated 65.42 50.71 58.80 0.46 0.41 0.44 0.32 0.43 0.37
[4] webnlg+dart_ontology 65.17 51.49 59.04 0.46 0.41 0.44 0.33 0.43 0.37
[5] webnlg+dart_e2e 65.11 49.64 58.19 0.46 0.41 0.44 0.33 0.46 0.39
[6] webnlg+dart_full 65.99 51.68 59.50 0.46 0.42 0.44 0.32 0.43 0.37

T5-large

[1] webnlg 64.89 54.01 59.95 0.46 0.43 0.44 0.34 0.41 0.37
[2] webnlg+dart_decl_sents 65.97 53.00 60.12 0.46 0.42 0.44 0.32 0.41 0.36
[3] webnlg+dart_human_annotated 65.82 56.01 61.44 0.46 0.43 0.45 0.32 0.38 0.35
[4] webnlg+dart_ontology 65.53 55.20 60.90 0.46 0.42 0.44 0.32 0.38 0.35
[5] webnlg+dart_e2e 66.27 54.13 60.76 0.46 0.43 0.45 0.32 0.41 0.36
[6] webnlg+dart_full 65.78 54.35 60.64 0.46 0.42 0.44 0.32 0.39 0.35

Table 6: Results of ablation study on WebNLG 2017 testset. dart_decl_sents refers to DART partition that contains
auto-generated declarative sentences mentioned in Section 2.2, dart_human_annotated refers to partition that
contains human written sentences mentioned in Section 2.1, dart_ontology is the combination of dart_decl_sents
and dart_human_annotated, and dart_e2e refers to DART partition containing instances extracted from E2E
dataset, the process of which is mentioned in Section 2.3. Note that dart_full is the combination of dart_ontology
and dart_e2e.
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Tables
Ontology depth
(min, med, max)

Nodes in ontology
(min, med, max)

Branching factor
(mean)

WikiTableQuestions 2060 1, 1, 4 2, 6, 25 4.0
WikiSQL 3563 1, 1, 4 3, 7, 25 5.1

Table 7: Properties of the ontology in the WikiTableQuestions and WikiSQL samples in DART. Branching factor
refers to the average number of children across all non-leaf nodes in a table’s ontology.

Figure 3: Distribution of column ontology depths in the WikiTableQuestions and WikiSQL samples in
DART v1.1.1.

<entry category="MISC" eid="Id5" size="3">
<modifiedtripleset>

<mtriple>Apertura 2006 | JORNADA_OR_OTHER | Semifinals Ida</mtriple>
<mtriple>Semifinals Ida | AWAY_TEAM | América</mtriple>
<mtriple>Semifinals Ida | HOME_TEAM | Chivas</mtriple>

</modifiedtripleset>
<lex comment="WikiTableQuestions" lid="Id1">

Chivas and América will compete in the semifinals of the Apertura 2006 tournament.
</lex>

</entry>

<entry category="MISC" eid="Id76" size="6">
<modifiedtripleset>

<mtriple>Terry Jenkins | ROUND | 1st Round</mtriple>
<mtriple>Terry Jenkins | YEAR | 2014</mtriple>
<mtriple>[TABLECONTEXT] | [TITLE] | PDC World Darts Championship</mtriple>
<mtriple>1st Round | OPPONENT | Per Laursen</mtriple>
<mtriple>1st Round | RESULT | Lost</mtriple>
<mtriple>[TABLECONTEXT] | PLAYER | Terry Jenkins</mtriple>

</modifiedtripleset>
<lex comment="WikiTableQuestions" lid="Id1">

Terry Jenkins lost the game with Per Laursen in
the 1st Round of 2014 PDC World Darts Championship

</lex>
</entry>

Figure 4: Examples of DART instance
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Figure 5: An example of the data cleaning. The top left table had a missing column name and the table title was
not specific to the data; our internal annotators add the missing column name “Year” and linked the rest of the
columns to the “Year” column. The bottom left table had repeat column names in the table; our internal annotators
disambiguate the columns by making the column names more specific.

Figure 6: A WikiTableQuestions table that uses [TITLE] in the ontology.

Figure 7: A manually annotated table from WikiTableQuestions with a sentence that uses the table title.

Figure 8: A manually annotated table from WikiTableQuestions. Annotators created a table ontology, and they
wrote sentences encapsulating the information in the orange cells for a given row. Whenever a sentence referenced
the table title, that sentence was also highlighted green.



446

Figure 9: An example of collected MTurk-generated sentences for WikiTableQuestions. Internal annotators went
through the generated sentences and checked for both sentence coherence and title usage. Below the generated
sentences, ‘y’ meant the sentence references the table title, ‘n’ meant the sentence did not use the table title, ‘x’
meant the sentence was nonsensical.

Figure 10: Automatically generated declarative sentences from WikiSQL with human validation. Annotators went
through the generated sentences and checked for both sentence coherence and title use. Below the generated
sentences, ‘y’ meant the sentence references the table title, ‘n’ meant the sentence did not use the table title, ‘x’
meant the sentence was nonsensical.

- Sample 1 -
Input triples:
<H> Peru Earthquake <R> scale of disaster <T> 250k homeless
<H> Peru Earthquake <R> year <T> 2007

BART-base output: 250k people were killed in the 2007 philippine earthquake .

- Sample 2 -
Input triples:
<H> [TABLECONTEXT] <R> game <T> 3
<H> 3 <R> attendance <T> 10 637
<H> [TABLECONTEXT] <R> [title] <T> 2006 Minnesota Swarm season

BART-base output: the minnesota swarm played in front of a crowd of 10 , 684 people .

- Sample 3 -
Input triples:
<H> Andrew Phelps McCormick <R> state <T> TX
<H> Andrew Phelps McCormick <R> active <T> 1892-1916

T5-base output: andrew phelps mccormick was active from 1892 to 1616 in texas .

Figure 11: Examples of hallucinated outputs of pretrained models trained on DART
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- Sample 1 -
Input triples:

<H> Andrew Rayel <R> associated Band/associated Musical Artist <T> Christian Burns
<H> Andrew Rayel <R> associated Band/associated Musical Artist <T> Jonathan Mendelsohn

reference:
andrew rayel , is associated with musical artist jonathan mendelsohn and christian burns .

train on WebNLG - BART-base output:
christian mendelsohn and andrew rayel are both associated with the same band , christian burns .

train on DART - BART-base output:
andrew rayel is associated with christian burns and jonathan mendelsohn .

- Sample 2 -
Input triples:
<H> Indie rock <R> stylistic Origin <T> New wave music

reference: the stylistic origin of indie rock is new wave music .

train on WebNLG - BART-base output:
the alternative rock genre is new wave .

train on DART - BART-base output:
indie rock is influenced by new wave music .

- Sample 3 -
Input triples:
<H> Abradab <R> associated Band/associated Musical Artist <T> Magik rapper
<H> Abradab <R> associated Band/associated Musical Artist <T> Kaliber 44

reference:
abradab , an artist for the band kaliber 44 , is associated with magik ( rapper ) .

train on WebNLG - BART-base output:
magiber 44 is the creator of abradab , which is also associated with the magik rapper .

train on DART - BART-base output:
magik rapper and kaliber 44 are the associated musicians of abradab .

- Sample 4 -
Input triples:
<H> Alfa Romeo 164 <R> assembly <T> Milan
<H> Alfa Romeo 164 <R> related Mean Of Transportation <T> Saab 9000

reference:
the alfa romeo 164 , which is assembled in milan , is a related means of transportation to saab 9000 ,
in that they are both cars .

train on WebNLG - T5-base output:
alfa romeo 164 is a transport vehicle for saab 9000 and is found in milan .

train on DART - T5-base output:
alfa romeo 164 ( assembled in milan ) is a related transport vehicle to saab 9000 .

- Sample 5 -
Input triples:
<H> Akeem Ayers <R> former Team <T> Tennessee Titans
<H> Akeem Ayers <R> draft Pick <T> 39

reference:
akeem ayers ’ former team was tennessee titans and he was number 39 in the draft pick .

train on WebNLG - T5-large output:
akeem ayers was drafted with the 39th pick by the tennessee titans .

train on DART - T5-large output:
akeem ayers , a former player of the tennessee titans , was the 39th draft pick .

Figure 12: Examples of model outputs - with or without DART data augmentation


