@inproceedings{saha-etal-2021-multiprover,
title = "multi{PR}over: Generating Multiple Proofs for Improved Interpretability in Rule Reasoning",
author = "Saha, Swarnadeep and
Yadav, Prateek and
Bansal, Mohit",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-main.287",
doi = "10.18653/v1/2021.naacl-main.287",
pages = "3662--3677",
abstract = "We focus on a type of linguistic formal reasoning where the goal is to reason over explicit knowledge in the form of natural language facts and rules (Clark et al., 2020). A recent work, named PRover (Saha et al., 2020), performs such reasoning by answering a question and also generating a proof graph that explains the answer. However, compositional reasoning is not always unique and there may be multiple ways of reaching the correct answer. Thus, in our work, we address a new and challenging problem of generating multiple proof graphs for reasoning over natural language rule-bases. Each proof provides a different rationale for the answer, thereby improving the interpretability of such reasoning systems. In order to jointly learn from all proof graphs and exploit the correlations between multiple proofs for a question, we pose this task as a set generation problem over structured output spaces where each proof is represented as a directed graph. We propose two variants of a proof-set generation model, multiPRover. Our first model, Multilabel-multiPRover, generates a set of proofs via multi-label classification and implicit conditioning between the proofs; while the second model, Iterative-multiPRover, generates proofs iteratively by explicitly conditioning on the previously generated proofs. Experiments on multiple synthetic, zero-shot, and human-paraphrased datasets reveal that both multiPRover models significantly outperform PRover on datasets containing multiple gold proofs. Iterative-multiPRover obtains state-of-the-art proof F1 in zero-shot scenarios where all examples have single correct proofs. It also generalizes better to questions requiring higher depths of reasoning where multiple proofs are more frequent.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="saha-etal-2021-multiprover">
<titleInfo>
<title>multiPRover: Generating Multiple Proofs for Improved Interpretability in Rule Reasoning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Swarnadeep</namePart>
<namePart type="family">Saha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prateek</namePart>
<namePart type="family">Yadav</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-jun</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We focus on a type of linguistic formal reasoning where the goal is to reason over explicit knowledge in the form of natural language facts and rules (Clark et al., 2020). A recent work, named PRover (Saha et al., 2020), performs such reasoning by answering a question and also generating a proof graph that explains the answer. However, compositional reasoning is not always unique and there may be multiple ways of reaching the correct answer. Thus, in our work, we address a new and challenging problem of generating multiple proof graphs for reasoning over natural language rule-bases. Each proof provides a different rationale for the answer, thereby improving the interpretability of such reasoning systems. In order to jointly learn from all proof graphs and exploit the correlations between multiple proofs for a question, we pose this task as a set generation problem over structured output spaces where each proof is represented as a directed graph. We propose two variants of a proof-set generation model, multiPRover. Our first model, Multilabel-multiPRover, generates a set of proofs via multi-label classification and implicit conditioning between the proofs; while the second model, Iterative-multiPRover, generates proofs iteratively by explicitly conditioning on the previously generated proofs. Experiments on multiple synthetic, zero-shot, and human-paraphrased datasets reveal that both multiPRover models significantly outperform PRover on datasets containing multiple gold proofs. Iterative-multiPRover obtains state-of-the-art proof F1 in zero-shot scenarios where all examples have single correct proofs. It also generalizes better to questions requiring higher depths of reasoning where multiple proofs are more frequent.</abstract>
<identifier type="citekey">saha-etal-2021-multiprover</identifier>
<identifier type="doi">10.18653/v1/2021.naacl-main.287</identifier>
<location>
<url>https://aclanthology.org/2021.naacl-main.287</url>
</location>
<part>
<date>2021-jun</date>
<extent unit="page">
<start>3662</start>
<end>3677</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T multiPRover: Generating Multiple Proofs for Improved Interpretability in Rule Reasoning
%A Saha, Swarnadeep
%A Yadav, Prateek
%A Bansal, Mohit
%S Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2021
%8 jun
%I Association for Computational Linguistics
%C Online
%F saha-etal-2021-multiprover
%X We focus on a type of linguistic formal reasoning where the goal is to reason over explicit knowledge in the form of natural language facts and rules (Clark et al., 2020). A recent work, named PRover (Saha et al., 2020), performs such reasoning by answering a question and also generating a proof graph that explains the answer. However, compositional reasoning is not always unique and there may be multiple ways of reaching the correct answer. Thus, in our work, we address a new and challenging problem of generating multiple proof graphs for reasoning over natural language rule-bases. Each proof provides a different rationale for the answer, thereby improving the interpretability of such reasoning systems. In order to jointly learn from all proof graphs and exploit the correlations between multiple proofs for a question, we pose this task as a set generation problem over structured output spaces where each proof is represented as a directed graph. We propose two variants of a proof-set generation model, multiPRover. Our first model, Multilabel-multiPRover, generates a set of proofs via multi-label classification and implicit conditioning between the proofs; while the second model, Iterative-multiPRover, generates proofs iteratively by explicitly conditioning on the previously generated proofs. Experiments on multiple synthetic, zero-shot, and human-paraphrased datasets reveal that both multiPRover models significantly outperform PRover on datasets containing multiple gold proofs. Iterative-multiPRover obtains state-of-the-art proof F1 in zero-shot scenarios where all examples have single correct proofs. It also generalizes better to questions requiring higher depths of reasoning where multiple proofs are more frequent.
%R 10.18653/v1/2021.naacl-main.287
%U https://aclanthology.org/2021.naacl-main.287
%U https://doi.org/10.18653/v1/2021.naacl-main.287
%P 3662-3677
Markdown (Informal)
[multiPRover: Generating Multiple Proofs for Improved Interpretability in Rule Reasoning](https://aclanthology.org/2021.naacl-main.287) (Saha et al., NAACL 2021)
ACL