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Abstract

Scaling conversational personal assistants to a
multitude of languages puts high demands on
collecting and labelling data, a setting in which
cross-lingual learning techniques can help to
reconcile the need for well-performing natural
language understanding (NLU) with a desider-
atum to support many languages without incur-
ring unacceptable cost. In this paper, we show
that automatically annotating unlabeled utter-
ances using machine translation in an offline
fashion and adding them to the training data
can improve performance for existing NLU
features for low-resource languages, where a
straightforward translate-test approach as con-
sidered in existing literature would fail the la-
tency requirements of a live environment. We
demonstrate the effectiveness of our method
with intrinsic and extrinsic evaluation using a
real-world commercial dialog system in Ger-
man. We show that 56% of the resulting au-
tomatically labeled utterances had a perfect
match with ground-truth labels. Moreover, we
see significant performance improvements in
an extrinsic evaluation settings when manually
labeled data is available in small quantities.

1 Introduction

1.1 Motivation and Background

Voice-controlled personal assistants such as Ama-
zon Alexa or Google Assistant have scaled to a
large number of languages and see a constant in-
flux of new functionalities that are exposed via
the natural language interface. As a result, they
have seen much interest around the development of
multi-lingual and cross-lingual learning techniques
that take this setting into consideration.

Beyond a setting where no target language
data is available (language expansion, or cross-
lingual bootstrapping), ongoing development also
involves use cases where new functionalities from
a resource-rich language (typically English) as the

ApplianceOffIntent: 

Turn offUtterance: in   the

Slots: Device LocationO

light hallway

O

the

ActionTrigger O

Figure 1: An example NLU annotated utterance. Non-
slots are labeled with O (Other).

source language have to be integrated into exist-
ing training sets in the target language (feature
expansion), or even settings where target language
training data of current functionalities exists in
small quantities, but accuracy falls short of its
aim and an influx of unlabeled data in the tar-
get language exists and could be used for contin-
uous model improvement (feature improvement).
In this work, we consider feature improvement use
case for natural language understanding (NLU)
in low-resource languages. We define the task
of NLU as the combination of: (1) Intent Clas-
sification (IC), which classifies an utterance into
a fixed set of intent labels (e.g. ApplianceOff),
and (2) Slot Labeling, which classifies slot val-
ues into a predefined set of slot types (e.g.
SongName) (Weld et al., 2021). For example, as
shown in Figure 1, a valid NLU annotation for the
English utterance “turn off the light in the hallway”
would be: ApplianceOff: (turn, ActionTrigger),
(off, ActionTrigger), (light, Device), (hallway,
Location), where ApplianceOff is the intent la-
bel, and ActionTrigger, Device and Location

are the slot types. We leverage machine transla-
tion to automatically annotate unlabeled utterances
with intent and slot labels. Collecting and labeling
data for NLU is an expensive and time-consuming
process, hardly scalable to an increasing number of
languages without automation.

1.2 State of the Art and its Limitations

Many works on academic datasets naturally address
the language expansion setting, including zero-shot
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learning results, or involve a multilingual learning
approach where similar amounts of training data for
each of the languages are available from the start.
However, we want to argue that the setting where
target-language data is available but considerably
smaller is particularly relevant in practice. Such an
imbalance is often due cost considerations (manual
annotation is expensive).

A first line of work on cross-lingual bootstrap-
ping has combined annotation transfer with (to
varying extent) either machine translation (MT)
or parallel corpora. Generally, MT has been har-
nessed either in translate-train or translate-test set-
tings. While in translate-train, source training data
e.g., in English is translated into the target lan-
guage (Gaspers et al., 2018), in translate-test, in-
coming unlabeled utterances in the target language
are translated into the source language and then
source NLU model is used to collect labels. For
the feature improvement use case, on one hand,
translate-train ignores the influx of unlabeled ut-
terances in the target language. On the other hand,
a translate-test approach is not directly applica-
ble to production use in a conversational agent be-
cause a system with MT in the loop would fail
the latency requirements for live use. As a con-
sequence, we propose to use the label projection
from the source language as a way to get more reli-
able labels than the existing target language model
on less confident-cases, and augmenting the tar-
get language training data with these automatically
labeled examples.

In sentiment classification, Mihalcea et al. (2007)
compare translation of a lexicon with translating
the training data (translate-train) or translating
the data to be annotated (translate-test) for cross-
lingual bootstrapping of sentiment classification.
Akbik et al. (2015) investigate cross-lingual boot-
strapping in the context of Semantic Role Labeling,
where a parallel corpus is first annotated with En-
glish labels which are then projected and filtered to
gain a target language training corpus. In dialogue
systems and conversational agent training, He et
al. (2013) show that adding some MT distortion
to the source-language training data in a translate-
test setting can be beneficial. Gaspers et al. (2018)
show that a translate-train approach that uses ma-
chine translation in conjunction with filtering based
on MT confidence can be successful in achieving
a smaller error rate, with a combination of trans-
lated and target-language manually annotated data

achieving the best possible error rate.
A second line of work concerns the use of

shared representations across languages to cross-
lingual transfer learning or learning of multilin-
gual representations, as demonstrated by Upad-
hyay et al. (2018) who compare translate-train
and translate-test approaches with zero-shot and
minimally supervised multilingual approaches. It
shows that the helpful bias from shared representa-
tions gives a boost in the minimally supervised
setting but is especially helpful when very few
target-language examples are available. Johnson
et al. (2019) and Do et al. (2019) show that these
effects generally also hold at a larger scale, and
that training data selection also helps when transfer
learning is used instead of machine translation in a
translate-train setting.

Finally, and partially relevant for feature im-
provement when a smaller-than-source amount of
target data is available, we have approaches that
perform data augmentation on the smaller target-
language training data: Malandrakis et al. (2019),
and Jolly et al. (2020) explore the use of sentence-
to-sentence paraphrasing and interpretation-to-
sentence generation approaches to generate labeled
paraphrases of conversational NLU training data.

1.3 Approach and Contribution

In this paper we investigate whether a translate-
test approach of doing machine translation and an-
notation projection of target-language utterances
with labels from the more resource-rich source lan-
guage can be used in a feature improvement setting,
where target-language training data is available but
in smaller quantities than in the source language.

Our approach, depicted in Figure 2, makes use
of MT in conjunction with an NLU model already
trained for the source language to annotate unla-
beled utterances. We assume that this reference
NLU model was previously trained on the fea-
tures of interest for the target language. Similar
to Gaspers et al. (2018), we also assume access to
an MT system trained on general-purpose parallel
data, but instead of relying on MT from reference to
target language, (forward MT), we consider MT in
the opposite direction i.e. from target to reference
language (backward MT). Our goal is to cheaply
improve NLU features using readily available MT
and NLU models. For example, we do not require
in-domain MT model.

Experimentally, we considered a scenario with
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DE -> EN MT System

Intent: ApplianceOff
DE Annotation: Mach|ActionTrigger das|Other licht|Device
im|Other flur|Location aus|ActionTrigger

Label Projection

Intent: ApplianceOff
EN Annotation: Turn|ActionTrigger off|ActionTrigger
the|Other light|Device in|Other the|Other hallway|Location

DE: Mach das Licht im Flur aus

EN: Turn off the light in the hallway

EN NLU System

Figure 2: Given an unlabeled utterance in some target language e.g., German, our method translates it into a
reference language e.g., English using MT, labels it with intent and slot types using an (EN) NLU model, and
projects the labels back onto the unlabeled utterance.

English (EN) as reference language and German
(DE) as target language, and carried out both an
intrinsic and an extrinsic evaluation, where we se-
lected a set of five diverse NLU features to improve.
We compared against a baseline approach that gen-
erates synthetic training examples directly in the
target language.

We demonstrate the effectiveness of our method
using a real-world commercial dialog system in
German. We show that 56% of the resulting auto-
matically labeled utterances had a perfect match
with ground-truth labels. We also show that using
our method leads to 90% reduction in manually
labeled data, while achieving better performance.
In the remainder of the paper, Section 2 contains
details on the methods used, whereas Section 3 de-
scribes our experimental setup. Section 4 discusses
the results of our experiments.

2 Method

Given unlabeled utterances in a target language
e.g. German (DE), for example “mach das licht
im flur aus”, our goal is to automatically annotate
them with an intent label, and slot types for every
token, as shown in the example in Figure 1. To this
end, we consider the pipeline shown in Figure 2,
which consists of three components: (1) Machine
translation system, (2) NLU model, and (3) Label
projection model. First, the MT system translates
the unlabeled utterances into a reference language
e.g. English. For the German utterance above,
a valid English translation would be “turn off
the light in the hallway”. Note that we do not
make any assumption on the architecture of the
MT system, be it statistical or neural, or on the

way it is trained. We assume, however, a label
projection model trained on the same data as
the MT system. In a standard MT bootstrapping
setting (Gaspers et al., 2018) this is usually a
word alignment model, either embedded in the
MT system itself (as in phrase-based MT we
used in Section 3) or trained as a stand-alone
component. After translation, we use an English
NLU model on the translated utterances in order
to get predictions for the intent label and the
slot types.1 For the example above, the result
of this step would be the following annotated
utterance: [ApplianceOff turn/ActionTrigger
off /ActionTrigger the/Other light/Device
in/Other the/Other hallway/Location]. Finally,
we use the word alignment model to project the
slot types from the (EN) labeled utterances onto
the unlabeled (DE) utterances. For example, if
the two words ‘light’ and ‘licht’ are aligned, the
slot label of ‘light’ is copied over onto ‘licht’.
In our experiments (Section 3), we make use of
alignment models trained for the MT system to
avoid building standalone alignment models. For
the intent label, we simply copy it over from the
English labeled utterance to the German unlabeled
one.

For reasons of simplicity and better interpretabil-
ity, we used statistical machine translation (SMT)
as well as linear models (CRF and maximum en-
tropy) for the NLU component, however we believe
that the improvements gained with this method
would carry over to a case where neural MT and
transformer-based NLU components are used.

1Note that this NLU model is pre-trained independently
and it is completely decoupled from our pipeline.
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3 Experimental Setup

In our experiments, we translate target-language
(German) utterances from live conversational agent
usage using an existing MT system (§3.1), tag these
using the English NLU system (§3.2) and project
the labels back onto the target language using word
alignments. We report results using first intrinsic
evaluation (How well does the translate-test ap-
proach perform in labeling the utterances?) and
then a full evaluation in a feature improvement set-
ting, and we evaluate these using a Semantic Error
Rate metric (SemER, §3.3).

3.1 MT System

We used an internal phrase-based MT system
trained with Moses (Koehn et al., 2007). The sys-
tem comprises a general-purpose MT model trained
on DE-EN parallel data. We plan to investigate the
usage of neural machine translation (NMT) mod-
els in the future. To better match the spoken user
utterances of an NLU system, training data of the
MT system is converted into spoken form using an
internal written-to-spoken converter. For example,

“1994” is converted to “nineteen ninety four”. The
MT model was fine-tuned on 4K in-domain par-
allel utterances. To project slot type labels from
the machine-translated English utterance (labeled
by the English NLU model) to the unlabeled Ger-
man utterance, we make use of the word alignment
model trained for the MT system (Dyer et al., 2013).
We opted for using a general-purpose MT model
since it is readily available, and hence cheaper (as
opposed to building in-domain MT model). Also,
using phrase-based MT enabled us to leverage the
word alignment model trained for MT for our label
projection step.

3.2 NLU System

We used Conditional Random Fields (Lafferty et al.,
2001) for slot labeling, and a Maximum Entropy
classifier for the IC task (Berger et al., 1996). The
English NLU system was trained on a large dataset
of NLU-annotated utterances. The training data
covers multiple domains e.g., HomeAutomation,
with a diverse set of intents and slot types, with
more than 200 intents and several hundreds of slot
types. For example, intents like PlayMusic and
slot types like City and SongName. The quality
of the reference NLU model (e.g., English) is im-
portant for our pipeline to work. Our assumption
is that English NLU models perform well, while

Feature #Auto labeled #Test utterances
utterances

DailyBriefing 21, 894 3, 530
PlayMusic 194, 180 66, 959
SendMessage 1, 690 1, 783
SmartHome 108, 210 29, 056
SetNotification 26, 074 9, 616

Table 1: The size of automatically labeled and test data
for each feature.

NLU models for other languages still suffer (most
industrial NLP applications support English pretty
well).

3.3 SemER Evaluation Metric

Following Gaspers et al. (2018) we report the Se-
mantic Error Rate (SemER), which is computed as
follows:

SemER =
#(slots+ intent errors)

#slots in reference+ 1

Errors correspond to the number of insertions, dele-
tions and substitutions for slots and the intent in a
recognized utterance.

Note that as the task of NLU is our main focus,
we report evaluation metrics on the NLU rather
intrinsically evaluating each component of our ap-
proach e.g., the MT model. We plan to invest in
this direction in the future. Moreover, while in-
trinsic evaluation measures of individual compo-
nents would assess their quality e.g., BLEU for MT,
there is no correlation between these measures and
NLU metrics. In other words, having higher BLEU
scores does not necessarily mean lower SemER.

3.4 Utterance Dataset

To simulate a continuous model improvement sce-
nario for DE, we selected a diverse set of features
that belong to different domains:

1. DailyBriefing, which enables users to play
daily briefing e.g., news,

2. PlayMusic, which enables playing music,

3. SendMessage, which allows users to exchange
messages,

4. SmartHome, which enables users to control
home appliances,

5. SetNotification, which enables users to set no-
tifications and reminders.
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Model Size of training data SemER (%)
DE 6.4M 41.4
DE_0.5 3.7M 37.4
DE_0.7 3.2M 37.8
DE_grammars 1.0M 57.0

Table 2: The effect of filtering the data based on NLU
confidence. Using 0.5 achieved best results.

Features span across multiple intents with differ-
ent slot labels. For example, SmartHome supports
the intents of turning an appliance on and off, and
supports the slot lables of appliance names and
their locations. We assume that the five features
have been just launched either using grammars,
very little labeled data or using the approach of
Gaspers et al. (2018). Our goal is to continuously
improve performance on the five features using our
method.

For each feature, we randomly selected 10,000
manually labeled utterances from its training data.
Next, we generated five splits out of the 10,000
utterances: 100, 500, 1000, 5000 and 10,000. Each
split corresponds to the size of data, for example,
the split of 100 indicates that 100 manually labeled
utterances are used. For each split, we trained two
DE NLU models:

• Baseline model, which contains only manu-
ally labeled feature data, and

• Combined model, which contains both man-
ually and automatically labeled feature data.

Note that the training data of the NLU models con-
tain data for other features that were launched al-
ready. We report absolute SemER difference be-
tween the two models.

We collected 3,651,039 unlabeled DE utterances
in order to run the MT-based automatic annotation.
Table 1 shows the size of the automatically labeled
data for each feature. We also collected test data
for each feature (Table 1).

4 Results

4.1 Accuracy of Automatic Labeling
To intrinsically measure the accuracy of our
method, we collected 1.2 million labeled utterances
from features already launched in a real-world com-
mercial dialog system in German, and simulated
a scenario where the corresponding labels were
not available. We then used our method to label
them: we translated them into English, ran the

English NLU model on them, and projected back
all the predicted labels. We observed that 56.35%
of the resulting automatically labeled utterances
had a perfect match with ground-truth labels (i.e.,
they agreed on both the intent label and all the slot
types), while 81.87% of them agreed on the intent
only, with at least one unmatched slot type.

4.2 Effect of English NLU Confidence
We studied the effect of the English NLU model’s
prediction confidence. We collected 6.4M unla-
beled German utterances and then used our method
to annotate them. Each prediction (intent and slot
labels) is associated with a score ∈ [0, 1] that re-
flects the confidence of the English NLU model
about the prediction. We then trained three DE
NLU models: (1) DE, where confidence equals
0.0 i.e., 6.4M utterances are kept, (2) DE_0.5, and
(3) DE_0.7, where utterances whose confidence
score is greater than 0.5 and 0.7 are kept, respec-
tively. The three models were tested on the same
test set with 120K German utterances that were
manually transcribed and annotated with intents
and slot types. The test set spans multiple domains
with different intents and slot types. As shown in
Table 2, DE_0.5 outperformed other baselines, in-
dicating the importance of using NLU confidence
scores. We attribute this to the fact that some trans-
lations are malformed, and hence incorrectly la-
beled by the English NLU model. When incorrect
labels are propagated to the DE NLU model, they
negatively impact performance. We set the EN
NLU model’s confidence score to 0.5 for the sub-
sequent experiments.

We also trained an NLU model using ran-
domly sampled utterances from manually curated
grammars (DE_grammars), which achieved 57.0
SemER and was outperformed by DE_0.5, with
19.6 absolute SemER difference.

4.3 Feature Improvement
Table 3 shows the results on the five features,
showing the SemER difference between a base-
line (trained with the given number of hand-
annotated utterances) and a version with our pro-
posed method, combining the hand-annotated ut-
terances with additional data which has been auto-
matically labeled.

Combining manually and automatically labeled
data improves performance across features and
splits. The greatest gains are achieved for smaller
splits i.e., 100 and 500, which suggest that our
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Split DailyBriefing PlayMusic SendMessage SmartHome SetNotification
100 −38.65 −26.98 −13.25 −74.34 −19.42
500 −10.72 −20.17 −1.47 −19.22 −9.97

1000 −7.24 −14.96 −0.88 −8.11 −7.5
5000 −1.69 −0.97 −0.21 +3.71 −0.18

10,000 −0.63 +2.72 −0.37 +3.12 −0.06

Table 3: SemER difference between the baseline and the combined model on the five features (lower is better).
Across features, using automatically labeled data improved performance.

method is especially effective for an early fea-
ture improvement. For example, the difference
in SemER between the baseline and the combined
model is −38.65 on DailyBriefing at 100 split. For
PlayMusic, SmartHome and SetNotification, the
SemER value of the Combined model at 100 split
is better than the one achieved by the baseline at
1000 split i.e., a reduction in labeled data of 90%.

As the size of manually labeled data increases
(i.e., larger splits), the positive effect of the auto-
matically labeled data decreases. For example, on
DailyBriefing, the SemER difference between the
baseline and Combined models is −0.63 absolute
at 10,000 split. For the largest split at 10,000, the
automatically labeled data hurts the performance
for PlayMusic and SmartHome, with SemER dif-
ference of +2.72 and +3.12, respectively. This is
largely due to cumulated errors in both the MT sys-
tem and the label projection module, which inject
noise in the downstream NLU task. To mitigate
this, we are currently investigating ways to automat-
ically combine training data with varying quality
for NLU. We also carried out similar experiments
to improve the same features in French and so far
observed the same trends. We are planning to ex-
pand our evaluation to other languages.

5 Conclusion

This paper presents a new method to automatically
annotate utterances with intents and slot types, lead-
ing to faster and cheaper early improvement of
features. Our method harnesses existing MT, En-
glish NLU and word alignment models which have
been trained on general-domain data but adapted
to our specific use case through preprocessing and
fine-tuning. Intrinsic evaluation results show that a
translate-test approach is a viable way to get data
labels in a way that is independent from the target
language production system, whereas our extrinsic
evaluation results suggest that the approach is es-

pecially useful when a given feature has not seen
extensive use yet.

We plan to address in future work whether cer-
tain properties of a given feature can predict the
viability of a translate-test approach in general and
data augmentation with translated examples in par-
ticular, and whether the use of neural machine trans-
lation models would suggest modifications to this
approach, as translations are often better but align-
ment results can be less clear-cut.
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