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Abstract

Semantic parsing using sequence-to-sequence
models allows parsing of deeper representa-
tions compared to traditional word tagging
based models. In spite of these advan-
tages, widespread adoption of these models
for real-time conversational use cases has been
stymied by higher compute requirements and
thus higher latency. In this work, we propose
a non-autoregressive approach to predict se-
mantic parse trees with an efficient seq2seq
model architecture. By combining non-
autoregressive prediction with convolutional
neural networks, we achieve significant la-
tency gains and parameter size reduction com-
pared to traditional RNN models. Our novel
architecture achieves up to an 81% reduction
in latency on TOP dataset and retains com-
petitive performance to non-pretrained mod-
els on three different semantic parsing datasets.
Our code is available at https://github.
com/facebookresearch/pytext.

1 Introduction

Advances in conversational assistants have helped
to improve the usability of smart speakers and con-
sumer wearables for different tasks. Semantic pars-
ing is one of the fundamental components of these
assistants and it helps to convert the user input in
natural language to a structure representation that
can be understood by downstream systems. Ma-
jority of the semantic parsing systems deployed
on various devices, rely on server-side inference
because of the lower compute/memory available
on these edge devices. This poses a few drawbacks
such as flaky user experience with spotty internet
connectivity and compromised user data privacy
due to the dependence on a centralized server to
which all user interactions are sent to. Thus, seman-
tic parsing on-device has numerous advantages.

For the semantic parsing task, the meaning rep-
resentation used decides the capabilities of the sys-
tem built. Limitations of the representation with

one intent and slot labels were studied in the con-
text of nested queries and multi turn utterances in
Aghajanyan et al. (2020) and Gupta et al. (2018).
New representations were proposed to overcome
these limitations and sequence-to-sequence mod-
els were proposed as the solution to model these
complex forms. But using these new models in real-
time conversational assistants still remains a chal-
lenge due to higher latency requirements. In our
work, we propose a novel architecture and genera-
tion scheme to significantly improve the end2end
latency of sequence-to-sequence models for the
semantic parsing task.

Due to the autoregressive nature of generation
in sequence-to-sequence semantic parsing models,
the recurrence relationship between target tokens
creates a limitation that decoding cannot be paral-
lelized.

There are multiple works in machine translation
which try to solve this problem. These approaches
relax the decoder token-by-token generation by al-
lowing multiple target tokens to be generated at
once. Fully non-autoregressive models (Gu et al.,
2017; Ma et al., 2019; Ghazvininejad et al., 2020a;
Saharia et al., 2020) and conditional masked lan-
guage models with iterative decoding (Ghazvinine-
jad et al., 2019; Gu et al., 2019; Ghazvininejad
et al., 2020b) are some of them.

To enable non-autoregressive generation in se-
mantic parsing, we modify the objective of the
standard seq2seq model to predict the entire target
structure at once. We build upon the CMLM (Con-
ditional Masked Language Model) (Ghazvininejad
et al., 2019) and condition the generation of the
full target structure on the encoder representation.
By eliminating the recurrent relationship between
individual target tokens, the decoding process can
be parallelized. While this drastically improves
latency, the representation of each token is still de-
pendent on previous tokens if we continue to use
an RNN architecture. Thus, we propose a novel

https://github.com/facebookresearch/pytext
https://github.com/facebookresearch/pytext
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model architecture for semantic parsing based on
convolutional networks (Wu et al., 2019b) to solve
this issue.

Our non-autoregressive model achieves up to
an 81% reduction in latency on the TOP dataset
(Gupta et al., 2018), while achieving 80.23% exact
match accuracy. We also achieve 88.16% exact
match accuracy on DSTC2 (Henderson et al., 2014)
and 80.86% on SNIPS (Coucke et al., 2018) which
is competitive to prior work without pretraining.

To summarize, our two main contributions are:

• We propose a novel alternative to the tradi-
tional autoregressive generation scheme for
semantic parsing using sequence-to-sequence
models. With a new model training strategy
and generation approach, the semantic parse
structure is predicted in one step improving
parallelization and thus leading to significant
reduction in model latency with minimal accu-
racy impact. We also study the limitations of
original CMLM (Ghazvininejad et al., 2019)
when applied for conversational semantic pars-
ing task and provide motivations for our sim-
ple yet critical modifications.

• We propose LightConv Pointer, a model ar-
chitecture for non-autoregressive semantic
parsing, using convolutional neural networks
which provides significant latency and model
size improvements over RNN models. Our
novel model architecture is particularly suit-
able for limited compute use-cases like on-
device conversational assistants.

IN:CREATE_REMINDER

SL:TODO

IN:CREATE_CALL

SL:CONTACT

John

SL:METHOD

call

SL:PERSON_REMINDED

me

Figure 1: Decoupled semantic representation for the
single utterance “Please remind me to call John”.

2 Method

In this section, we propose a novel, convolutional,
non-autoregressive architecture for semantic pars-
ing. While non-autoregressive decoding has been
previously explored in machine translation, we de-
scribe how it can be applied to semantic parsing

with several critical modifications to retain perfor-
mance. We then describe our convolutional archi-
tecture. By incorporating these advances together,
our approach achieves both high accuracy and effi-
cient decoding.

The task is to predict the semantic parse tree
given the raw text. We use the decoupled repre-
sentation (Aghajanyan et al., 2020), an extension
of the compositional form proposed in Gupta et al.
(2018) for task oriented semantic parsing. Decou-
pled representation is obtained by removing all text
in the compositional form that does not appear in a
leaf slot. Efficient models require representations
which are compact, with least number of tokens, to
reduce number of floating point operations during
inference. Decoupled representation was found to
be suitable due to this.

Figure 1 shows the semantic parse for a sam-
ple utterance. Our model predicts the serialized
representation of this tree which is

[IN:CREATE_REMINDER [SL:PERSON_REMINDED me ]
[SL:TODO [IN:CREATE_CALL [SL:METHOD call ]
[SL:CONTACT John ] ] ] ]

2.1 Non-Autoregressive Decoding

While autoregressive models (Figure 2), which pre-
dict a sequence token by token, have achieved
strong results in various tasks including seman-
tic parsing, they have a large downside. The main
challenge in practical applications is the slow de-
coding time. We investigate how to incorporate
recent advances in non-autoregressive decoding for
efficient semantic parsing models.

We build upon the Conditional Masked Lan-
guage Model (CMLM) proposed in Ghazvininejad
et al. (2019) by applying it to the structured pre-
diction task of semantic parsing for task-oriented
dialog. Ghazvininejad et al. (2019) uses CMLM to
first predict a token-level representation for each
source token and a target sequence length; then the
model predicts and iterates on the target sequence
prediction in a non-autoregressive fashion. We de-
scribe our changes and the motivations for these
changes below.

One of the main differences between our work
and Ghazvininejad et al. (2019) is that target length
prediction plays a more important role in seman-
tic parsing. For the translation task, if the target
length is off by one or more, the model can slightly
rephrase the sentence to still return a high quality
translation. In our case, if the length prediction is
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Figure 2: Traditional Sequence to Sequence architec-
ture which uses autoregressive generation scheme for
decoder.

off by even one, it will lead to an incorrect semantic
parse.

To resolve this important challenge, we propose
a specialized length prediction module that more ac-
curately predicts the target sequence length. While
Ghazvininejad et al. (2019) uses a special CLS to-
ken in the source sequence to predict the target
length, we have a separate module of multiple lay-
ers of CNNs with gated linear units to predict the
target sequence length (Wu et al., 2019b). We also
use label smoothing and differently weighing losses
as explained in section 2.3, to avoid the easy over-
fitting in semantic parsing compared to translation.

As shown in Aghajanyan et al. (2020), trans-
formers without pre-training perform poorly on
TOP dataset. The architectural changes that we
propose to solve the data efficiency can be found
in the section 2.2.1.

Further, we find that the random masking strat-
egy proposed in Ghazvininejad et al. (2019) works
poorly for semantic parsing. When we use the
same strategy for the semantic parsing task where
the output has a structure, model is highly likely
to see invalid trees during training as masking ran-
dom tokens in the linearized representation of a
tree mostly gives invalid tree representations. This
makes it hard for the model to learn the structure
especially when the structure is complicated (in the
case of trees, deep trees were harder to learn). To
remedy this problem, we propose a different strat-
egy for model training where all the tokens in the
target sequence are masked during training.

Ablation experiments for all the above changes
can be found in section 4.3.

2.2 LightConv Pointer Model

2.2.1 Model Architecture
Our model architecture (Figure 3) is based on the
classical seq2seq model (Sutskever et al., 2014) and
follows the encoder-decoder architecture. In order
to optimize for efficient encoding and decoding,
we look to leverage a fully parallel model archi-
tecture. While transformer models are fully par-
allel and popular in machine translation (Vaswani
et al., 2017), they are known to perform poorly in
low resource settings and require careful tuning
using techniques like Neural Architecture Search
to get good performance (van Biljon et al., 2020;
Murray et al., 2019). Similarly, randomly initial-
ized transformers performed poorly on TOP dataset
achieving only 64.5 % accuracy when SOTA was
above 80% (Aghajanyan et al., 2020). We over-
come this limitation by augmenting Transformers
with Convolutional Neural Networks. Details of
our architecture are explained below.

For token representations, we use word embed-
dings concatenated with the sinusoidal positional
embeddings (Vaswani et al., 2017). Encoder and
decoder consist of multiple layers with residual
connections as shown in Figure 4.

First sub-block in each layer consists of MHA
(Vaswani et al., 2017). In decoder, we do not do
masking of future tokens during model training.
This is needed for non-autoregressive generation
of target tokens during inference.

Second sub-block consists of multiple convolu-
tional layers. We use depthwise convolutions with
weight sharing (Wu et al., 2019b). Convolution
layer helps in learning representation for tokens
for a fixed context size and multiple layers helps
with bigger receptive fields. We use non-causal
convolutions for both encoder as well as decoder.

Third sub-block is the FFN (Vaswani et al., 2017;
Wu et al., 2019b) which consists of two linear lay-
ers and relu. The decoder has source-target atten-
tion after the convolution layer.

Pointer-Generator Projection layer The de-
coder has a final projection layer which generates
the target tokens from the decoder/encoder rep-
resentations. Rongali et al. (2020) proposes an
idea based Pointer Generator Network (See et al.,
2017) to convert the decoder representation to tar-
get tokens using the encoder output. Similarly, we
use a pointer based projection head, which decides
whether to copy tokens from the source-sequence
or generate from the pre-defined ontology at every
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Figure 3: Sequence to Sequence model architecture
which uses Non-Autoregressive strategy for generation

decoding step (Aghajanyan et al., 2020).
Length Prediction Module Length prediction

Module receives token level representations from
the encoder as input. It uses stacked CNNs with
gated linear units and mean pooling to generation
the length prediction.

2.2.2 Inference
Suppose the source sequence is of length L and
source tokens in the raw text are s1, s2, s3 . . . sL.
Encoder generates a representation of for each to-
ken in the source sequence.

e1, . . . , eL = Encoder(s1, . . . , sL) (1)

The length prediction module predicts the tar-
get sequence length using the token level encoder
representation.

T = PredictLength(e1, . . . , eL) (2)

Using the predicted length T, we create a target
sequence of length T consisting of identical MASK
tokens. This sequence is passed through possibly
multiple decoder layers and generates a representa-
tion for each token in the masked target sequence.

x1, ..., xT = Dec(MASK1, . . . ,MASKT ; e1, ..., eL)
(3)

Figure 4: Different layers in LightConv Pointer Model
Architecture

We use Pointer-Generator Projection layer
explained in 2.2.1 to predict target tokens.

y1, ..., yT = PtrProj(x1, .., xT ; e1, .., eL) (4)

We make a strong assumption that each token in
the target sentence is conditionally independent of
each other given the source and the target length.
Thus, the individual probabilities for each token is
P (yi|X,T ) where X is the input sequence and T
is the length of target sequence.

Beam Search During inference, length predic-
tion module explained in 2.2.1 predicts top k
lengths. For each predicted length, we create a
decoder input sequence of all masked tokens. This
is similar to the beam search with beam size k in
autoregressive systems. The main difference in our
model architecture is that we expect only one can-
didate for each predicted length. These all masked
sequences are given as input to the model and the
model predicts target tokens for each masked token.
Once we have predicted target sequences for k dif-
ferent lengths, they are ranked based on the ranking
algorithm described in (5), where X is the input
sequence and Y is the predicted output sequence,
note the predicted token yi is conditioned on both
the sequence (X) and the predicted target length
T .

S(X,Y ) =
T∑
i

P (yi | X,T ) · P (T ) (5)
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2.3 Training
During training, we jointly optimize for two
weighted losses. The first loss is calculated for the
predicted target tokens against the real target and
the second loss is calculated for predicted target
length against real target length.

During forward-pass, we replace all the tokens in
the target sequence with a special <MASK> token
and give this as an input to the decoder. Decoder
predicts the token for each masked token and the
cross-entropy loss is calculated for each predicted
token.

The length prediction module in the model pre-
dicts the target length using the encoder representa-
tion. Similar to CMLMs in (Ghazvininejad et al.,
2019), length prediction is modeled as a classifica-
tion task with class labels for each possible length.
Cross entropy loss is calculated for length predic-
tion. For our semantic parsing task, label smooth-
ing (Szegedy et al., 2015) was found to be very
critical as the length prediction module tends to
easily overfit and strong regularization methods are
needed. This was because length prediction was a
much well-defined task compared to predicting all
the tokens in the sequence.

Total loss was calculated by taking a weighted
sum of cross entropy loss for labels and length,
with lower weight for length loss.

As training progresses through different epochs,
the best model is picked by comparing the exact
match (EM) accuracy of different snapshots on
validation set.

3 Experiments

3.1 Datasets
We use 3 datasets across various domains to evalu-
ate our semantic parsing approach. Length distri-
bution of each dataset is described using median,
90th percentile and 99th percentile lengths.

TOP Dataset Task Oriented Parsing (Gupta
et al., 2018) is a dataset for compositional utter-
ances in the navigation and events domains. The
training set consists of 31, 279 instances and the
test set consists of 9, 042. The test set has a median
target length of 15, P90 27 and P99 39.

SNIPS The SNIPS (Coucke et al., 2018) dataset
is a public dataset used for benchmarking semantic
parsing intent slot models. This dataset is consid-
ered flat, since it does not contain compositional
queries and can be solved with word-tagging mod-
els. Recently, however seq2seq models have started

to out perform word-tagging models (Rongali et al.,
2020; Aghajanyan et al., 2020). The training set
consists of 13, 084 instances, the test set consists
of 700 instances. The test set has a median target
length of 11, P90 17, P99 21.

DSTC2 Dialogue State Tracking Challenge 2
(Henderson et al., 2014), is a dataset for conversa-
tional understanding. The dataset involves users
searching for restaurants, by specifying constraints
such as cuisine type and price range, we encode
these constraints as slots and use this to formulate
the decoupled representation. The training set con-
sists of 12, 611 instances and a test set of 9890.
The test set has a median target length of 6, P90 9
and P99 10.

3.2 Evaluation

Semantic Parsing Performance For all our
datasets, we convert the representation of either
the compositional form or flat intent slot form to
the decoupled representation (Aghajanyan et al.,
2020) . We compare the model prediction with
the serialized structure representation and look for
exact match (EM).

Benchmarking Latency For the latency analy-
sis for the models trained from scratch: AR Light-
Conv Pointer, NAR LightConv Pointer, and BiL-
STM. We chose these 3 architectures, to compare
NAR vs AR variants of LightConv Pointer, as
well as the best performant baseline: Pointer BiL-
STM (Aghajanyan et al., 2020). We use Samsung
Galaxy S8 with Android OS and Octa-core proces-
sor. We chose to benchmark latency to be consis-
tent with prior work on on-device modeling (Wu
et al., 2019a; Howard et al., 2019). All models
are trained in PyTorch (Paszke et al., 2019) and
exported using Torchscript. We measure wall clock
time as it is preferred instead of other options be-
cause it relates more to real world inference. 1

Latency results can be found in section 4.2.

3.3 Baselines

For each of our datasets, we report accuracy metrics
on the following models:

AR LightConv Pointer: Autoregressive (AR)
LightConv Pointer model to establish an autore-
gressive baseline of our proposed architecture.

1We use the open source framework
https://github.com/facebook/FAI-PEP for latency benchmark-
ing.
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Exact Match Accuracy

Model TOP DSTC2 SNIPS

RNNG (Einolghozati et al., 2018) 80.86 - -

Ptr Transformer (Rongali et al., 2020) 79.25 - 85.43

Ptr BiLSTM (Aghajanyan et al., 2020) 79.51 88.33 -

GLAD (Zhong et al., 2018) - 79.4 -

JointBiRNN (Hakkani-Tür et al., 2016) - - 73.20

Slot Gated (Goo et al., 2018) - - 75.50

Capsule NLU (Zhang et al., 2018) - - 80.90

Ours

NAR LightConv Pointer 80.20 88.16 80.86

AR LightConv Pointer 80.23 88.58 76.43

(a) Exact Match Accuracy on TOP, DSTC2, and SNIPS (b) Median latency on TOP dataset

Figure 5: (a): Exact match (EM) accuracy is shown on the test set across 3 different datasets. We compare our proposed
LightConv Pointer variants (AR and NAR) against various baselines that do not include pre-trained representations. (b): Median
latency of the NAR LightConv Pointer, AR LightConv Pointer, and the Seq2Seq Pointer BiLSTM baseline (termed Ptr BiLSTM
in figure 5a) (Aghajanyan et al., 2020) varying over increasing target sequence length on the TOP dataset.

Mean Length Bucket Exact Match Accuracy (%)
Model EM < 10 EM 10-20 EM 20-30 EM > 30 EM

CMLM Transformer + CLS + Random Masking 70.9 79.3 74.5 35.1 0.4
CMLM LightConv + CLS + Random Masking 78.3 82.9 81.8 53.5 3.9
CMLM LightConv + Conv Length + Random Masking 79.4 83.3 82.5 58.2 5.1
CMLM LightConv + CLS + Mask Everything 78.6 82.7 81.8 56.0 9.4
CMLM LightConv + Conv Length + Mask Everything 79.6 82.2 82.8 61.4 14.9

Table 1: Ablation experiments reporting EM in different buckets based on the target sequence length. Bucket sizes
are 2798, 5167, 992 and 85 respectively. It can be seen the our model setup works significantly better, especially
for longer sequences.

NAR LightConv Pointer: A non-autoregressive
(NAR) variant of the above model to allow for
parallel decoding.

We compare against the best reported numbers
across datasets where the models don’t use pre-
training.

3.4 Model Training Details

During training of our model we use the same base
model across all datasets and sweep over hyper
parameters for the length module and the batch
size and learning rate, an equivalent sweep was
done for the AR variant as well. The base model
we use for NAR LightConv Pointer model uses
5 encoder layers with convolutional kernel sizes
[3,7,15,21,27], where each encoder layer has em-
bedding and convolutional dimensions of 160, 1
self attenion head, and 2 decoder layers with kernel
sizes [7,27], and embedding dimension of 160, 1
self-attention head and 2 encoder-attention heads.

Our length prediction module leverages a two con-
volution layers of 512 embedding dimensions and
kernel sizes of 3 and 9. and uses hidden dimension
in [128,256,512] determined by hyper parameter
sweeps. We also use 8 attention heads for the de-
coupled projection head. For the convolutional
layer, we use lightweight convolutions (Wu et al.,
2019b) with number of heads set to 2. We train
with the Adam (Kingma and Ba, 2014) optimizer,
learning rate is selected to be between [0.00007,
0.0004]. If our evaluation accuracy has not in-
creased in 10 epochs, we also reduce our learning
rate by a factor of 10, and we employ early stop-
ping if the accuracy has not changed in 20 epochs.
We train with our batch size fixed to be 8. We op-
timize a joint loss for label prediction and length
prediction. Both losses consist of label smoothed
cross entropy loss (β is the weight of the uniform
distribution) (Pereyra et al., 2017), our label loss
has β = 0.1 and our length loss has β = 0.5, we
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also weight our length loss lower, λ = 0.25. For
inference, we use a length beam size of k = 5. Our
AR variant follows the same parameters however it
does not have length prediction and self-attention
in encoder and decoder.

4 Results

We show that our proposed non-autoregressive con-
volutional architecture for semantic parsing is com-
petitive with auto-regressive baselines and word
tagging baselines without pre-training on three dif-
ferent benchmarks and reduces latency up to 81%
on the TOP dataset. We first compare accuracy
and latency, then discuss model performance by
analyzing errors by length, and the importance of
knowledge distillation. We do our analysis on the
TOP dataset, due to its inherent compositional na-
ture, however we expect our analysis to hold for
other datasets as well. Non-compositional datasets
like DSTC2 and SNIPS can be modeled by word
tagging models making seq2seq models more rele-
vant in the case of compositional datasets.

4.1 Accuracy

In table 5a we show our NAR and AR variants for
LightConv Pointer perform quite similarly across
all datasets. We can see that our proposed NAR
LightConv Pointer is also competitive with state of
the art models without pre-training: -0.66% TOP,
-0.17% DSTC2, -4.57% SNIPS (-0.04% compared
to word tagging models). Following the prior work
on Non-Autoregressive models, we also report our
experiments with sequence-level knowledge distil-
lation in subsection Knowledge Distillation under
section. 4.3.

4.2 Latency

In figure 5b we show the latency of our model
with different generation approaches (NAR vs AR)
over increasing target sequence lengths on the
TOP dataset. Firstly, we show that our LightConv
Pointer is significantly faster than the BiLSTM
baseline (Aghajanyan et al., 2020), achieving up
to a 54% reduction in median latency. BiLSTM
was used as baseline as that was the SOTA without
pretraining for TOP and Transformers performed
poorly. By comparing our model with AR and
NAR generation strategy, it can be seen that in-
crease in latency with increase in target length is
much smaller for NAR due to better parallelization
of decoder, resulting in up to an 81% reduction in

Length Bucket NAR (%) AR (%) Bucket Size

< 10 82.80 83.13 2798
10-20 84.18 84.36 5167
20-30 62.50 65.72 992
30-40 21.25 41.25 80
> 40 0.00 20.00 5

Table 2: EM accuracy of the NAR LightConv Pointer
(distilled) vs AR LightConv Pointer distilled across dif-
ferent target length buckets along with the number of
instances in each bucket on the TOP dataset.

median latency compared to the BiLSTM model.
Also note that both the LightConv Pointer models
are able to achieve parity in terms of EM Accuracy
compared to the baseline BiLSTM model, while
using many fewer parameters, the BiLSTM model
uses 20M parameters, while the NAR LightConv
Pointer uses 12M and the AR LightConv Pointer
uses 10M.

4.3 Analysis

Ablation experiments We compare the modifi-
cations proposed by this work (LightConv, Conv
length prediction module and Mask everything
strategy) with the original model proposed in
Ghazvininejad et al. (2019) in table 1. The motiva-
tions for each modification was already discussed
in sub-section 2.1. Our mean EM accuracy results
based on 3 trials show the significance of tech-
niques proposed in this paper especially for longer
target sequences.

Errors by length It is known that non-
autoregressive models have difficulty at larger se-
quence lengths (Ghazvininejad et al., 2019). In
table 2, we show our model’s accuracy in each re-
spective length bucket on the TOP dataset. We see
that the AR and NAR model follow a similar distri-
bution of errors, however the NAR model seems to
error at a higher rate for the longer lengths.

Knowledge Distillation Following prior work
(Ghazvininejad et al., 2019; Zhou et al., 2020),
we train our model with sequence-level knowl-
edge distillation (Kim and Rush, 2016). We train
our system on data generated by the current SOTA
autoregressive models BART (Lewis et al., 2019;
Aghajanyan et al., 2020). In table 3 we show the
impact of knowledge distillation in our task on both
the non-autoregressive and autoregressive variants
of LightConv Pointer. These results support prior
work in machine translation for distillation of au-
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Figure 6: Distilled NAR LightConv Pointer Top-K ac-
curacy for exact match (EM) accuracy (blue) and Top-
K length accuracy (orange), as well as the EM accuracy
with gold length (dotted red line) for the TOP dataset.

Model TOP DSTC2 SNIPS

BART (Teacher Model) 87.10 89.06 91.00
Distilled NAR LightConv Pointer 80.89 88.16 81.71
Distilled AR LightConv Pointer 81.53 88.21 80.29

Table 3: EM accuracy of various models leveraging KD
from the teacher BART model on the TOP dataset.

toregressive teachers to non-autoregressive models
showing distillation improving our models on TOP
and SNIPS, however we notice minimal changes
on DSTC2.

The importance of length prediction An im-
portant part of our non-autoregressive model is
length prediction. In figure 6, we report exact
match accuracy @ top k beams and length accuracy
@ top k beams (where top K refers to whether the
correct answer was in the top K predictions) for
the TOP dataset. We can see a tight correlation
between our length accuracy and exact match accu-
racy, showing how our model is bottle necked by
the length prediction.

Providing gold length as a feature, led to an exact
match accuracy of 88.20% (shown in red on figure
6), an absolute 7.31 point improvement over our
best result with our non-autoregressive LightConv
Pointer.

5 Related Work

Non-autoregressive Decoding Recent work in
machine translation has made a lot of progress in
fully non-autoregressive models (Gu et al., 2017;
Ma et al., 2019; Ghazvininejad et al., 2020a; Sa-
haria et al., 2020) and parallel decoding (Lee et al.,
2018; Ghazvininejad et al., 2019; Gu et al., 2019;
Ghazvininejad et al., 2020b; Kasai et al., 2020).

While many advancements have been made in ma-
chine translation, we believe we are the first to
explore the non-autoregressive semantic parsing
setting. In our work, we extend the CMLM to
work for semantic parsing. We make two impor-
tant adjustments: first, we use a different masking
approach where we mask everything and do one-
step generation. Second, we note the importance of
the length prediction task for parsing and improve
the length prediction module in the CMLM.

Seq2Seq For Semantic Parsing Recent ad-
vances in language understanding have lead to
increased reliance on seq2seq architectures. Re-
cent work by Rongali et al. 2020; Aghajanyan
et al. 2020, showed the advantages from using a
pointer generator architecture for resolving com-
plex queries (e.g. composition and cross domain
queries) that could not be handled by word tagging
models. Since we target the same task, we adapt
their pointer decoder into our proposed architecture.
However, to optimize for latency and compression
we train CNN based architectures (Desai et al. 2020
and Wu et al. 2019b) to leverage the inherent model
parallelism compared to the BiLSTM model pro-
posed in Aghajanyan et al. 2020 and more compres-
sion compared to the transformer seq2seq baseline
proposed in Rongali et al. 2020. To further improve
latency we look at parallel decoding through non-
autoregressive decoding compared to prior work
leveraging autoregressive models.

6 Conclusion

This work introduces a novel alternative to autore-
gressive decoding and efficient encoder-decoder
architecture for semantic parsing. We show that in
3 semantic parsing datasets, we are able to speed
up decoding significantly while minimizing accu-
racy regression. Our model is able to generate
parse trees competitive with state of the art auto-
regressive models with significant latency savings,
allowing complex NLU systems to be delivered on
edge devices.

There are a couple of limitations of our proposed
model that naturally extend themselves to future
work. Primarily, we cannot support true beam de-
coding, we decode a single prediction for each
length prediction however there may exist multiple
beams for each length prediction. Also for longer
parse trees and more complex semantic parsing
systems such as session based understanding, our
NAR decoding scheme could benefit from multiple
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iterations. Lastly, though we explored models with-
out pre-training in this work, recent developments
show the power of leveraging pre-trained models
such as RoBERTa and BART. We leave it to future
work to extend our non-autoregressive decoding
for pre-trained models.
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