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Abstract

Text classification is a significant branch of
natural language processing, and has many
applications including document classification
and sentiment analysis. Unsurprisingly, those
who do text classification are concerned with
the run-time of their algorithms, many of
which depend on the size of the corpus’ vocab-
ulary due to their bag-of-words representation.
Although many studies have examined the ef-
fect of preprocessing techniques on vocabu-
lary size and accuracy, none have examined
how these methods affect a model’s run-time.
To fill this gap, we provide a comprehensive
study that examines how preprocessing tech-
niques affect the vocabulary size, model per-
formance, and model run-time, evaluating ten
techniques over four models and two datasets.
We show that some individual methods can re-
duce run-time with no loss of accuracy, while
some combinations of methods can trade 2-
5% of the accuracy for up to a 65% reduction
of run-time. Furthermore, some combinations
of preprocessing techniques can even provide
a 15% reduction in run-time while simultane-
ously improving model accuracy.1

1 Introduction

With the increasing amount of text data available,
text analysis has become a significant part of ma-
chine learning (ML). Many problems in text analy-
sis use ML methods to perform their task, ranging
from classical problems like text classification and
topic modeling, to more complex tasks like ques-
tion answering. Although neural networks have
become increasingly common in the research field,
many industry NLP problems can be well served
by less complex but more efficient and explainable
models, such as Support Vector Machines (SVMs)
or K-Nearest Neighbors (K-NN).

1Our code and results are publicly available at https:
//github.com/wfearn/preprocessing-paper

We focus on the text classification problem,
where the dominant approach to using these non-
neural models is to first calculate the number of
unique terms in the dataset (the vocabulary, size
V ) and encode each instance of the dataset into
a bag-of-words (BoW) representation (Joachims,
1998; Zhang et al., 2010). This results in a
high-dimensional vector of size V that indicates
whether each given word of the vocabulary was
used in this instance.

However, the vanilla approach to the BoW
representation can lead to sub-par performance,
as shown by numerous studies that have exam-
ined how preprocessing techniques affect the BoW
w.r.t. performance and vocabulary size. These
studies have examined this representation in fields
such as information retrieval (Chaudhari et al.,
2015; Patil and Atique, 2013; Beil et al., 2002;
Senuma, 2011), text classification (Yang and Ped-
ersen, 1997; Caragea et al., 2012; Uysal and Gu-
nal, 2014; Vijayarani et al., 2015; Kumar and Har-
ish, 2018; HaCohen-Kerner et al., 2020; Symeoni-
dis et al., 2018) and topic modeling (Schofield and
Mimno, 2016; Blei et al., 2003). They suggest
a myriad of preprocessing techniques that could
improve performance, ranging from choosing fea-
tures that have high mutual information, low fre-
quency, or simply remove punctuation.

Another related problem of the BoW represen-
tation is that this sparse high-dimensional vector
does not scale well to datasets with large vocab-
ularies. As preprocessing techniques help con-
tribute to a reduced vocabulary, they should also
help alleviate this scaling problem, at least accord-
ing to folklore. However, to the best of our knowl-
edge, no previous study of preprocessing tech-
niques have examined how they contribute to re-
duced run-time costs, leading to uncertainty about
what these techniques do to mitigate the computa-
tional complexity in practice.

To remedy this, we analyze how these prepro-

https://github.com/wfearn/preprocessing-paper
https://github.com/wfearn/preprocessing-paper
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Figure 1: Comparing vocabulary size (in millions) vs
the total number of words (in 10s of millions) for the
AP News and Amazon corpora. Note that the vocabu-
lary size of AP News w.r.t. the number of documents
plateaus much faster than the noisier Amazon corpus.

cessing methods affect not only vocabulary size
and performance, but also how they affect train-
ing and inference time. To do this, we contribute
a comprehensive analysis of 10 different prepro-
cessing methods applied to four machine learn-
ing models, evaluated on two datasets with widely
varying vocabularies (Figure 1).

Our results show that the individual preprocess-
ing methods provide widely different effects on
run-time, with some methods (i.e. rare word fil-
tering and stopword removal) providing signifi-
cant run-time reductions without losing any per-
formance. We also show that some combinations
of preprocessing methods both improve perfor-
mance and reduce run-time.

2 Experimental Setup

Datasets To see how preprocessing affects run-
time, we examine two datasets (in English): the
Amazon (He and McAuley, 2016)2 and AP News
corpora (MacIntyre, 1998). These datasets were
chosen because of the wide disparity between their
vocabularies. The Amazon corpus comes from
user product reviews and contains a much higher
vocabulary relative to the number of documents,
due to its noisy text. The AP News corpus contains
professionally-edited news articles and its vocab-
ulary plateaus much faster than the Amazon cor-
pus (Figure 1). We perform sentiment analysis on
Amazon and year classification on AP News and
report scores with the accuracy metric. We note

2http://jmcauley.ucsd.edu/data/amazon/

that we also computed the F1 score alongside ac-
curacy and found our results to be similar; thus we
report accuracy since it is easier to understand.

To test the effect of document size on prepro-
cessing, we sampled various-sized3 datasets from
the original corpus and ran our analysis on each,
sampling 5 different times with differing random
seeds.4 However, we found that our results were
nearly identical across the differing corpus sizes
and thus, only report numbers for the 100k size.

Preprocessing Methods We analyze 10 differ-
ent methods (with their shortened names in paren-
thesis): lowercasing (lower), rare word filter-
ing (rare), hashing (hash), punctuation removal
(nopunct), stopword removal (stop), number re-
moval (nrem), word stemming (stem), lemmati-
zation (lemma), spelling correction (spell), and
word segmentation (seg). We choose these meth-
ods because of their prevalence in previous work
(Symeonidis et al., 2018; Kumar and Harish, 2018;
HaCohen-Kerner et al., 2020) and their use in in-
dustry (Li et al., 2013; Sanchez-Pi et al., 2014).

Due to the exponential number of possible pre-
processing combinations, we run all individual
methods but restrict the search space of combi-
nations of these methods. For rare word filter-
ing and word hashing, we first conduct experi-
ments for 9 different levels of filtering individu-
ally, using only the best level in future combina-
tions with other methods. Results for all levels
of filtering and hashing are in Appendices A and
B. We then conduct experiments for all 24 combi-
nations of spelling correction, word segmentation,
number removal, and stopword removal, using the
best outcome (the pipeline of all four) to combine
with other methods. We note that while this is not
an exhaustive search of all combinations, our anal-
ysis includes the standard preprocessing pipelines
as well as many more.

Models We use Scikit-Learn (Pedregosa et al.,
2011) for three of the base algorithms, includ-
ing K-NN (Altman, 1992), Naive Bayes (Rish
et al., 2001), and the Support Vector Machine
(SVM, (Suykens and Vandewalle, 1999)). We also
employ Vowpal Wabbit (Langford et al., 2007;
Karampatziakis and Langford, 2010), due to its
strong performance and frequent use in industry.

35k, 10k, 20k, 30k, 40k, 50k, and 100k instances
4Although the Amazon corpus contains many more doc-

uments, we keep our sampling consistent with the AP News
corpus, as AP News has only 600k instances.

http://jmcauley.ucsd.edu/data/amazon/
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Group Method Vocab Size ↓ Train Time ↓ Test Time ↓ Accuracy ↑

stop 99.8 ± 0.2 69.5 ± 1.4 79.0 ± 3.5 97.4 ± 2.2
rare 1.0 ± 0.0 80.6 ± 3.0 70.3 ± 3.2 99.3 ± 2.8
seg 24.6 ± 0.2 93.7 ± 2.4 80.3 ± 2.5 100.6 ± 1.6
spell 57.8 ± 0.2 95.1 ± 2.6 89.7 ± 2.6 99.4 ± 2.3

Individual Methods hash 10.1 ± 0.0 97.1 ± 4.0 75.7 ± 4.0 99.2 ± 1.1
nopunct 61.9 ± 0.2 97.5 ± 2.2 89.5 ± 2.0 100.7 ± 1.6
stem 81.7 ± 0.4 97.8 ± 2.0 95.0 ± 2.6 99.8 ± 1.0
lower 88.7 ± 0.3 101.7 ± 7.5 100.1 ± 6.6 99.1 ± 3.0
nrem 96.2 ± 0.7 101.7 ± 4.0 100.7 ± 5.3 99.7 ± 1.2
lemma 98.1 ± 0.5 102.2 ± 5.3 101.5 ± 5.1 100.3 ± 1.1

spell+seg+nrem+stop+rare 0.8 ± 0.0 44.6 ± 1.0 56.8 ± 1.1 95.4 ± 2.0
stop+rare 0.9 ± 0.0 46.5 ± 3.5 44.5 ± 2.0 99.8 ± 0.8

Lowest Train/Test Time spell+seg+nrem+stop+hash 7.6 ± 0.0 53.9 ± 2.0 39.6 ± 1.4 97.7 ± 2.6
spell+seg+nrem+stop 14.1 ± 0.0 54.2 ± 1.6 50.9 ± 2.3 97.6 ± 2.2
spell+seg+nrem+stop+lemma 11.9 ± 0.0 55.1 ± 0.9 50.1 ± 1.7 97.6 ± 1.3

nopunct+rare 0.9 ± 0.0 82.6 ± 1.9 70.2 ± 1.7 101.0 ± 1.8
lower+nopunct+nrem+rare 0.9 ± 0.0 87.1 ± 5.5 88.8 ± 5.1 101.1 ± 0.3

Highest Accuracy lower+nopunct+rare 0.9 ± 0.0 86.1 ± 2.7 86.7 ± 2.2 101.3 ± 0.6
seg+rare 0.9 ± 0.0 86.3 ± 5.8 73.3 ± 3.9 101.4 ± 1.5
spell+seg+rare 0.9 ± 0.0 89.6 ± 5.6 88.4 ± 5.3 101.8 ± 0.5

Table 1: Effect of preprocessing techniques on Amazon. Scores are the relative performance of each method over
the no preprocessing baseline (e.g. stopword removal takes only 69.5% of the baseline’s training time). Results
are the average (and std) relative performance of the four models, across the five dataset seeds. Bold indicates
statistical similarity to the best score, from a two-sample t-test with α = 0.05. For brevity, this table only includes
individual methods and those with the highest accuracy or lowest train/test time. All results are in Appendix C.

All models use default hyperparameters and our
document representations use the BoW represen-
tation, consisting of a sparse vector format. These
four models provide a wide range of algorithms
that might be used, allowing us to show how pre-
processing methods generalize across models.

Compute All experiments were performed us-
ing 14-core Intel Broadwell processors running at
2.4GHz with 128GB of DDR4 2400 MT/s RAM.

3 Results

We format our results relative to the algorithm
with no preprocessing, to easily show how pre-
processing changes this baseline performance. We
first run each algorithm with no preprocessing,
measuring the run-time, vocabulary size, and ac-
curacy. We then report the scores of each prepro-
cessing pipeline relative to the algorithm’s base-
line (e.g. a model with preprocessing that scores
75% of the no-preprocessing baseline’s accuracy
has a relative accuracy of 0.75).

As the cross product of the number of meth-
ods vs. the number of models is still far too large
to include in this paper, we show the average of
each model’s relative proportion to its respective
baseline performance.5 This aggregation shows us

5We first compute each algorithm’s relative score to its

the average relative performance across the four
models, helping us generalize our results to be
model-independent. For full tables detailing spe-
cific model results, see Appendix C. Bold scores
in tables indicate statistical similarity to the best
score in the column (two-sample t-test, α = 0.05).

Individual Techniques We see results for the
Amazon corpus in Table 1 and for the AP News
corpus in Table 2. On Amazon, each individual
preprocessing method performs statistically sim-
ilar to the baseline’s accuracy, while three algo-
rithms (stopword removal, rare word filtering, and
word segmentation) also provide a moderate de-
crease (20-30%) in train and test time. Rare word
filtering and stopword removal are effective across
both corpora (with rare word filtering being even
more effective on AP News, reducing the training
time in half), while the other methods do not sig-
nificantly impact either train-time or accuracy on
AP News. We hypothesize that these techniques
are more effective on the AP corpus because of its
much smaller (and less varied) vocabulary.

baseline (e.g. SVM with rare word filtering vs SVM with no
preprocessing) and then take the average of the models for
that method (e.g. average the relative performance of rare
word filtering on models {K-NN, Naive Bayes, SVM, and
Vowpal Wabbit} for the final score for rare word filtering).
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Group Method Vocab Size ↓ Train Time ↓ Test Time ↓ Accuracy ↑

rare 0.1 ± 0.0 51.4 ± 1.2 59.1 ± 2.2 99.8 ± 2.0
stop 99.5 ± 0.3 82.5 ± 2.9 86.4 ± 2.0 99.0 ± 1.4
hash 32.8 ± 0.0 98.5 ± 4.7 84.7 ± 4.0 99.5 ± 1.7
spell 65.6 ± 0.2 98.6 ± 4.7 95.2 ± 7.4 99.7 ± 0.9

Individual Methods lower 92.3 ± 0.3 98.9 ± 1.9 97.6 ± 3.5 99.8 ± 1.6
stem 82.7 ± 0.4 99.1 ± 5.2 95.2 ± 4.0 100.1 ± 1.4
seg 47.5 ± 0.2 99.5 ± 2.4 88.5 ± 2.9 100.3 ± 1.3
nrem 89.8 ± 0.4 99.8 ± 3.9 98.5 ± 5.0 99.2 ± 1.1
nopunct 65.6 ± 0.2 99.9 ± 4.6 92.9 ± 4.9 99.6 ± 1.4
lemma 97.4 ± 0.3 100.5 ± 1.2 98.6 ± 1.6 99.6 ± 1.7

spell+seg+nrem+stop+rare 0.1 ± 0.0 29.2 ± 0.5 49.0 ± 0.8 99.3 ± 1.7
spell+nopunct+nrem+stop 39.9 ± 0.1 71.0 ± 1.8 69.4 ± 1.8 100.1 ± 1.0

Lowest Train/Test Time spell+nopunct+nrem+stop+lemma 36.2 ± 0.1 71.3 ± 1.3 68.4 ± 1.4 99.1 ± 1.6
spell+seg+nrem+stop 29.3 ± 0.0 72.1 ± 1.8 65.4 ± 3.2 100.1 ± 1.4
spell+nopunct+nrem+stop+stem 29.6 ± 0.1 72.4 ± 1.2 68.2 ± 1.8 98.7 ± 1.8

spell+seg+nrem+stop+stem 19.3 ± 0.1 74.2 ± 2.3 66.9 ± 1.5 99.7 ± 1.6
spell+nopunct+nrem+stop 39.9 ± 0.1 71.0 ± 1.8 69.4 ± 1.8 100.1 ± 1.0

Highest Accuracy spell+seg+nrem+stop 29.3 ± 0.0 72.1 ± 1.8 65.4 ± 3.2 100.1 ± 1.4
spell+seg+nrem+stop+hash 19.8 ± 0.0 73.1 ± 2.7 66.6 ± 3.4 100.2 ± 1.5
lower+nopunct+nrem+stop+stem 39.4 ± 0.4 75.5 ± 2.4 72.7 ± 3.0 100.3 ± 1.0

Table 2: Effect of preprocessing techniques on AP News. Scores are the relative performance of each method over
the no preprocessing baseline (e.g. stopword removal takes only 82.5% of the baseline’s training time). Results
are the average (and std) relative performance of the four models, across the five dataset seeds. Bold indicates
statistical similarity to the best score, from a two-sample t-test with α = 0.05. For brevity, this table only includes
individual methods and those with the highest accuracy or lowest train/test time. All results are in Appendix C.

Combination Techniques The combination
techniques also show a mild impact on accuracy,
with most methods on both corpora performing
statistically similar to the baseline. On the Ama-
zon corpus, a handful of methods trade 2-5% of
accuracy for up to a 65% reduction in training and
testing time (“Lowest Train/Test Time” section
in Table 1). Those that do not reduce accuracy
(such as stop+rare) can still reduce the training
and testing time by up to 55%. We see in the
“Highest Accuracy” section that some methods
(i.e. spell+seg+rare, etc.) can even improve
performance by almost 2% while also reducing
run-time by 10-15%. Similarly, when we examine
the results on AP News we can find combinations
with reduced run-time (up to 70% and 50%
reductions in train and test time respectively) with
no accuracy loss (but also no gains).

Correlations In order to show the correlation
between run-time and the other variables, we show
a heatmap of these correlations in Figure 2. Most
of these variables are highly correlated with each
other, as expected (training time is highly corre-
lated with testing time, etc.). However, although
testing time is highly correlated with vocabulary
size (0.8 correlation), training time is not highly
correlated (0.17), We hypothesize that a low vo-

cabulary directly leads to faster inference, while
which words are removed from the vocabulary has
a bigger role in how quickly the algorithm con-
verges during training. This hypothesis is also
supported by the low correlation between vocab-
ulary size and accuracy, indicating that what is in
the vocabulary is more important than its size.

Figure 2: Pearson correlation between the relative per-
formance variables (train time, test time, accuracy, and
vocabulary size) from the results of the different pre-
processing methods.
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4 Related Work

These experiments relate to a large body of work
that considers how preprocessing methods af-
fect the downstream accuracy of various algo-
rithms, ranging from topics in information re-
trieval (Chaudhari et al., 2015; Patil and Atique,
2013; Beil et al., 2002), text classification and
regression (Forman, 2003; Yang and Pedersen,
1997; Vijayarani et al., 2015; Kumar and Harish,
2018; HaCohen-Kerner et al., 2020; Symeonidis
et al., 2018; Weller et al., 2020), topic modeling
(Blei et al., 2003; Lund et al., 2019; Schofield and
Mimno, 2016; Schofield et al., 2017a,b), and even
more complex tasks like question answering (Ji-
jkoun et al., 2003; Carvalho et al., 2007) and ma-
chine translation (Habash, 2007; Habash and Sa-
dat, 2006; Leusch et al., 2005; Weller et al., 2021;
Mehta et al., 2020) to name a few. With the rise of
noisy social media, text preprocessing has become
important for tasks that use data from sources like
Twitter and Reddit (Symeonidis et al., 2018; Singh
and Kumari, 2016; Bao et al., 2014; Jianqiang,
2015; Weller and Seppi, 2020; Zirikly et al., 2019;
Babanejad et al., 2020).

The closest lines of work to ours are those that
examine how preprocessing affects text classifica-
tion accuracy, where recent works like Symeoni-
dis et al. (2018) and HaCohen-Kerner et al. (2020)
analyze and cross-compare up to 16 different tech-
niques for four machine learning algorithms. In
contrast, our work is the first to examine these pre-
processing techniques beyond accuracy, examin-
ing them in tandem with how they affect vocabu-
lary size and run-time.

5 Conclusion

In this work we conduct the first study that ex-
amines the relationship between vocabulary size,
run-time, and accuracy across different models
and corpora for text classification. In general, we
find that although vocabulary size is highly corre-
lated with testing time, it is not highly correlated
with training time or accuracy. In these cases, the
specifics of the preprocessing algorithm (the con-
tent of what it removes) matter more.

Our experiments show that rare word filtering
and stopword removal are superior to many other
common preprocessing methods, both in terms of
their ability to reduce run-time and their potential
to increase accuracy. By using these methods, we
show that it is possible to reduce training and test-

ing time by up to 65% with a loss of only 2-5%
of accuracy, or in some cases, to provide accu-
racy and run-time improvements simultaneously.
We hope that this study can help both researchers
and industry practitioners as they design machine
learning pipelines to reach their end-goals.
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A Rare Word Filtering

Tables 3 and 4 show the results of rare word filter-
ing on the Amazon and AP News datasets. We
filtered at levels corresponding to the geometric
progression of values from 1 to half the size of
the corpus (we refer to these as levels 1 to 9, with
higher numbers being more filtered).

We find that rare word filtering at higher levels
provides increased vocabulary and run-time reduc-
tions, while also reducing accuracy, in general.

B Word Hashing

Tables 5 and 6 show the effect of different lev-
els of word hashing on model accuracy (where
“Size” indicates the number of hash buckets used).
We find that word hashing with small numbers of
buckets reduces vocabulary and run-time, while
also decreasing accuracy in general.

C Full Tables for Method Combinations

In Tables 7 and 8 we show the complete table for
preprocessing method combinations on Amazon
and AP News respectively.

In Tables 9, 10, 11, and 12, we show the com-
plete results for individuals models (K-NN, Naive
Bayes, Vowpal Wabbit, and SVM respectively).
All results are similar to the main conclusions
found in the body of the paper. However, Naive
Bayes in particular shows strong accuracy gains
and run-time reductions for preprocessing meth-
ods, in comparison to other models.
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# Vocab Size Train Time Test Time Accuracy

9 0.0 ± 0.0 40.2 ± 1.4 51.8 ± 2.0 92.8 ± 0.7
8 0.2 ± 0.0 64.6 ± 2.5 64.0 ± 2.8 96.9 ± 1.1
7 1.0 ± 0.0 80.6 ± 3.0 70.3 ± 3.2 99.3 ± 2.8
6 4.4 ± 0.0 87.4 ± 2.7 72.4 ± 2.7 100.3 ± 1.8
5 16.4 ± 0.0 92.4 ± 3.6 76.2 ± 3.8 99.7 ± 2.4
4 41.4 ± 0.1 94.8 ± 1.9 83.2 ± 2.4 100.0 ± 2.1
3 63.3 ± 0.1 98.1 ± 3.2 90.8 ± 3.1 99.7 ± 1.8
1 100 ± 0.2 100.8 ± 2.5 100.1 ± 2.0 100.0 ± 1.1
2 77.5 ± 0.2 101.4 ± 5.2 97.1 ± 5.9 100.3 ± 1.9

Table 3: Rare word filtering on the Amazon dataset, across various levels. Scores are the relative performance of
each method over the no preprocessing baseline. Results are the average (and std) relative performance of the four
models, across the five dataset seeds. Bold indicates statistical similarity to the best score, from a two-sample t-test
with α = 0.05.

# Vocab Size Train Time Test Time Accuracy

9 0.0 ± 0.0 33.9 ± 1.2 61.1 ± 3.0 99.3 ± 1.2
8 0.1 ± 0.0 51.4 ± 1.2 59.1 ± 2.2 99.8 ± 2.0
7 1.1 ± 0.0 69.6 ± 2.0 68.0 ± 2.0 100.0 ± 1.5
6 7.2 ± 0.0 83.8 ± 3.7 76.6 ± 5.7 99.5 ± 0.7
5 31.8 ± 0.0 94.0 ± 4.8 83.0 ± 3.7 99.4 ± 1.4
4 76.9 ± 0.1 98.2 ± 3.4 96.0 ± 5.5 99.7 ± 1.3
1 100.0 ± 0.3 99.4 ± 3.3 98.2 ± 2.7 99.8 ± 1.3
2 99.7 ± 0.2 100.3 ± 4.3 99.2 ± 3.9 99.6 ± 1.1
3 96.2 ± 0.2 100.6 ± 4.3 98.7 ± 2.4 100.0 ± 0.9

Table 4: Rare word filtering on the AP News dataset, across various levels. This table is formatted the same as
Table 3 (see the caption there for more information).

Size Vocab Size Train Time Test Time Accuracy

500 0.1 ± 0.0 92.7 ± 3.7 76.9 ± 3.1 91.7 ± 1.7
60000 15.1 ± 0.0 96.1 ± 1.5 76.7 ± 2.4 99.3 ± 1.0
10000 2.5 ± 0.0 96.2 ± 1.6 73.2 ± 2.2 97.9 ± 1.3
1000 0.3 ± 0.0 96.2 ± 4.1 76.5 ± 3.5 93.5 ± 1.6
40000 10.1 ± 0.0 97.1 ± 4.0 75.7 ± 4.0 99.2 ± 1.1
4000 1.0 ± 0.0 97.3 ± 1.1 75.0 ± 1.0 96.7 ± 1.6
20000 5.0 ± 0.0 97.6 ± 3.5 74.6 ± 3.1 98.7 ± 1.2
8000 2.0 ± 0.0 98.2 ± 6.8 74.5 ± 4.8 97.9 ± 1.1
2000 0.5 ± 0.0 99.2 ± 3.7 77.2 ± 2.6 95.1 ± 1.6
6000 1.5 ± 0.0 100.6 ± 6.0 76.7 ± 4.9 97.1 ± 1.5

Table 5: Word Hashing on the Amazon dataset, across various levels. Scores are the relative performance of each
method over the no preprocessing baseline. Results are the average (and std) relative performance of the four
models, across the five dataset seeds. Bold indicates statistical similarity to the best score, from a two-sample t-test
with α = 0.05.

Size Vocab Size Train Time Test Time Accuracy

500 0.4 ± 0.0 93.5 ± 2.5 81.4 ± 1.8 99.5 ± 1.3
1000 0.9 ± 0.0 94.7 ± 2.7 79.9 ± 2.6 99.8 ± 1.0
4000 3.5 ± 0.0 94.8 ± 2.8 77.5 ± 2.0 99.4 ± 1.2
10000 8.7 ± 0.0 95.4 ± 3.1 78.9 ± 3.9 98.9 ± 1.8
6000 5.2 ± 0.0 95.6 ± 2.9 78.5 ± 1.8 99.0 ± 0.9
2000 1.7 ± 0.0 96.2 ± 4.8 79.9 ± 4.0 98.9 ± 1.2
20000 17.3 ± 0.0 96.6 ± 3.4 81.2 ± 2.4 99.1 ± 1.4
8000 7.0 ± 0.0 96.8 ± 5.0 80.3 ± 4.7 99.0 ± 1.8
40000 32.8 ± 0.0 98.5 ± 4.7 84.7 ± 4.0 99.5 ± 1.7
60000 44.5 ± 0.1 99.0 ± 5.3 88.5 ± 6.3 99.1 ± 1.3

Table 6: Word Hashing on the AP News dataset, across various levels. This table is formatted the same as Table 5
(see the caption there for more information).
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Method Vocab Size Train Time Test Time Accuracy

spell+seg+nrem+stop+rare 0.8 ± 0.0 44.6 ± 1.0 56.8 ± 1.1 95.4 ± 2.0
stop+rare 0.9 ± 0.0 46.5 ± 3.5 44.5 ± 2.0 99.8 ± 0.8
spell+seg+nrem+stop+hash 7.6 ± 0.0 53.9 ± 2.0 39.6 ± 1.4 97.7 ± 2.6
spell+seg+nrem+stop 14.1 ± 0.0 54.2 ± 1.6 50.9 ± 2.3 97.6 ± 2.2
spell+seg+nrem+stop+lemma 11.9 ± 0.0 55.1 ± 0.9 50.1 ± 1.7 97.6 ± 1.3
seg+nrem+stop+lemma 18.5 ± 0.1 55.1 ± 2.3 54.3 ± 4.3 96.3 ± 3.7
spell+nopunct+nrem+stop+lemma 31.9 ± 0.2 55.3 ± 1.5 56.7 ± 1.8 96.9 ± 1.2
spell+nopunct+nrem+stop 34.1 ± 0.2 55.8 ± 1.6 56.4 ± 2.1 97.8 ± 1.6
seg+nrem+stop 21.0 ± 0.1 55.9 ± 1.3 52.5 ± 1.6 97.5 ± 1.4
lower+nopunct+nrem+stop+lemma 47.0 ± 0.3 56.0 ± 2.2 61.2 ± 1.8 96.0 ± 1.7
lower+nopunct+nrem+stop 48.4 ± 0.3 56.5 ± 1.3 59.4 ± 1.8 96.0 ± 2.3
seg+nrem+stop+stem 14.0 ± 0.1 58.5 ± 1.5 56.8 ± 1.8 97.9 ± 0.7
spell+seg+nrem+stop+stem 8.5 ± 0.0 58.7 ± 1.6 54.8 ± 2.3 97.8 ± 1.4
lower+nopunct+nrem+stop+stem 39.3 ± 0.2 59.0 ± 1.6 63.2 ± 2.9 96.2 ± 2.4
spell+nopunct+nrem+stop+stem 27.7 ± 0.1 59.1 ± 2.6 61.4 ± 4.0 97.5 ± 1.3
stop 99.8 ± 0.2 69.5 ± 1.4 79.0 ± 3.5 97.4 ± 2.2
lower+rare 1.0 ± 0.0 80.5 ± 2.0 69.6 ± 1.7 99.8 ± 3.1
rare 1.0 ± 0.0 80.6 ± 3.0 70.3 ± 3.2 99.3 ± 2.8
spell+rare 0.9 ± 0.0 80.7 ± 2.2 70.9 ± 2.6 99.7 ± 1.8
stem+rare 0.9 ± 0.0 81.4 ± 2.2 69.9 ± 1.7 99.4 ± 1.6
nrem+rare 1.0 ± 0.0 82.0 ± 5.6 70.1 ± 3.2 99.6 ± 1.2
nopunct+rare 0.9 ± 0.0 82.6 ± 1.9 70.2 ± 1.7 101.0 ± 1.8
lemma+rare 1.0 ± 0.0 82.7 ± 6.5 69.6 ± 1.8 100.1 ± 1.5
lower+nopunct+rare 0.9 ± 0.0 86.1 ± 2.7 86.7 ± 2.2 101.3 ± 0.6
seg+rare 0.9 ± 0.0 86.3 ± 5.8 73.3 ± 3.9 101.4 ± 1.5
lower+nopunct+nrem+rare 0.9 ± 0.0 87.1 ± 5.5 88.8 ± 5.1 101.1 ± 0.3
spell+seg+rare 0.9 ± 0.0 89.6 ± 5.6 88.4 ± 5.3 101.8 ± 0.5
seg 24.6 ± 0.2 93.7 ± 2.4 80.3 ± 2.5 100.6 ± 1.6
spell 57.8 ± 0.2 95.1 ± 2.6 89.7 ± 2.6 99.4 ± 2.3
hash 10.1 ± 0.0 97.1 ± 4.0 75.7 ± 4.0 99.2 ± 1.1
nopunct 61.9 ± 0.2 97.5 ± 2.2 89.5 ± 2.0 100.7 ± 1.6
stem 81.7 ± 0.4 97.8 ± 2.0 95.0 ± 2.6 99.8 ± 1.0
lower 88.7 ± 0.3 101.7 ± 7.5 100.1 ± 6.6 99.1 ± 3.0
nrem 96.2 ± 0.7 101.7 ± 4.0 100.7 ± 5.3 99.7 ± 1.2
lemma 98.1 ± 0.5 102.2 ± 5.3 101.5 ± 5.1 100.3 ± 1.1

Table 7: Full results of preprocessing methods on Amazon. Scores are the relative performance of each method
over the no preprocessing baseline. Results are the average (and std) relative performance of the four models,
across the five dataset seeds. Bold indicates statistical similarity to the best score, from a two-sample t-test with
α = 0.05.
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Method Vocab Size Train Time Test Time Accuracy

spell+seg+nrem+stop+rare 0.1 ± 0.0 29.2 ± 0.5 49.0 ± 0.8 99.3 ± 1.7
rare 0.1 ± 0.0 51.4 ± 1.2 59.1 ± 2.2 99.8 ± 2.0
spell+nopunct+nrem+stop 39.9 ± 0.1 71.0 ± 1.8 69.4 ± 1.8 100.1 ± 1.0
spell+nopunct+nrem+stop+lemma 36.2 ± 0.1 71.3 ± 1.3 68.4 ± 1.4 99.1 ± 1.6
spell+seg+nrem+stop 29.3 ± 0.0 72.1 ± 1.8 65.4 ± 3.2 100.1 ± 1.4
spell+nopunct+nrem+stop+stem 29.6 ± 0.1 72.4 ± 1.2 68.2 ± 1.8 98.7 ± 1.8
spell+seg+nrem+stop+hash 19.8 ± 0.0 73.1 ± 2.7 66.6 ± 3.4 100.2 ± 1.5
spell+seg+nrem+stop+lemma 25.4 ± 0.1 73.6 ± 1.9 67.6 ± 1.7 99.4 ± 1.5
lower+nopunct+nrem+stop+lemma 49.1 ± 0.1 73.7 ± 1.3 72.8 ± 2.0 98.4 ± 1.4
seg+nrem+stop 40.7 ± 0.2 74.1 ± 3.4 73.1 ± 3.3 99.5 ± 1.3
spell+seg+nrem+stop+stem 19.3 ± 0.1 74.2 ± 2.3 66.9 ± 1.5 99.7 ± 1.6
lower+nopunct+nrem+stop 51.4 ± 0.2 74.2 ± 3.5 74.0 ± 4.4 99.6 ± 1.3
seg+nrem+stop+lemma 36.4 ± 0.1 75.2 ± 2.1 68.1 ± 3.5 99.1 ± 1.2
lower+nopunct+nrem+stop+stem 39.4 ± 0.4 75.5 ± 2.4 72.7 ± 3.0 100.3 ± 1.0
seg+nrem+stop+stem 29.3 ± 0.1 76.9 ± 2.1 63.9 ± 1.5 99.4 ± 1.7
stop 99.5 ± 0.3 82.5 ± 2.9 86.4 ± 2.0 99.0 ± 1.4
hash 32.8 ± 0.0 98.5 ± 4.7 84.7 ± 4.0 99.5 ± 1.7
spell 65.6 ± 0.2 98.6 ± 4.7 95.2 ± 7.4 99.7 ± 0.9
lower 92.3 ± 0.3 98.9 ± 1.9 97.6 ± 3.5 99.8 ± 1.6
stem 82.7 ± 0.4 99.1 ± 5.2 95.2 ± 4.0 100.1 ± 1.4
seg 47.5 ± 0.2 99.5 ± 2.4 88.5 ± 2.9 100.3 ± 1.3
nrem 89.8 ± 0.4 99.8 ± 3.9 98.5 ± 5.0 99.2 ± 1.1
nopunct 65.6 ± 0.2 99.9 ± 4.6 92.9 ± 4.9 99.6 ± 1.4
lemma 97.4 ± 0.3 100.5 ± 1.2 98.6 ± 1.6 99.6 ± 1.7

Table 8: Full results of preprocessing methods on AP News. Scores are the relative performance of each method
over the no preprocessing baseline. Results shown are the average (and std) relative performance of the four
models, across the five dataset seeds. Bold indicates statistical similarity to the best score, from a two-sample t-test
with α = 0.05.



3079

Method Vocab Size Train Time Test Time Accuracy

spell+seg+nrem+stop+rare 0.8 ± 0.0 47.0 ± 0.8 46.7 ± 1.0 92.3 ± 3.3
seg+nrem+stop+lemma 18.5 ± 0.1 56.7 ± 0.9 52.2 ± 1.6 89.3 ± 12.1
lower+nopunct+nrem+stop+lemma 47.0 ± 0.3 56.8 ± 1.2 50.9 ± 1.0 90.9 ± 4.2
spell+seg+nrem+stop 14.1 ± 0.0 57.0 ± 0.9 48.2 ± 1.5 92.2 ± 6.8
spell+seg+nrem+stop+lemma 11.9 ± 0.0 57.2 ± 1.1 53.8 ± 0.9 92.8 ± 2.7
spell+seg+nrem+stop+hash 7.6 ± 0.0 57.2 ± 1.4 48.3 ± 0.8 92.1 ± 6.3
spell+nopunct+nrem+stop+lemma 31.9 ± 0.2 57.5 ± 1.4 52.9 ± 1.1 92.0 ± 2.2
seg+nrem+stop 21.0 ± 0.1 57.8 ± 0.7 47.7 ± 1.2 94.7 ± 2.5
spell+nopunct+nrem+stop 34.1 ± 0.2 58.2 ± 1.6 48.4 ± 0.8 95.5 ± 3.3
lower+nopunct+nrem+stop 48.4 ± 0.3 58.8 ± 1.8 47.6 ± 1.3 89.2 ± 6.0
lower+nopunct+nrem+stop+stem 39.3 ± 0.2 59.6 ± 1.2 61.7 ± 4.2 88.0 ± 5.8
spell+nopunct+nrem+stop+stem 27.7 ± 0.1 60.5 ± 2.2 62.8 ± 4.3 95.1 ± 2.5
spell+seg+nrem+stop+stem 8.5 ± 0.0 61.4 ± 2.0 62.4 ± 4.7 94.2 ± 2.8
seg+nrem+stop+stem 14.0 ± 0.1 61.8 ± 2.0 65.2 ± 0.8 94.2 ± 0.8
stop 99.8 ± 0.2 69.3 ± 1.8 52.8 ± 3.6 93.4 ± 6.6
rare 1.0 ± 0.0 80.5 ± 1.5 96.4 ± 0.5 95.5 ± 9.3
lower+rare 1.0 ± 0.0 82.7 ± 2.2 100.6 ± 2.4 93.6 ± 8.8
spell+rare 0.9 ± 0.0 82.9 ± 1.4 104.2 ± 6.1 94.0 ± 4.2
lemma+rare 1.0 ± 0.0 83.2 ± 3.2 99.3 ± 1.8 97.4 ± 3.5
stem+rare 0.9 ± 0.0 84.4 ± 1.9 101.1 ± 2.2 95.8 ± 3.1
nopunct+rare 0.9 ± 0.0 85.3 ± 2.7 101.0 ± 2.6 99.4 ± 4.4
nrem+rare 1.0 ± 0.0 91.1 ± 16.3 102.7 ± 8.7 95.6 ± 2.7
spell 57.8 ± 0.2 95.9 ± 2.7 103.8 ± 3.3 96.4 ± 5.7
seg+rare 0.9 ± 0.0 96.7 ± 14.5 112.5 ± 9.7 100.6 ± 3.5
seg 24.6 ± 0.2 98.0 ± 3.5 105.0 ± 2.7 99.3 ± 3.0
stem 81.7 ± 0.4 99.0 ± 1.6 102.4 ± 1.9 98.5 ± 2.0
lower 88.7 ± 0.3 99.4 ± 2.9 102.9 ± 2.8 96.0 ± 6.5
hash 10.1 ± 0.0 99.7 ± 1.3 100.7 ± 1.9 99.4 ± 1.2
lemma 98.1 ± 0.5 101.2 ± 2.5 101.9 ± 2.9 100.7 ± 1.3
nopunct 61.9 ± 0.2 101.6 ± 3.5 103.5 ± 3.0 100.1 ± 3.9
nrem 96.2 ± 0.7 102.1 ± 1.5 101.7 ± 2.4 99.7 ± 1.8

Table 9: Effect of preprocessing techniques on Amazon with the K-NN model. Scores are the relative performance
of each method over the no preprocessing baseline. Results shown are the average (and std) relative performance
across the five dataset seeds. Bold indicates statistical similarity to the best score, from a two-sample t-test with
α = 0.05.
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Method Vocab Size Train Time Test Time Accuracy

stop+rare 0.9 ± 0.0 44.7 ± 5.4 5.8 ± 0.2 104.5 ± 0.8
spell+seg+nrem+stop+hash 7.6 ± 0.0 49.7 ± 1.4 12.3 ± 0.0 103.5 ± 0.8
spell+seg+nrem+stop 14.1 ± 0.0 50.2 ± 1.0 18.7 ± 0.6 104.4 ± 0.2
spell+seg+nrem+stop+lemma 11.9 ± 0.0 50.4 ± 0.4 16.6 ± 0.3 104.0 ± 0.4
seg+nrem+stop+lemma 18.5 ± 0.1 52.0 ± 2.3 22.7 ± 0.6 103.7 ± 0.5
spell+nopunct+nrem+stop+lemma 31.9 ± 0.2 52.1 ± 0.7 34.8 ± 0.3 103.1 ± 0.9
spell+nopunct+nrem+stop 34.1 ± 0.2 52.8 ± 0.8 36.9 ± 0.4 102.3 ± 1.0
lower+nopunct+nrem+stop+lemma 47.0 ± 0.3 53.1 ± 1.4 49.1 ± 0.8 101.7 ± 1.4
seg+nrem+stop 21.0 ± 0.1 53.1 ± 1.6 25.3 ± 1.0 103.6 ± 1.7
spell+seg+nrem+stop+stem 8.5 ± 0.0 53.3 ± 2.3 13.3 ± 0.3 102.7 ± 0.9
spell+nopunct+nrem+stop+stem 27.7 ± 0.1 54.2 ± 0.5 31.1 ± 0.4 101.1 ± 1.4
seg+nrem+stop+stem 14.0 ± 0.1 54.3 ± 0.8 18.7 ± 0.3 102.9 ± 0.7
lower+nopunct+nrem+stop 48.4 ± 0.3 54.5 ± 0.7 50.2 ± 0.6 101.5 ± 1.5
lower+nopunct+nrem+stop+stem 39.3 ± 0.2 55.6 ± 1.2 41.9 ± 0.4 101.5 ± 1.3
rare 1.0 ± 0.0 69.0 ± 0.8 6.5 ± 0.1 100.6 ± 1.2
lower+rare 1.0 ± 0.0 69.9 ± 1.5 6.4 ± 0.0 102.3 ± 1.9
stop 99.8 ± 0.2 69.9 ± 1.2 99.2 ± 1.2 101.1 ± 0.7
nrem+rare 1.0 ± 0.0 70.3 ± 1.2 6.5 ± 0.1 101.6 ± 0.9
spell+rare 0.9 ± 0.0 70.5 ± 0.9 6.4 ± 0.1 101.5 ± 0.9
stem+rare 0.9 ± 0.0 70.7 ± 1.7 6.4 ± 0.2 100.4 ± 1.7
lemma+rare 1.0 ± 0.0 71.2 ± 0.8 6.5 ± 0.2 100.7 ± 0.7
nopunct+rare 0.9 ± 0.0 73.2 ± 1.6 6.5 ± 0.2 101.2 ± 0.7
seg+rare 0.9 ± 0.0 73.3 ± 2.2 6.5 ± 0.1 101.5 ± 1.2
seg 24.6 ± 0.2 87.2 ± 1.6 29.1 ± 0.3 101.0 ± 0.7
hash 10.1 ± 0.0 90.1 ± 1.1 15.4 ± 0.2 99.3 ± 1.5
spell 57.8 ± 0.2 90.4 ± 1.7 59.9 ± 0.5 99.6 ± 1.3
nopunct 61.9 ± 0.2 94.8 ± 2.4 64.1 ± 0.8 100.6 ± 0.8
stem 81.7 ± 0.4 96.0 ± 1.0 82.7 ± 1.0 99.8 ± 1.2
lower 88.7 ± 0.3 97.7 ± 2.3 89.9 ± 1.5 100.4 ± 0.9
lemma 98.1 ± 0.5 99.5 ± 1.1 98.4 ± 0.9 100.8 ± 1.2
nrem 96.2 ± 0.7 99.8 ± 1.5 97.0 ± 1.6 99.6 ± 1.2

Table 10: Effect of preprocessing techniques on Amazon with the Naive Bayes model. Scores are the relative
performance of each method over the no preprocessing baseline. Results shown are the average (and std) relative
performance across the five dataset seeds. Bold indicates statistical similarity to the best score, from a two-sample
t-test with α = 0.05.
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Method Vocab Size Train Time Test Time Accuracy

spell+seg+nrem+stop+rare 0.8 ± 0.0 42.1 ± 1.5 46.6 ± 1.4 97.0 ± 1.3
stop+rare 0.9 ± 0.0 47.7 ± 4.0 51.4 ± 4.1 97.5 ± 0.9
lower+nopunct+nrem+stop 48.4 ± 0.3 53.3 ± 1.6 56.1 ± 1.2 97.5 ± 0.8
spell+seg+nrem+stop 14.1 ± 0.0 54.3 ± 3.2 57.2 ± 3.3 97.9 ± 0.9
spell+nopunct+nrem+stop+lemma 31.9 ± 0.2 54.4 ± 2.3 57.9 ± 2.7 97.3 ± 1.2
seg+nrem+stop+lemma 18.5 ± 0.1 54.5 ± 4.0 59.9 ± 9.5 97.3 ± 1.2
lower+nopunct+nrem+stop+lemma 47.0 ± 0.3 54.9 ± 5.7 58.0 ± 4.8 96.7 ± 0.7
spell+nopunct+nrem+stop 34.1 ± 0.2 54.9 ± 3.1 57.8 ± 2.8 97.9 ± 0.8
spell+seg+nrem+stop+hash 7.6 ± 0.0 55.0 ± 3.0 58.3 ± 3.4 97.5 ± 0.7
seg+nrem+stop 21.0 ± 0.1 55.4 ± 2.3 58.5 ± 2.5 97.2 ± 0.8
seg+nrem+stop+stem 14.0 ± 0.1 55.5 ± 1.8 57.8 ± 2.0 98.1 ± 0.6
spell+seg+nrem+stop+stem 8.5 ± 0.0 57.2 ± 0.8 59.6 ± 0.9 98.1 ± 0.9
lower+nopunct+nrem+stop+stem 39.3 ± 0.2 57.2 ± 3.1 59.9 ± 3.2 98.4 ± 1.4
spell+nopunct+nrem+stop+stem 27.7 ± 0.1 58.9 ± 5.9 61.9 ± 4.6 98.1 ± 0.5
stop 99.8 ± 0.2 66.9 ± 1.5 69.2 ± 2.4 97.9 ± 0.7
nrem+rare 1.0 ± 0.0 78.5 ± 3.5 79.1 ± 3.4 100.6 ± 0.6
spell+rare 0.9 ± 0.0 79.1 ± 3.6 79.7 ± 2.8 101.7 ± 1.1
lemma+rare 1.0 ± 0.0 79.8 ± 4.4 80.0 ± 3.9 101.5 ± 1.0
stem+rare 0.9 ± 0.0 79.9 ± 3.3 80.2 ± 3.0 100.8 ± 0.8
lower+rare 1.0 ± 0.0 80.2 ± 2.8 80.5 ± 2.3 101.7 ± 0.7
nopunct+rare 0.9 ± 0.0 80.5 ± 2.2 80.7 ± 2.1 101.8 ± 1.2
lower+nopunct+rare 0.9 ± 0.0 80.9 ± 3.6 81.7 ± 3.5 101.4 ± 0.7
seg+rare 0.9 ± 0.0 82.9 ± 4.8 83.4 ± 5.1 101.8 ± 0.5
rare 1.0 ± 0.0 84.1 ± 9.0 84.9 ± 8.3 100.6 ± 0.3
lower+nopunct+nrem+rare 0.9 ± 0.0 84.4 ± 9.5 85.7 ± 9.1 101.3 ± 0.2
spell+seg+rare 0.9 ± 0.0 86.1 ± 9.4 86.9 ± 8.9 102.1 ± 0.5
seg 24.6 ± 0.2 94.5 ± 1.9 94.6 ± 2.6 102.2 ± 1.4
nopunct 61.9 ± 0.2 95.3 ± 2.6 95.8 ± 2.0 101.9 ± 0.5
spell 57.8 ± 0.2 98.6 ± 5.0 98.1 ± 6.0 101.5 ± 1.0
stem 81.7 ± 0.4 98.9 ± 4.6 97.7 ± 4.3 100.9 ± 0.5
hash 10.1 ± 0.0 102.8 ± 12.2 102.1 ± 12.3 100.5 ± 0.8
nrem 96.2 ± 0.7 104.3 ± 11.9 103.3 ± 11.4 100.0 ± 0.8
lower 88.7 ± 0.3 107.9 ± 17.2 107.7 ± 15.5 100.9 ± 1.7
lemma 98.1 ± 0.5 109.4 ± 16.3 107.8 ± 14.9 100.0 ± 1.0

Table 11: Effect of preprocessing techniques on Amazon with the Vowpal Wabbit model. Results shown are the
average (and std) relative performance, across the five dataset seeds. Bold indicates statistical similarity to the best
score, from a two-sample t-test with α = 0.05.
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Method Vocab Size Train Time Test Time Accuracy

spell+seg+nrem+stop+rare 0.8 ± 0.0 44.7 ± 0.6 77.1 ± 0.9 96.7 ± 1.4
stop+rare 0.9 ± 0.0 47.1 ± 1.1 76.2 ± 1.6 97.4 ± 0.8
spell+seg+nrem+stop 14.1 ± 0.0 55.4 ± 1.5 79.3 ± 3.8 95.7 ± 0.7
seg+nrem+stop+lemma 18.5 ± 0.1 57.1 ± 1.8 82.2 ± 5.6 94.9 ± 1.0
spell+nopunct+nrem+stop 34.1 ± 0.2 57.2 ± 0.8 82.7 ± 4.4 95.7 ± 1.1
seg+nrem+stop 21.0 ± 0.1 57.4 ± 0.5 78.5 ± 1.7 94.5 ± 0.4
spell+nopunct+nrem+stop+lemma 31.9 ± 0.2 57.4 ± 1.5 81.4 ± 3.2 95.1 ± 0.6
spell+seg+nrem+stop+lemma 11.9 ± 0.0 57.6 ± 1.3 80.1 ± 3.9 96.1 ± 0.9
lower+nopunct+nrem+stop+lemma 47.0 ± 0.3 59.3 ± 0.6 86.7 ± 0.6 94.8 ± 0.5
lower+nopunct+nrem+stop 48.4 ± 0.3 59.5 ± 1.3 83.7 ± 4.1 95.7 ± 0.9
seg+nrem+stop+stem 14.0 ± 0.1 62.6 ± 1.3 85.7 ± 4.2 96.6 ± 0.6
spell+seg+nrem+stop+stem 8.5 ± 0.0 62.7 ± 1.2 84.1 ± 3.2 96.2 ± 1.1
spell+nopunct+nrem+stop+stem 27.7 ± 0.1 62.8 ± 1.6 89.8 ± 6.8 95.9 ± 0.7
lower+nopunct+nrem+stop+stem 39.3 ± 0.2 63.5 ± 0.9 89.5 ± 4.0 96.8 ± 1.3
stop 99.8 ± 0.2 71.9 ± 1.3 94.6 ± 6.9 97.3 ± 0.8
nrem+rare 1.0 ± 0.0 88.3 ± 1.5 92.1 ± 0.7 100.4 ± 0.5
rare 1.0 ± 0.0 88.7 ± 0.9 93.6 ± 4.0 100.5 ± 0.5
lower+rare 1.0 ± 0.0 89.1 ± 1.4 90.7 ± 1.8 101.5 ± 0.8
lower+nopunct+nrem+rare 0.9 ± 0.0 89.9 ± 1.5 92.0 ± 1.2 100.9 ± 0.3
spell+rare 0.9 ± 0.0 90.3 ± 2.8 93.3 ± 1.5 101.5 ± 1.2
stem+rare 0.9 ± 0.0 90.5 ± 2.0 91.9 ± 1.6 100.7 ± 0.7
nopunct+rare 0.9 ± 0.0 91.3 ± 1.1 92.6 ± 1.9 101.6 ± 0.8
lower+nopunct+rare 0.9 ± 0.0 91.3 ± 1.9 91.8 ± 0.8 101.2 ± 0.6
seg+rare 0.9 ± 0.0 92.4 ± 1.9 90.9 ± 0.7 101.6 ± 0.6
spell+seg+rare 0.9 ± 0.0 93.2 ± 1.8 89.9 ± 1.6 101.5 ± 0.6
seg 24.6 ± 0.2 95.0 ± 2.6 92.7 ± 4.5 100.0 ± 1.5
spell 57.8 ± 0.2 95.6 ± 1.2 97.0 ± 0.8 99.9 ± 1.2
hash 10.1 ± 0.0 95.6 ± 1.4 84.7 ± 1.5 97.7 ± 0.8
lemma+rare 1.0 ± 0.0 96.9 ± 17.6 92.5 ± 1.4 101.0 ± 0.7
stem 81.7 ± 0.4 97.3 ± 0.8 97.4 ± 3.2 99.9 ± 0.2
nopunct 61.9 ± 0.2 98.5 ± 0.4 94.8 ± 2.1 100.2 ± 1.0
lemma 98.1 ± 0.5 98.7 ± 1.5 97.9 ± 1.8 99.8 ± 0.8
nrem 96.2 ± 0.7 100.8 ± 1.2 100.9 ± 5.9 99.5 ± 1.0

Table 12: Effect of preprocessing techniques on Amazon with the SVM model. Scores are the relative performance
of each method over the no preprocessing baseline. Results shown are the average (and std) relative performance
across the five dataset seeds. Bold indicates statistical similarity to the best score, from a two-sample t-test with
α = 0.05.


