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Abstract

Recent pre-trained abstractive summarization
systems have started to achieve credible per-
formance, but a major barrier to their use
in practice is their propensity to output sum-
maries that are not faithful to the input and
that contain factual errors. While a number
of annotated datasets and statistical models
for assessing factuality have been explored,
there is no clear picture of what errors are
most important to target or where current tech-
niques are succeeding and failing. We ex-
plore both synthetic and human-labeled data
sources for training models to identify factual
errors in summarization, and study factuality
at the word-, dependency-, and sentence-level.
Our observations are threefold. First, exhib-
ited factual errors differ significantly across
datasets, and commonly-used training sets of
simple synthetic errors do not reflect errors
made on abstractive datasets like XSUM. Sec-
ond, human-labeled data with fine-grained an-
notations provides a more effective training
signal than sentence-level annotations or syn-
thetic data. Finally, we show that our best
factuality detection model enables training of
more factual XSUM summarization models by
allowing us to identify non-factual tokens in
the training data.1

1 Introduction

Hallucination of unsupported or incorrect facts
is a known shortcoming of current text genera-
tion and summarization models (Cao et al., 2018;
Falke et al., 2019). This has been established for
both abstractive summarization models (Maynez
et al., 2020) and extractive summarization models
(Kryscinski et al., 2020; Falke et al., 2019). Past
work has explored using off-the-shelf frameworks
such as entailment models (Falke et al., 2019) or
QA systems (Durmus et al., 2020; Wang et al.,

1Code and data available at https://github.com/
tagoyal/factuality-datasets

2020) to detect and sometimes correct errors in
generated summaries. Another line of recent work
has used synthetically generated data to specifi-
cally train models on the factuality detection task
(Kryscinski et al., 2020; Zhao et al., 2020; Goyal
and Durrett, 2020a). However, these efforts have
focused on different datasets, summarization sys-
tems, and error types, often shedding little light
on what errors state-of-the-art systems are actually
making and how to fix them.

In this paper, we aim to answer two main ques-
tions. First, while synthetic data generation ap-
proaches are specifically designed for factuality
evaluation, do these align with actual errors
made by generation models? We find the an-
swer is no: techniques using surface-level data cor-
ruption (Kryscinski et al., 2020; Zhao et al., 2020;
Cao et al., 2020) or paraphrasing (Goyal and Dur-
rett, 2020a) target inherently different error distri-
butions than those seen in actual model generations,
and factuality models trained on these datasets per-
form poorly in practice. Furthermore, we show
that different summarization domains, CNN/Daily
Mail (Hermann et al., 2015; Nallapati et al., 2016)
and XSum (Narayan et al., 2018) (which differ in
the style of summaries and degree of abstraction),
exhibit substantially different error distributions in
generated summaries, and the same dataset creation
approach cannot be used across the board.

Second, we investigate the best approach for
modeling and learning factuality, particularly for
highly abstractive summarization settings (Narayan
et al., 2018). Specifically, we compare the util-
ity of fine-grained human annotations (such as er-
ror highlighting at the word- or span-level) with
sentence-level factuality annotations. We use a
prior factuality detection model capable of lever-
aging such fine-grained annotations (Goyal and
Durrett, 2020a) and show that these allow us to
more reliably detect errors as well as localize those
errors within generated texts. In fact, fine-grained

https://github.com/tagoyal/factuality-datasets
https://github.com/tagoyal/factuality-datasets
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Reference Summary: An early-medieval gold 
pendant created from an imitation of a 
Byzantine coin that was found in a Norfolk 
field is a “rare find”, a museum expert has said.

Source Article Fragment: Discovered on land at North Elmham, near 
Dereham, the circa 600 AD coin was created by French rulers of the time 
to increase their available currency. […] The pendant was declared 
treasure by the Norfolk coroner on Wednesday.

An 18th century coin believed to be worth more than #1m has been discovered.

A gold pendant created from a necklace was found in a field

Entity-
centric 
(Ent-C)

The pendant was declared a treasure by the Norfolk coroner on Wednesday.

The pendant was declared a treasure by the Ohio coroner on March.

Generation- 
centric 

(Gen-C)

Label

Human 
Annotation

non-factual span non-factual arc (factual arcs not shown)SentencesTraining Dataset
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Figure 1: Examples from the synthetic and human annotated factuality datasets. The entity-centric and generation-
centric approaches produce bad summaries from processes which can label their errors. All models can be adapted
to give word-level, dependency-level, or sentence-level highlights, except for Gen-C.

human annotations are almost essential for any of
our techniques to work well with high-performing
summarizers in the challenging XSUM setting.

Finally, we demonstrate a practical application
for such error localization capabilities beyond in-
terpretibility. Given noisy training data for sum-
marization, we employ a modified training objec-
tive that leverages information about error spans in
gold summaries, derived from factuality models, to
train the summarizer. Our results show that models
trained using this approach are inherently more fac-
tual than standard training objectives when dealing
with error-prone gold datasets.

2 Training Datasets to Compare

We first seek to answer how well synthetic training
data can help address factuality errors observed
in real summarization datasets. Figure 1 shows a
summary of the approaches we consider, which we
describe in detail in Section 2.1 and 2.2.

The summarization models we analyse are
trained on two English-language domains: (1)
XSUM, an “extreme” summarization dataset from
British Broadcasting Corporation (BBC) articles,
where the first sentence of the article is treated as
a summary of the article. These summaries are
highly abstractive in nature: summarization mod-
els trained on this dataset have to learn to model
long-range dependencies and may still be unable
to recover all information in the gold summary.
(2) CNN/DAILYMAIL, a multi-sentence abstrac-

tive summary dataset. The level of abstraction in
this dataset is considerably lower and reference
summaries exhibit high overlap with source arti-
cles (Zhang et al., 2018).

For both of these domains, we compare the dis-
tribution of factuality errors from synthetic training
data with the distribution of observed factuality er-
rors from models trained on that data. In Section 4,
we further dive into factuality models’ performance
in these settings.

2.1 Entity-centric Synthetic Data (Ent-C)
A recent thread of work has focused on lever-
aging synthetic data transformations for evaluat-
ing factuality (Kryscinski et al., 2020), imposing
decoding-time constraints (Zhao et al., 2020), or
post-correction of summaries (Cao et al., 2020).
Each of these approaches assumes that corruption
strategies will yield useful non-factual summaries,
while gold summaries are treated as factual. Fig-
ure 1 illustrates this process: these approaches
apply transformations to either the source article
(shown) or a reference summary to obtain a cor-
rupted summary (Ohio instead of Norfolk).

We call this set of approaches entity-centric
because the transformations largely focus on per-
turbing entities and noun phrases and addressing
these types of hallucinations. The approach from
Kryscinski et al. (2020) has the broadest set of
transformations out of this line of prior work, so
we follow them to generate training examples rep-
resentative of this class of techniques. The data
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Gold: Apple has been accused of misleading 
customers over its new iPad 3.0 version.
Entity 
Swap

Apple has been accused of … over its 
new iPhone 3.0 version.

Number 
Swap

Apple has been accused of … over its 
new iPhone 10 version.

Pronoun 
Swap

Apple has been accused of … over her 
new iPhone version.

Negation Apple has not been accused of … over 
its new iPhone version.

Noise 
Injection

Apple has has been accused of … over 
its new iPhone version.

Paraphrase
Customers have accused Apple of 
misinformation over its new iPad 3.0 
version.

Figure 2: Set of transformations/data corruption tech-
niques from Kryscinski et al. (2020) used to generate
training data for the entity-centric approach.

corruptions or transformations included are entity
and number swapping, pronoun swapping, sentence
negation, and arbitrary noise injection. Addition-
ally, backtranslation is used to paraphrase sum-
maries and further augment the dataset. Figure 2
illustrates the complete set of transformations ap-
plied to the reference summary to construct the
synthetic dataset.

For CNN/DM, we use a dataset of 50k labeled
pairs that is a subset of the data distributed by
Kryscinski et al. (2020); this subset is sufficient
to reproduce the performance of their factuality
classifier. We generate a similarly-sized dataset for
XSUM. Note that although the data creation pro-
cedure produces sentence-level annotations, since
data corruptions are introduced in a rule-based man-
ner, we can highlights spans within the summaries
where the error was actually introduced to get span-
level factuality annotations as well. Figure 1 illus-
trates these spans in red. The figure also demon-
strates how to obtain dependency-level factuality
judgements from error span highlights; what these
mean and how these are derived is explained in
Section 2.2.

2.2 Generation-centric Synthetic Data
(Gen-C)

Goyal and Durrett (2020a) introduce a different
method for obtaining factuality annotations that
more closely align with errors made by generation
models. The core assumption of that generation-
centric approach (see Figure 1) is that gener-

ated paraphrases at the bottom of a paraphrasing
model’s beam (the 10th-best paraphrase) are more
likely to contain factual errors than 1-best gener-
ations, and new information in these generations
can be labeled non-factual. Moreover, these gener-
ations align with realistic errors made by genera-
tion models, unlike purely synthetic entity swaps.
In addition to sentence-level annotations, this ap-
proach also extracts factuality labels correspond-
ing to each dependency arc of the generated
summary. According to the definition given in
Goyal and Durrett (2020a), an arc is factual (or en-
tailed) if the semantic relationship described by that
particular dependency arc is entailed by the source
article. Figure 1 shows a non-factual created →
necklace collapsed dependency arc.

To adapt this data creation approach for our
current experimental setting, we generated para-
phrases of gold summaries using the paraphrase
generation model of Goyal and Durrett (2020b).
We use the 10th-best generated summaries to gener-
ate both sentence-level and dependency-level anno-
tations automatically. See Figure 1 for an example
of this process. We generate 40k training examples
for both CNN/DM and XSUM domains.

2.3 Types of supervision

The two techniques, Ent-C and Gen-C, naturally
generate annotations at different levels. We take
steps to unify these formats to enable apples-to-
apples comparison of them.

For Ent-C as well as human-labeled data (dis-
cussed later), we have access to span highlights
within the summary that are non-factual with re-
spect to the source article. From these, we can
derive dependency-level annotations in the follow-
ing way: for each arc in the summary, if either
the head word or the child word is highlighted as
non-factual, the dependency arc is annotated as
non-factual. Otherwise, the arc is factual. This
process is demonstrated in Figure 1.

Table 1 gives a summary of the type of annota-
tions available for the 3 types of training datasets.
Mapping Gen-C dependency-level annotations to
word-level classification decisions is less well-
defined, so we do not attempt to do this. Our focus
in this work will be on training sentence-level and
dependency-level classification models, which is
possible on all our sources of data.
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Apple lawyer Paul Telstra  held a press conference to address 
accusations of false advertising. 

Apple has been accused of misleading customers in 
Australia over its new iPad 3.0 version.

Source Article US technology firm Apple has offered to refund Australian customers who felt misled about the 4G 
capabilities of the new iPad. The country's consumer watchdog has taken Apple to court for false advertising because the 
tablet computer does not work on Australia's 4G network. Apple's lawyers said they were willing to publish a clarification. 
[…] At a preliminary hearing, Apple lawyer Paul Anastassiou said Apple had never claimed the device would work fully on 
the current 4G network operated by Telstra. Apple says the new iPad works on what is globally accepted to be a 4G network. 
The matter will go to a full trial on 2 May.

Extrinsic New entity introduced
Intrinsic Conflating two 
different entities from the article.

Extrinsic New event/ event attributes 
 Intrinsic Incorrect event descriptors/ 
agents/ attributes

Extrinsic New NP/ NP modifiers 
Intrinsic Incorrect/missing NP 
modifiers

Grammar, Noise, etc.

Example SummariesError Types

NP-EXT

En-EXT

Ev-EXTEn-INT

Ev-INT

NP-INT

Entity 
Related

Event 
Related

Noun- 
Phrase 
Related

Others

Apple lawyer never claimed that the device would work on 
full 4G networks. 

Apple says the iPad works on global global 4G networks in 
Melbourne, Australia. 

Others

Figure 3: Taxonomy of error types considered in our manual annotation. On the right are example summaries with
highlighted spans corresponding to the error types; the first summary is an actual BART generated summary while
others are manually constructed representative examples.

Dataset Source Sent-level Word-level Dep-level

Ent-C D D Dd

Gen-C D D
HUMAN-XSUM D D Dd

Table 1: Summary of the annotations available for each
training dataset. D indicates that annotations at that
granularity can be directly obtained from the data cre-
ation process. Dd indicates that annotations can be de-
rived.

3 Analysis of Error Types

Past work using synthetic training data implicitly
assumes that training a factuality model on such
data will allow it to transfer to realistic settings.
We start by qualitatively analyzing the actual errors
produced by summarization models to see how
these align with the synthetic data, which helps us
better understand this assumption.

We identify four broad categories of errors (see
Figure 3) that we will identify through manual in-
spection. Each of these categories is further divided
into Intrinsic (errors that arise as a result of misin-
terpreting information from the source article) and
Extrinsic (errors that hallucinate new information
or facts not present in the source article), following
the characterization from Maynez et al. (2020).

1. Entity-Related: errors specifically related to
surface realization of named entities, quantities,

dates, etc. Hallucination of new entities is an
extrinsic error; incorrectly combining distinct
entities from the source article is an intrinsic
error (Paul Telstra in Figure 3).

2. Event-Related: errors with incorrect claims
about events in the summary, such as predi-
cates with arguments filled by incorrect enti-
ties. Hallucinations of new events (held a press
conference in Figure 3) are extrinsic; mixed-up
attributes from within the source article are in-
trinsic (apple lawyer never claimed in Figure 3,
incorrect agent).

3. Noun Phrase-Related: errors related to noun
phrases other than the entity-specific errors. Ex-
amples include hallucinating new NP modifiers
(extrinsic) or combining with a wrong modifier
from the article (intrinsic).

4. Other Errors: errors such as ungrammatical
text, repeated words, highly erroneous spans,
etc. that don’t fall into one of the above cate-
gories. These are not broken down by intrin-
sic/extrinsic.

Our taxonomy of summarization errors differs
from that of Lux et al. (2020): theirs is targeted
at the effects on the reader, whereas ours is more
directly tied to the grammatical role of the error,
which we believe is more useful to improve our
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Figure 4: Fractions of examples in each dataset exhibit-
ing different error types (note a single example may
have multiple errors). The graphs show a significant
mismatch between the error distributions of actual gen-
eration models and synthetic data corruptions.

data and our systems. We use the above taxon-
omy to annotate examples from both summariza-
tion domains. For XSUM, we use the state-of-the-
art BART model (Lewis et al., 2020) to generate
summaries followed by manual annotation (100 ex-
amples). For CNN/DM, annotation was done on the
50 summaries across 10 different models collected
by Kryscinski et al. (2020). We additionally do this
annotation for the artificially introduced errors in
Ent-C and Gen-C.2

Results Figure 4 shows the distribution of er-
rors for these different settings. First, we see
that summarization models from different do-
mains make substantially different types of er-
rors. Models trained on XSUM learn to hallucinate
new content and consequently produce extrinsic
errors: 60% of the errors made by BART mod-
els are extrinsic. One reason for this is that the
XSUM data was automatically constructed and con-
tains gold summaries that are noisy or non-factual
(75% of gold summaries, according to Maynez et al.
(2020)). In addition to this, the gold summaries are
also highly abstractive, and XSum-trained sum-
marization models learn to combine informa-

2Discussion of inter-annotator agreement is included in
Appendix A.

tion from different parts of an article, leading
to models making long-range dependency errors.
This misinterpretation of content is largely respon-
sible for the 40% of the errors which are intrinsic.

On the other hand, the CNN/DM summarization
datasets contain human written gold summaries
and are therefore generally much more reliable.
The models trained on this dataset reflects that.
Only 14% of the generated summaries contains er-
rors in the CNN/DM validation set from (Kryscin-
ski et al., 2020). Of these 14%, the bulk of the
errors produced are intrinsic errors, primarily
event-related caused by sentence compression or
fusion, which is common in this dataset (Lebanoff
et al., 2019). For example, the two Delaware boys
are in critical condition at the U.S. Virgin Islands
should instead be ...at the hospital after a trip to
the U.S. Virgin Islands. The generation models
rarely makes extrinsic hallucinations, and we ob-
served that these are even less common in recent
systems like PEGASUS (Zhang et al., 2020a). This
aligns with the findings from prior work analysing
summarization models (Fabbri et al., 2021).

Comparing these with synthetic error distribu-
tions, we can see that synthetic datasets do not re-
flect the error distributions of actual generation
models. To the extent that Ent-C covers intrinsic
event-related errors, these are almost exclusively
from pronoun swaps. Moreover, because CNN/DM

and XSUM feature such different errors, a synthetic
dataset inspired by observed errors on one setting
is not likely to be effective on the other. Later
(in Section 5.1), we provide further evidence of
this mismatch for both datasets: models trained on
this synthetic data perform poorly when evaluated
on actual generation errors. Also, models trained
on human annotated XSUM training data do not
transfer to the CNN/DM domain.

4 Factuality Models to Compare

Next, we investigate how factuality models trained
on these synthetic datasets perform on real gen-
eration errors. Given a document D, a factuality
model predicts whether all the information in a gen-
erated summary S is supported by the source docu-
ment D.3 We consider two factuality modeling for-
mulations: (1) a Sentence-Factuality model that

3Factuality is ill-defined: whether inferences, world knowl-
edge, implicatures, etc. are viewed as factual is not standard-
ized and is dependent on human annotators for each dataset or
task. However, existing generation models only rarely exhibit
tricky cases along these dimensions.
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Seven games involving Nimes were arrested.

nsubj:pass

Seven games involving Nimes were investigated. [SEP]

Electra

d(S)

E(D; S)

ra

ya = 0(non-factual)

Figure 5: The dependency arc entailment (DAE) model
from (Goyal and Durrett, 2020a). A pre-trained en-
coder is used to obtain arc representations; these are
used to predict arc-level factuality decisions.

makes a factuality judgment at the entire summary-
level, and (2) an Arc-Factuality model (Goyal and
Durrett, 2020a) that makes independent factuality
judgments for dependency arcs of the generated
summary, which are then combined to obtain a
sentence-level decision. This helps in localizing
factuality errors and was shown to be more effec-
tive than sentence-level models in prior work.4

4.1 Sentence-Factuality Model

Prior work (Kryscinski et al., 2020) used a BERT-
based sequence-pair classification model (Devlin
et al., 2019) as follows: the source document D
and the generated summary S are concatenated and
fed into a pre-trained transformer encoder model
(BERT, ELECTRA, etc.). The representation of
the [CLS] token is fed into a linear and softmax
layer that outputs a probability distribution over the
output labels (y = {Factual, Non-Factual}). This
model can be trained on any data with summary-
level factuality labels.

4.2 Arc-Factuality model

The Dependency Arc Entailment (DAE) model
(Goyal and Durrett, 2020a) evaluates factuality
at the dependency arc level. Let d(S) be the
dependency-parse of the generated summary S.
For each arc a ∈ d(S), the DAE model predicts
whether the relationship described by the arc is
entailed by the input document. Note that these
factuality judgements are made independently for
each arc in the summary, and can differ across arcs
within the same summary. For instance, in the ex-

4We describe models for single-sentence summaries to
align with the available human-annotated test set (described
later in Section 5.1). However, it is straightforward to extend
these frameworks for multi-sentence summaries.

ample in Figure 5, the arc arrested ← games
is non-factual: in context, it is not the case that
the games are being arrested. However, the arc
seven ← games is supported by the input (there
are seven games) and hence, entailed.

The model architecture is detailed in Figure 5.
First, the document D and summary S are concate-
nated and fed through a pre-trained encoder E. Arc
representations ra are derived for each dependency
arc a ∈ d(S): ra = [E(D;S)ah ;E(D;S)ac ].
Here, ah and ac correspond to the head and child
words of arc a respectively. The arc representation
ra is fed into a classification layer that outputs a
probability distribution over the output labels (ya =
{Factual, Non-Factual}). Finally, summary-level
judgments are extracted from these arc-level de-
cisions: if any dependency arc is non-factual, the
generated summary is labeled as non-factual.

The DAE model is trained from arc-labeled ex-
amples of the form (D,S, {ya}a ∈ d(S)). These
are derived from either synthetic or human-labeled
data, as described in Section 2.

DAE with weak supervision (DAE-Weak)
DAE training requires gold annotations at the
dependency-level; however, such fine-grained an-
notations may not always be available. We extend
the DAE framework to address this. The core idea
behind our approach is that the sentence-level la-
bels naturally impose loose constraints on the arc-
level labels.

The constraints are as follows: for a factual ex-
ample, all individual arcs in the summary must be
factual. For a non-factual example, at least one arc
must be non-factual, and this arc should be one not
present in the source document. The DAE-Weak
model is trained to maximize the marginal likeli-
hood of all labelings that obey these constraints.

Let F be the set of all arcs that should be factual
(contains all arcs with sent-label = 1 and arcs com-
mon with the source article for sent-label = 0). The
above constraints are formulated as the following
training objective:

L = log

[∏
a∈F

P (ya = 1 | D,S)

]

+ log

1− ∏
a∈D(S)\F

P (ya = 1 | D,S)


The second term in the above equation is the prob-
ability of predicting at least one non-factual arc in
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Ent-C Gen-C

Majority Label 50 50

Kryscinski et al. (2020) 74.1 -
Sent-Factuality 72.3 64.4

DAE 76.7 72.1
DAE-Weak 75.2 71.1

Table 2: Label-balanced accuracy of factuality models
when trained on synthetic factuality training datasets
in the CNN/DAILYMAIL domain. Performance is re-
ported on the human-annotated test set from Kryscinski
et al. (2020).

a non-factual summary.5

5 Experiments

5.1 Evaluation of Synthetic Training Datasets

CNN/DAILYMAIL First, we compare the perfor-
mance of the three models (Sent-Factuality, DAE
and DAE-Weak) trained on the two synthetic fac-
tuality datasets (outlined in Section 2) on the
CNN/DAILYMAIL domain. We compare their per-
formance on the human-annotated test dataset from
Kryscinski et al. (2020). The test set contains
human-annotated sentence-level factuality judge-
ments for 503 (article, summary) pairs for sum-
maries generated using 10 different generation
models. We use the validation set provided by
the authors to choose the best model checkpoint
across all settings. Similar to the original paper, we
report class-balanced accuracy values.

Table 7 outlines our results. The results show
that models trained on Ent-C perform slightly bet-
ter than those trained on Gen-C, but many of the
systems are in the same range, with accuracy values
of around 75%. However, the reported accuracy
values on held-out Ent-C/Gen-C examples are con-
sistently over 90% (results included in Appendix
B). This demonstrates that while models trained on
these factuality datasets are able to fit the synthetic
data distributions well, these are inherently differ-
ent from actual generation errors. The Appendix
also includes graphs of how the human annotated
dev set performance varies with training iterations,
showing that constant performance on the held-
out training set corresponds with highly fluctuating
performance on the human annotated data, further

5This techniques resembles posterior regularization
(Ganchev et al., 2010); however, these constraints are en-
forced in a hard way on individual examples rather than in
expectation at the corpus level. It can also be viewed as an
instance of constraint-driven learning (Chang et al., 2007).

Train Data Majority Sent-Fact DAE DAE-Weak

Ent-C 50 50.9 51.2 53.6
Gen-C 50 54.2 53.0 51.6

Table 3: Performance of factuality models trained
on synthetic factuality datasets in the XSUM domain.
Label-balanced accuracy is reported on 500 examples
from the human-annotated test set from Maynez et al.
(2020).

indicating that these settings are not identical.

XSUM Next, we similarly evaluate the synthetic
datasets and factuality models on the more chal-
lenging XSUM domain. Again, we evaluate on a
human annotated dataset collected by prior work
(Maynez et al., 2020). The dataset contains span
highlights indicating hallucinated/incorrect content
or information with respect to the source article
for 4 different summarization models trained on
the XSUM domain (as well as for gold summaries).
Figure 1 illustrates this. Similar to prior work, if
any word in a summary is marked as hallucinated,
we mark the sentence as non-factual. Therefore,
for XSUM-HUMAN, the annotation is available at
both the sentence-level and span-level.

In total, this dataset contains 2500 (A,S) pairs
(along with their factuality labels). We use 500
examples from these to construct our test dataset.
The remaining 2000 examples are used to train
models, explained in Section 5.2.

Table 3 outlines the results. Unlike on CNN/DM,
we see that all models trained on synthetic factual-
ity datasets perform very poorly, achieving close
to the majority label baseline. Again, the perfor-
mance on the held-out synthetic datasets was ob-
served to be very high (see Appendix B). There is a
fundamental difference between the errors that
are produced by XSUM summarization models
and those introduced by artificial data corrup-
tion mechanisms. Other data that more closely
resembles the generation errors is needed to train
factuality models in this setting.

5.2 Human Annotated Dataset Evaluation

To investigate whether human annotated data is
useful to train factuality models, we train our 3
factuality models on the remaining 2000 human an-
notated examples from XSUM-HUMAN. In order
to train DAE model on this dataset, we use the span
highlights to derive dependency-level gold annota-
tions, using the same strategy from 2.3 (illustrated
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Model Balanced-Acc

Sent-Factuality 65.6
DAE 78.7

DAE-Weak 70.9

Table 4: Comparison of different factuality models
when trained on human annotated data and evaluated
on XSUM (compare to Table 3). Fine-grained annota-
tions provide a big boost in performance.

in Figure 1).
The results are shown in Table 4. Comparing

these with results from Table 3, we see that a small
number of human annotated examples can outper-
form large auto-generated training datasets by a
large margin. Notably, we see that availability of
fine-grained factuality annotations significantly
boosts performance, with models that leverage
that information (DAE) significantly outperform-
ing sentence-level models. Even in the absence
of fine-grained annotations, we see that the DAE-
Weak model that decomposes the error computa-
tion and explicitly tries to localize errors is better
than the sentence-level model.

However, these factuality models do not trans-
fer to CNN/DM: the best model achieves an accu-
racy of 55.9, substantially lower than 76.7% in
Table 7. This demonstrates that summarization
models make different types of errors on different
domains, and data collection and modelling efforts
for factuality should account for these differences.

6 Localization of errors

Our evaluation so far has focused on the sentence-
level performance of factuality models. Next, we
evaluate the models’ ability to localize errors within
the generated summary as well as show how such a
capability can be leveraged to train less error-prone
summarization models.

6.1 Localizing Factuality on XSUM

We evaluate the error localization performance of
the models at two granularity levels: (1) Depen-
dency arc-level and (2) Word-level.6 Table 5 out-
lines the results of our experiments.

The DAE model outperforms the DAE-Weak
model at both levels of granularity. This reiter-
ates our earlier claim that fine-grained annota-
tions lead to better factuality models with more

6We can approximately extract word-level decision from
the dependency-level predictions: if any arc containing word
w is non-factual, then w is non-factual; otherwise, it is factual.

Model Precision Recall F1

Dependency-level

DAE 69.7 78.2 73.7
DAE-Weak 54.9 76.6 63.9

Word-level

DAE 57.5 74.7 65.0
DAE-Weak 56.2 62.3 59.1

DAE (best-ckpt) 62.0 83.9 71.3

Table 5: Error localization comparison of the different
factuality models. The DAE model achieves high recall
for both word-level and dependency-level factuality.

reliable localization. However, the DAE-Weak
model is able to achieve comparable recall at the
dependency-level; both models are more recall-
oriented, which is desirable for certain applications.

For Section 6.2, we select our DAE model’s
best checkpoint on the test data (best-ckpt), which
achieves a recall of 83.9, a significant gain if we
directly optimize for this metric.

6.2 Downstream Applications

Localizing errors potentially allows for post-hoc
correction (Zhao et al., 2020; Cao et al., 2020);
however, repairing a summary to be fully factual is
a very hard problem and past work has focused on
a subset of errors as a result. Instead, we show that
even our imperfect error localization techniques
can be used to meaningfully improve the training
data for summarization. We use our DAE model
to identify unsupported facts in the XSUM training
data and ignore the corresponding tokens when
training our summarization model.

Training on a subset of tokens Summarization
models are trained to maximize the log likeli-
hood of the summary given the source article:
L =

∑
i=1:|S| log p(Si|D,S1:i−1). When a word

in the summary is non-factual, training on it en-
courages the model to hallucinate new content. In
our approach, we modify the training objective
to only maximize the likelihood of factual words
in the summary, factuality being determined by
the DAE model from the previous sections: L =∑

i=1:|S|Mi log p(Si|D,S1:i−1) where Mi = 1 if
the word wi is factual, otherwise Mi = 0. A sim-
ilar objective has been used by prior work (Song
et al., 2020b) to encourage the model to copy words
present in the source.

We compare our approach with two systems: a
baseline model trained without this masking and
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Model Word-ER ↓ Sent-ER ↓ Human ↑

Baseline 32.2 74.0 37.4
Loss trunc 31.1 70.9 39.1

DAE-based (ours) 23.7 61.4 46.5

Table 6: Comparison of the different summarization
models. Our proposed approach achieves significantly
lower word error rates, sentence error rates and are
rated higher by human annotators.

a model using the loss truncation technique well-
suited for noisy datasets from Kang and Hashimoto
(2020). All models are trained on 50k examples
using BART summarization model initialized from
the BART-XSUM-LARGE checkpoint. For all these
approaches, summaries generated on the original
XSUM test set (11k examples) are compared.7

Evaluation First, we use our trained DAE model
to evaluate the performance of our summarization
models. That is, we generate summaries for all
examples in the test set using the three models; the
DAE model is then used to compute the word error
rate (fraction of words determined to be non-factual
according to the DAE model) and the sentence
error rate (fraction of sentences determined to be
non-factual). Table 6 outlines the results, which
show that our DAE-masked training leads to better
factuality performance.

Next, we perform human evaluation to compare
the factuality of summaries generated by the three
models using Amazon Mechanical Turk. We ran-
domly sampled 50 articles from the test set and
generated summaries corresponding to the 3 mod-
els.8. We asked 7 human annotators to classify each
(article, summary) pair as either factual (score =
1) or non-factual (score = 0). An average score
is computed for each summary by aggregating
the 7 annotator scores. Table 6 reports the aver-
age summary scores for the 50 (article, summary)
pairs across the 3 summarization models. The re-
sults show that the proposed approach outperforms
both the baseline model and the loss truncation ap-
proach. This demonstrates that factuality models
trained on a small number of annotated exam-
ples can be used to train factual summarization
models, even when the underlying summariza-
tion dataset is noisy.

7To ensure fair comparison between the different models,
we removed the examples from XSUM-HUMAN used to train
the factuality models from our test set.

8See Appendix E for more details about the task design.

7 Related Work

Earlier work on abstraction (Barzilay et al., 1999;
Carenini and Cheung, 2008) and compression
(Knight and Marcu, 2000; Berg-Kirkpatrick et al.,
2011; Woodsend and Lapata, 2012; Durrett et al.,
2016) in summarization has typically focused
evaluation on content selection and grammatical-
ity, with little heed paid to factuality. Human
evaluation similarly focused on content selection
(Gillick and Liu, 2010). Methods such as Pyramid
(Nenkova and Passonneau, 2004) that could have
in principle been used to evaluate factuality were
primarily used to understand content selection.

Recent work has explored different methods for
enforcing factuality: modifying the model, such as
encoding SRL structures in the input (Cao et al.,
2018), post-hoc correction (Dong et al., 2020), or
constrained decoding (Song et al., 2020a; Mao
et al., 2020). However, these techniques fundamen-
tally struggle to handle the whole range of factual
errors; factuality is a fuzzy notion and cannot be
easily encapsulated into a set of discrete rules.

Faithfulness and factuality have also been tack-
led in related tasks, including summarizing radiol-
ogy reports (Zhang et al., 2020b) and data-to-text
generation tasks (Tian et al., 2019). Another recent
line of work has looked at fact verification (Thorne
et al., 2018; Nie et al., 2019; Atanasova et al., 2020).
In this literature, the claims are usually human-
authored and a straightforward statement of a fact,
whereas generated summaries might feature claims
buried in nominal modifiers like two-time winner.

8 Conclusion

In this work, we showed that existing synthetic
datasets are not well-suited to factuality evaluation
of recent summarization models (like BART) in
challenging domain (like XSUM). Models trained
on human-annotated data, especially those that
leverage fine-grained annotations, can enable train-
ing of more factual summarization models. We
hope future work will explore better modeling and
data creation to address the pressing issues in cur-
rent systems.
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A Manual Annotation of Errors

In Section 3, we outline the error distributions of
multiple factuality datasets. The distributions were
obtained by combing manual annotations from two
authors of this paper. On a common set of 50
summaries annotated by both authors, we observe
the following: (1) Both authors agreed on what
spans/hallucinations within a summary constitute
an error 74% of the times. (2) In cases when both
authors marked a common span as erroneous, they
agreed on the error category 84% of the time.

B Synthetic Dataset Performance on
held-out samples

Section 5.1 evaluates the performance of models
trained on the synthetic datasets on human an-
notated test sets for two summarization domains.
Here, we report the model performance on held-
out tests datasets that are constructed in the same
way as the training datasets. Table 7 presents these
results. For both domains, we see that the mod-
els report very high performance indicating that
they are able to fit the distribution of the synthetic
domain. However, we see in Section 5.1 that the
performance is significantly lower on actual gen-
eration outputs, with close to majority label base-
line performance on the more challenging XSUM

domain. This means that the two datasets have
inherently different error distributions.

Figure 6 shows the balanced accuracy values
reported by the model at different points during
its training, on both the synthetic and human-
annotated test sets. The graph clearly shows
that performance on the human annotated dataset
(CNN/DM) has high variance, compared to the held-
out dataset accuracies which has a steadily increas-
ing performance. This behavior was observed for

Ent-C Gen-C

CNN/DM

Sent-Factuality 96.4 91.2
DAE 95.4 97.3

DAE-Weak 94.8 97.8

XSUM

Sent-Factuality 96.1 97.9
DAE 94.3 97.1

DAE-Weak 95.3 95.9

Table 7: Performance of factuality models when trained
on synthetic factuality training datasets on their held-
out test sets.
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Figure 6: Performance of different train checkpoints on
a held-out dataset and on the human annotated dev set
for models trained on the synthetic data in the CNN/DM
domain.

both ENT-C and GEN-C domains; however, ENT-
C exhibited more variance. This indicates that the
synthetic datasets are targeting a different error
distribution, and optimizing for the synthetic distri-
bution does not necessarily improve results on the
actual generation errors.

C Transferability of human annotations
across generation models within the
same domain

In Section 5.2, we demonstrate that for highly ab-
stractive domains like XSUM, we require human
annotated data to train factuality models. How-
ever, even within the same summarization domain
(say XSUM), it is prohibitively expensive to collect
human annotations for each summarization model
that we may wish to evaluate. Here, we investi-
gate whether the factuality annotations collected
for one summarization model be used to identify
factuality errors in summaries generated by other
models. These experiments are done within the
same domain (XSUM)

We create new training and test sets from the
XSUM-HUMAN dataset. We create 2 types of train-

https://doi.org/10.18653/v1/2020.acl-main.458
https://doi.org/10.18653/v1/2020.acl-main.458
https://doi.org/10.18653/v1/2020.acl-main.458
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ing datasets for each of the 5 models annotated in
that dataset: (1) All-models train set: This contains
(A,S) pairs from all models, including the mod-
els being evaluated (2000 pairs from other models,
200 pairs from same model) and (2) Other-models
train set: This contains (A, S) pairs from the rest
of the models (2000 pairs). Evaluation is done on
the remaining 300 (A,S) pairs for each summariza-
tion model. We train the best performing factuality
model, i.e. the DAE model for all these settings.

BERTS2S PTGEN TCONVS2S TRANS2S

All 79.6 75.8 76.7 84.5
Others 82.3 77.0 74.1 85.3

Table 8: Performance of models trained on All-models
dataset vs Other-models dataset.

Results are outlined in table 8. These show that
the performance is similar for both All-models and
Other-models settings for all models considered.
This indicates that for the given set of summariza-
tion models considered (all trained on the same
summarization training dataset), human annota-
tions from one generation model can be used to
evaluate factuality for other models.

D Implementation Details

We use the Huggingface Library (Wolf et al., 2019)
for all our experiments. All our factuality models
are trained by fine-tuning the pre-trained ELEC-
TRA (electra-base-discriminator, 110M parameters)
model. We perform 5 hyper parameter trials to se-
lect the best set of hyper parameters, varying the
learning rate. The final hyper-parameters are:

Computing Infrastructure 32GB NVIDIA V100 GPU
Max Seq Length 512
Optimizer Adam
Optimizer Params β = (0.9, 0.999), ε = 10−8

Learning Rate Decay Linear
Learning rate 2e-5
Weight Decay 0
Warmup Steps 0
Max Gradient Norm 1
Batch size 8
Epochs 3

Table 9: Hyperparameters used for fine-tuning the fac-
tuality models.

For models with high variance (sent-factuality
model from section 5.2), we report average of 3
runs by initializing with a random seed.

The hyperparameters for training the BART sum-
marization models are given in Table 10. Parame-
ter settings used during decoding to generate sum-
maries on the test set are also included

For training

Computing Infrastructure 32GB NVIDIA V100 GPU
Max Input Seq Length 512
Max Output Seq Length 128
Optimizer Adam
Optimizer Params β = (0.9, 0.999), ε = 10−8

Learning Rate Decay Linear
Learning rate 2e-5
Weight Decay 0
Warmup Steps 0
Max Gradient Norm 1
Batch size 8
Epochs 10

For decoding

Num beams 6
Length Penalty 2
No repetition size 3-grams
Min-Length 10
Max Length 60

Table 10: Hyperparameters used for fine-tuning and de-
coding using the BART-based summarization models.

E Human Study

Figure 7 provides an screenshot of the Amazon
Mechanical Turk tasks used to obtain human judge-
ments for factuality of generated summaries, as out-
lined in Section 6.2. Workers were presented with
a source article and 3 corresponding summaries.
Each of these summaries were marked as Factual
or Non-Factual. Additionally, they were asked to
highlight the span within the summary that was
erroneous.
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Figure 7: Screenshot of the Mechanical Turk experiment. Given an input articles, the annotators were tasked with
evaluating the factuality of 3 model generated summaries on a binary scale.


