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Abstract

In commercial dialogue systems, the Spoken
Language Understanding (SLU) component
tends to have numerous domains thus context
is needed to help resolve ambiguities. Previ-
ous works that incorporate context for SLU
have mostly focused on domains where con-
text is limited to a few minutes. However,
there are domains that have related context that
could span up to hours and days. In this pa-
per, we propose temporal representations that
combine wall-clock second difference and turn
order offset information to utilize both recent
and distant context in a novel large-scale setup.
Experiments on the Contextual Domain Clas-
sification (CDC) task with various encoder ar-
chitectures show that temporal representations
combining both information outperforms only
one of the two. We further demonstrate that
our contextual Transformer is able to reduce
13.04% of classification errors compared to a
non-contextual baseline. We also conduct em-
pirical analyses to study recent versus distant
context and opportunities to lower deployment
costs.

1 Introduction

Voice assistants such as Amazon Alexa, Apple Siri,
Google Assistant and Microsoft Cortana provide
a wide range of functionalities, including listening
to music, inquiring about the weather, controlling
home appliances and question answering. To under-
stand user requests, the Spoken Language Under-
standing (SLU) component needs to first classify
an utterance into a domain, followed by identifying
the domain-specific intent and entities (Tur, 2011;
Su et al., 2018a), where each domain is defined for
a specific application such as music or weather. In
commercial systems, the number of domains tend
to be large, resulting in multiple possible domain in-
terpretations for user requests (Kim et al., 2018; Li
et al., 2019). For example, "play american pie" can
be interpreted as either playing a song or a movie.

Also, "what does your light color mean?" can be
classified as Question Answering, or as a complaint
which does not necessarily require a meaningful
response.

Multiple prior works have attempted to incor-
porate context in SLU to help resolve such am-
biguities. However, these works often report re-
sults on datasets with limited amount of training
data (Bhargava et al., 2013; Xu and Sarikaya, 2014;
Shi et al., 2015; Liu et al., 2015), or resort to synthe-
size contextual datasets (Gupta et al., 2018, 2019)
that may not reflect natural human interaction. Fur-
thermore, the majority of these works focus on do-
mains where session context is recent and collected
within a few minutes. Though this setup works well
for domains that bias towards immediate preceding
context such as Communication (Chen et al., 2016)
and Restaurant Booking (Henderson et al., 2014;
Bapna et al., 2017), there are also domains that
have useful context spanning over hours or even up
to days. In the SmartHome domain, it is natural for
users to turn on T.V., watch for a couple of hours
and then ask to turn it off. In the Notifications
domain, users setup alarms or timers which occur
hours and days away. We hypothesize that distant
context, if properly utilized, can improve perfor-
mance in instances where recent context cannot.

In this paper, we propose temporal representa-
tions to effectively leverage both recent and distant
context on the Contextual Domain Classification
(CDC) task. We introduce a novel setup that con-
tains both recent and distant context by including
previous 9 turns of context within a few days, so
that context not just come from minutes but can
also come from hours or days ago. We then pro-
pose temporal representations to indicate the close-
ness of each previous turn. The key idea of our
approach is to combine both wall-clock second dif-
ference (Conway and Mathias, 2019) and turn order
offset (Su et al., 2018b) so that a distant previous
turn can still be considered as important.



42

We conduct experiments on a large-scale dataset
with utterances spoken by users to a commercial
voice assistant. Results with various encoder ar-
chitectures show that combining both wall-clock
second difference and turn order offset outperforms
using only one of them. Our best result is achieved
with Transformer of 13.04% error reduction, which
is a 0.35% improvement over using only wall-clock
second difference and 2.26% over using only turn
order offset. To understand the role of context in
CDC, we conduct multiple empirical analyses that
reveal the improvements from context and discuss
trade-offs between efficiency and accuracy.

To summarize, this paper makes the following
contributions:

• A novel large-scale setup for CDC that show-
cases the usefulness of distant context, com-
paring to previous works whose datasets are
limited to thousands and context within min-
utes.

• Temporal representations combining wall-
clock second and turn-order offset informa-
tion that can be extended and applied to other
tasks.

• Empirical analyses that study context from 4
different aspects to guide future development
of commercial SLU.

2 Related Work

2.1 Contextual SLU
Context in commercial voice assistants may be-
long to widely different domains, as users expect
them to understand their requests in a single ut-
terance, which is different from the conventional
dialogue state tracking task (Williams et al., 2016).
Earlier works seek better representations of con-
text, such as using recurrent neural networks (Xu
and Sarikaya, 2014; Liu et al., 2015), or memory
networks to store past utterances, intents, and slot
values (Chen et al., 2016). Recently, Gupta et al.
(2019) proposes a self-attention architecture that
fuses multiple signals including intents and dia-
log act with a variable context window. On other
aspects of contextual SLU, Naik et al. (2018) pro-
poses a scalable slot carry over paradigm where
the model decides whether a previous slot value is
referred in the current utterance. For rephrased user
requests, Rastogi et al. (2019) formulates rephras-
ing as the Query Rewriting (QR) task and uses

sequence-to-sequence pointer generator networks
to perform both anaphora resolution and DST. In
contrast, our work proposes temporal representa-
tions to utilize both recent and distant context for
domain classification.

2.2 Temporal Information

Most previous works use recurrent neural networks
to model natural turn order (Shi et al., 2015; Gupta
et al., 2018). Assuming context follows a decay-
ing relationship, Su et al. (2018b) presents several
hand-crafted turn-decaying functions to help the
model focus on the most recent context. Kim and
Lee (2019) further expands upon this idea by learn-
ing latent turn-decaying functions with deep neural
networks. On the other hand, wall-clock informa-
tion has not been exploited until the recent Time
Mask module proposed in Conway and Mathias
(2019). From the lens of wall-clock, they show
that context importance does not strictly follow a
decaying relationship, but rather occurs in certain
time spans. Our work combines both wall-clock
and turn order information and models their rela-
tionship.

3 Methodology

In this section, we describe our model architecture
in Section 3.1 and our proposed temporal represen-
tations in Section 3.2.

3.1 Model Architecture

Our model is depicted in Figure 1 and consists of
3 components: (1) utterance encoder, (2) context
encoder, and (3) output network. We next describe
each component in detail.

Utterance Encoder We use a bi-directional
LSTM (Hochreiter and Schmidhuber, 1997) and
pre-trained word embeddings to encode the cur-
rent utterance into an utterance embedding. For
pre-trained word embeddings, we use FastText (Bo-
janowski et al., 2017) concatenated with Elmo (Pe-
ters et al., 2018) trained on an internal SLU dataset.

Context Encoder Context encoder is a hierar-
chical model that consists of a turn encoder and
a sequence encoder. For each previous turn, turn
encoder encodes 3 types of features: (1) utterance
text, (2) hypothesized domain, and (3) hypothe-
sized domain-specific intent, which are also used
in Naik et al. (2018). Utterance text is encoded
using the same model architecture as in utterance
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Figure 1: Overview of our model and proposed temporal representations.

encoder. Hypothesized domain and intent are first
represented using one-hot encoding then projected
into embeddings. We stack the 3 representations,
perform max-pooling then feed into a 2 layer fully
connected neural network to produce a turn repre-
sentation. Temporal representations (Section 3.2)
are then applied to indicate their closeness. Fi-
nally, sequence encoder encodes the sequence of
temporal encoded turn representations into a sin-
gle context embedding that is fed to the output
network.

Output Network Output network concatenates
utterance embedding and context embedding as in-
put and feeds into a 2 layer fully-connected network
to produce classification logits.

Response Time Considerations State-of-the-
art contextual models encode the entire context and
utterance to learn coarse and fine relationships with
attention mechanisms (Gupta et al., 2019; Heck
et al., 2020). Since commercial voice assistants
need to provide immediate responses to users, en-
coding context and utterance is computationally
expensive such that the system would not respond
in-time at industrial-scale (Kleppmann, 2017). We
separate context encoder from utterance encoder
so that we can encode context when user is idle
or when the voice assistant is responding. More-
over, the hierarchical design allows us to cache
previously encoded turn representations to avoid
re-computation.

3.2 Temporal Representations

In this section, we present the temporal represen-
tations used in our experiments. For the following,
given previous turn t and its turn features ht(c)
from turn encoder, we denote its wall-clock second
difference and turn order offset as d∆sec, d∆turn.
For operators, we denote � and ⊕ as element-wise
multiplication and summation.

Time Mask (TM) (Conway and Mathias, 2019)
feeds d∆sec into a 2 layer network and sigmoid
function to produce a masking vector m∆sec that
is multiplied with the context feature hTc , and show
that important features occur in certain time spans.
The equations are given as follows.

e∆sec =Ws2 · φ(Ws1 · d∆sec + bs1) + bs2,
(1)

m∆sec = σ(e∆sec), (2)

htTM (c) = m∆sec � ht(c), (3)

Here Ws1,Ws2, bs1, bs2 are weight matrices and
bias vectors, φ and σ are ReLU activation and
sigmoid functions, and htTM (c) denotes the time
masked features. We also considered binning sec-
ond differences instead of working with d∆sec.
However, we find that binning significantly under-
performs compared to the latter.

Turn Embedding (TE) We first represent
d∆turn as a one-hot encoding then project it into a
fixed-size embedding e∆turn. We then sum the turn
embedding with context features as in positional
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Temporal Representations Max-pooling LSTM Transformer

– 4.41 11.02 10.18
Time Mask 7.62 11.91 12.69
Turn Embedding 7.09 11.44 10.78
Turn Embedding over Time Mask 4.59 12.51 13.04
Time Mask over Turn Embedding 7.56 12.21 12.75
Time and Turn Embedding 10.13 11.31 11.79

Table 1: ARER % (↑) results computed against an utterance-only baseline with different temporal representations
and sequence encoders. "–" indicates that no temporal representation is applied. Best results are boldfaced.

encoding in Transformer (Vaswani et al., 2017).

htTE(c) = e∆turn ⊕ ht(c), (4)

It is natural and intuitive to assume that a closer
context is more likely to correlate with the cur-
rent user request. Assuming we are given user
requests “Where is Cambridge?" and “How is the
weather there?". It is more likely that the user is in-
quiring about weather in Cambridge if the second
request immediately follows the first, compared
to the case where these two requests are hours or
multiple turns apart. For a proper comprehension
of closeness, both wall-clock and turn order infor-
mation are needed, as having the same wall-clock
difference would require us to know the turn or-
der difference, and vice versa. Here we propose 3
representations that combines the two information
based on different hypotheses.

Turn Embedding over Time Mask (TEoTM)
provides turn order information on top of seconds.
We do so by first masking the context features us-
ing Time Mask then mark the relative order with
Turn Embedding. This variant assumes that the past
context is important despite the fact that they might
be distant in seconds.

htTEoTM (c) = e∆turn ⊕ (m∆sec � ht(c)), (5)

Time Mask over Turn Embedding (TMoTE)
applies wall-clock second and turn offset informa-
tion in reverse order of TEoTM by first summing
Turn Embedding and then multiplying it with Time
Mask. This assumes that second is more important
than turn order as it can overrule by masking when
needed.

htTMoTE(c) = m∆sec � (e∆turn ⊕ ht(c)), (6)

Time and Turn Embedding (TaTE) Our third
variant assumes wall-clock second and turn offset

have equal importance by removing the masking
sigmoid of Time Mask in Equation (1) and sum
with Turn Embedding.

htTaTE(c) = e∆sec ⊕ e∆turn ⊕ ht(c), (7)

4 Results

In this section, we first describe our experimen-
tal setup in Section 4.1, present our main results
in Section 4.2, followed by our analyses in Sec-
tion 4.3.

4.1 Experimental Setup

Dataset We use an internal SLU dataset that is
privatized so that users are not identifiable. Our
training, validation and test set contains on the
order of several million, several hundred thousand,
and one million utterances, respectively. For each
utterance, we collect the previous 9 turns within a
few days as context. Our dataset has a total of 24
domains that includes common voice assistant use
cases (Liu et al., 2019).

Metric For evaluation, we report Accuracy Rela-
tive Error Reduction Percentage (ARER %). ARER
% is computed with the following equation.

ARERctx =
(1−ACCutt)− (1−ACCctx)

1−ACCutt
,

(8)

Here ACCutt is the accuracy of an utterance-
only baseline that masks context information, and
ACCctx is the accuracy of a contextual model.

Implementation Details We set both FastText
and Elmo embedding dimensions to 300 and hid-
den dimension to 256 for all neural network layers,
hypothesized domain and intent, time and turn em-
beddings. We used a bi-directional LSTM for turn
encoder, uni-directional LSTM for sequence en-
coder and set both to 2 layers. For Transformer,
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(a) (b)

Figure 2: (a) Left figure plots the ARER % (↑) with confidence intervals of our best model on different time interval
bins. (b) Right figure depicts the percentage of each bin within our dataset.

we used 1 layer with 4 heads. Dropout rate is set
to 0.2 for all fully-connected layers, and we used
Adam (Kingma and Ba, 2015) as optimizer with
learning rate set to 0.001. For utterances that do
not have context, we use a special <PAD> token
to pad the turn features. For consistency, we re-
port results averaging 3 random seeds. We use the
MXNet (Chen et al., 2015) framework to develop
our models.

4.2 Main Results

In Table 1, we report performance of temporal
representations with sequence encoders (1) Max-
pooling, (2) LSTM, and (3) Transformer, computed
with respect to an utterance-only baseline. For
all sequence encoders, temporal representations
combining both wall-clock second difference and
turn order offset achieved best results. Specifically,
Time and Turn Embedding works best for Max-
pooling, and Turn Embedding over Time Mask
works best for LSTM and Transformer. Trans-
former achieved the best results of 13.04%, im-
proving 0.35% over using wall-clock and 2.26%
using turn offset. Similar trends are observed with
LSTM and Max-pooling, with both information
outperforming using only one. In general, having
Time Mask performs better than Turn Embedding,
suggesting that wall-clock is more important than
turn offset in CDC. Also, despite being a natu-
ral time series encoder, temporal representations
further improve LSTM performance by up to an
additional 1.49%.

4.3 Analysis

In this section, we conduct analyses to better un-
derstand the role of context in CDC.

Utt Hyp-Domain Hyp-Intent ARER % (↑)

3 3 3 13.04

7 3 3 12.70
3 7 3 10.20
3 3 7 12.70

3 7 7 5.37
7 3 7 11.27
7 7 3 10.73

7 7 7 0.00

Table 2: Analysis on turn features used in Context En-
coder. 3 indicates the feature is used. 7 indicates the
feature is masked.

Recent & Distant Context To understand
whether distant context actually improves SLU, we
use the second difference of the first previous turn
d1

∆sec to indicate absolute closeness and divide the
test set into 3 non-overlapping interval bins: (1)
< 1 min, (2) < 24 hr, (3) > 24 hour, where (1)
represents recent context and (2), (3) are the more
distant context. We also include a fourth bin (4) No
Context for utterances that do not have context. Fig-
ure 2 depicts performance of our best model from
Section 4.2 on each bin. While improvements are
largest for (1), there are still statistically significant
improvements for the more distant (2) and (3), sug-
gesting that distant context is indeed helpful, albeit
decreases with distance and at a smaller scale. In-
terestingly, our best model performed worse on (4),
suggesting that models trained with context exhibit
certain biases when evaluating without context.

Amount of Context Next, we analyze the num-
ber of previous turns needed for CDC. We trained
and evaluated our best model from Section 4.2
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Previous Turn Current Turn

Utterance buy stuff Utterance t.v.
Hyp-Domain Shopping Baseline SmartHome 7

Seconds 6.0 Best Model Shopping 3

Utterance play <entity1> Utterance <entity1> by <entity2>
Hyp-Domain Song Baseline AudioBooks 7

Seconds 54.0 Best Model Song 3

Utterance please read audio collection Utterance start <entity>
Hyp-Domain AudioBooks Baseline DeviceControl 7

Seconds 6235.0 (1 hr, 43 mins) Best Model AudioBooks 3

Utterance turn on <entity> Utterance turn off <entity>
Hyp-Domain SmartHome Baseline DeviceControl 7

Seconds 212421.0 (2 days, 11hrs) Best Model SmartHome 3

Table 3: Examples showing predictions of an utterance-only baseline and our best model from Section 4.2 with
context from the first previous turn. Our best model is able to make correct predictions by utilizing context from
recent and distant time ranges when the current turn utterance is ambiguous. We anonymize entities and modify
certain utterances for user privacy. Hypothesized domain-specific intents and additional previous turns are not
included for clarity.

using 1 and 5 previous turns, which resulted in
ARER% of 10.00%, and 12.86%, respectively.
Compared to 13.04% of using 9 previous turns,
this suggests that while more than 1 previous turn
is needed for performance, using 5 turns is com-
parable as using 9 turns and can potentially save
caching costs.

Where Does Context Improve SLU Most
CSLU works are motivated by rephrases and refer-
ence resolution (Chen et al., 2016; Rastogi et al.,
2019). Noticing that in both phenomena users fol-
low up their requests within the same domain, we
split our test set based on whether the previous
turn’s hypothesized domain (PTHD) is same as or
different from the target domain. Our model largely
improved ARER % by 22.82% on the PTHD Same
set, and has comparable performance of −0.03%
on the PTHD Different set. This suggests that our
model learns to carryover previous domain predic-
tion when the current utterance is ambiguous and
not over rely on them. We also include several ex-
amples with recent and distant context in Table 3
that exhibits this behavior.

Types of Context Information Last, we con-
ducted an ablation study of turn features used in
the context encoder. We mask 1 or retain 1 of the
3 features and show results in Table 2. The most
effective feature we observed is the previously hy-
pothesized domain, as masking domain yielded the
worst results, and keeping domain yielded the best

results. Since domain is a crude label, we hypothe-
size that previous domain predictions are sufficient
for CDC, and utterance text will be more useful for
more fine-grained tasks such as intent classification
or slot labeling.

The upside of this analysis comes from deploy-
ment costs. Since pre-trained Elmo embeddings
are computation heavy and may require GPU ma-
chines, using only hypothesized domain as turn
features can largely lower the costs as we can infer-
ence using CPUs while sacrificing little accuracy.

5 Conclusions

We presented a novel large-scale industrial CDC
setup and show that distant context also improves
SLU. Our proposed temporal representations com-
bining both wall-clock and turn order information
achieved best results for various encoder architec-
tures in a hierarchical model and outperforms us-
ing only one of the two. Our empirical analyses
revealed how previous turn helps disambiguation
and showed opportunities on reducing deployment
costs.

For future work, we plan to explore more turn
features such as responses, speaker and device in-
formation. We also plan to apply temporal represen-
tations on other tasks, such as intent classification,
slot labeling, and dialogue response generation.
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6 Ethics Statement

Our dataset is annotated by in-house workers who
are compensated with above minimum wages. An-
notations were acquired for individual utterances
and not for aggregated sets of utterances. To pro-
tect user privacy, user requests that leak personally-
identifiable information (e.g., address, credit card
number) were removed during dataset collection.
As our model is a classification based which output
is within a finite label set, incorrect predictions will
not cause harm to the user besides an unsatisfactory
experience.
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