
Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 72–79
June 6–11, 2021. ©2021 Association for Computational Linguistics

72

Proteno: Text Normalization with Limited Data for Fast Deployment in
Text to Speech Systems

Shubhi Tyagi, Antonio Bonafonte, Jaime Lorenzo-Trueba, Javier Latorre∗

Amazon Alexa AI

Abstract
Developing Text Normalization (TN) systems
for Text-to-Speech (TTS) on new languages
is hard. We propose a novel architecture to
facilitate it for multiple languages while us-
ing data less than 3% of the size of the data
used by the state of the art results on En-
glish. We treat TN as a sequence classifi-
cation problem and propose a granular tok-
enization mechanism that enables the system
to learn majority of the classes and their nor-
malizations from the training data itself. This
is further combined with minimal pre-coded
linguistic knowledge for other classes. We
publish the first results on TN for TTS in
Spanish and Tamil and also demonstrate that
the performance of the approach is compara-
ble with the previous work done on English.
All annotated datasets used for experimenta-
tion will be released at https://github.
com/amazon-research/proteno.

1 Introduction
Text-to-speech synthesis (TTS) consists of a num-
ber of processing steps that control the conversion
of input text to output speech. Text normalization
(TN) is usually the first step for any TTS system.
It is defined as the process of mapping of written
text to its spoken form. As per Taylor (2009), semi-
otic class denotes things like numbers, dates, times,
etc. that are written differently from the way they
are verbalized. TN is the process of verbalizing
instances of such classes.

Most systems are entirely based on hard coded
rules which are neither scalable across languages
nor easy to maintain. Many machine learning based
techniques have been proposed for TN but they
still have heavy dependency on encoded linguis-
tic knowledge or require considerable amount of
annotated data making it difficult to scale.

The contributions of this paper are as follows:
i) Presenting Proteno, a novel architecture for TN

∗Work done while at Amazon

with a granular tokenization mechanism, which
requires minimal language specific rules, curtails
unacceptable errors and is transferable to a large
extent to multiple languages, ii) Establishing an
architecture which can be used to benchmark TN
baselines for multiple languages with limited anno-
tated data, iii) Release of annotated TN datasets for
Tamil and Spanish suitable for TTS systems.

As no benchmark datasets or baselines exist for
TN for TTS in Spanish and Tamil, we curated
datasets for both and evaluated Proteno on them.
We also use the best performing system for TN in
English and compare its results with previous work.

2 Related Work

In spite of the success of deep learning approaches
in other natural language processing tasks, the prob-
lem of TN for TTS systems still remains a chal-
lenging one (Sproat and Jaitly, 2016). Work has
been done to solve TN by pure encoder-decoder
methods particularly Recurrent Neural Networks
(Sproat and Jaitly, 2017; Zhang et al., 2019). How-
ever, authors have shown that even though such
models can perform well overall, occasionally they
can make “unacceptable errors" like reading “$2"
as “two pounds" and thus rendering the system
unsuitable for industrial TTS applications.

To curtail such unacceptable errors, previous
work based on semiotic classification (Sproat et al.,
2001; Ebden and Sproat, 2014; Zhang et al., 2019),
are encoded with measures like weighted Finite-
state Transducers (FSTs) introduced by Sproat
(1996). FSTs revolve around creating a weak cov-
ering grammar which encompasses language spe-
cific lexical information. Although such grammars
are easier to create as compared to a full blown
grammar, they still need prior knowledge of the
language and the language specific rules need to
be coded in the system (Sodimana et al., 2018).
To completely induce FST from training data, as
suggested by Zhang et al. (2019), diverse and large

https://github.com/amazon-research/proteno
https://github.com/amazon-research/proteno

73

amount of data is required. The data should repre-
sent all the forms a particular token can appear in a
given language. Such requirements for all semiotic
classes limit the reproducibility of such models for
a new language with limited annotated data. Other
language-agnostic approaches (A. Conkie and A.
Finch, 2020) also need large amounts of data (5M
sentences for each language) as parallel corpus and
can also result in unacceptable errors.

Our approach curtails such errors by breaking
down complex entities like dates into multiple to-
kens by a granular tokenization mechanism and
also by limiting which tokens can be accepted into
a class. This mechanism, we will see, also enables
the system to rely more on data and disambiguate
context for normalizations without requiring the
knowledge to be specifically coded in the system.

3 Proposed Approach
The target normalization can be directly predicted
from unnormalized text with a seq2seq architec-
ture (Sutskever et al., 2014) by treating TN as a
machine translation task (Zhang et al., 2019; Mans-
field et al., 2019) with the previously mentioned
limitations. A way to limit the unacceptable errors
in such systems would be to limit the kind of nor-
malizations the network can generate for a token
(Sproat and Jaitly, 2017).

On the other hand, solutions based on semiotic
classification convert TN into a sequence tagging
problem, where each class has associated mecha-
nisms for normalizing the corresponding unnormal-
ized token(s). It produces verbalizations by first
suitably tokenizing the input, then classifying the
tokens, and then verbalizing each token according
to its corresponding class. These approaches often
have a complex tokenization mechanism which is
not easily transferable across languages and also
need all the possible classes to be exhaustively de-
fined manually.

We solve both these problems by a granular tok-
enization mechanism which extends the concept of
semiotic classification to a granular level wherein
each unique unnormalized token to normalized to-
ken mapping can have a class of its own. The
majority of the classes and their appropriate nor-
malizations are automatically learnt from data.

Our classes represent whether a particular token
is of a certain type and convert unnormalized to-
kens into their normalized form. The goal is to man-
ually define the minimum possible set of classes
and all the other classes will be automatically learnt

from the data. The system learns when each class
should be applied. The solution is divided into 4
stages: i) Tokenization of unnormalized data, ii)
Data preparation, iii) Classifying unnormalized to-
kens into correct classes, iv) Normalizing tokens
using the corresponding class.

3.1 Tokenizer
Typically, TN approaches either assume pre-
segmented text by the rule-based standard (Ebden
and Sproat, 2014) which identifies multiword se-
quences as single segment like dates (Jan. 3, 2016)
according to pre-defined semiotic classes or train a
neural network for tokenization together with a nor-
malization model (Zhang et al., 2019). Proteno’s to-
kenization on the other hand, has elementary rules
and is deterministic. The segmentation is done by
splitting the sentences on spaces and then further
splitting the text when there is a change in the Uni-
code class. E.g., after splitting on spaces, a token
like ‘C3PO’ will be further split into [‘C’,‘3’,‘PO’].
Such tokenization enables the system to accurately
split complex entities like dates while eliminating
the need for a manually defined complex class for
them. The same tokenization mechanism was used
for all the languages tested. Hence, it is transfer-
able across a large group of languages which have
words separated by spaces.

3.2 Data Preparation
While collecting training data, first the unnormal-
ized data is tokenized according to the granu-
lar tokenization mechanism described above and
then each token is annotated with its correspond-
ing normalized form. Thus, we obtain unnor-
malized token to normalized token mappings.
E.g., a date occurrence ‘1/1/2020’ tokenized as
[‘1’,‘/’,‘1’,‘/’,‘2020’] is annotated as [‘first’,‘of’,
‘January’,‘’,‘twenty twenty’]. For such data annota-
tion, linguistic experts are not needed and this can
be done by anyone proficient in the target language.

From our experiments, we observe that for TN
the diversity in data is more important than the
quantity of data. It is better for the model to see
different kinds of normalizations. Hence, while col-
lecting the data, we try to ensure decent coverage
of different semiotic classes by having at least 25%
of tokens which need normalization (i.e., non-self).

3.3 Classes
Each class has 2 functions: i) Accepts: This func-
tion returns a Boolean value of whether a token is
accepted by the class. E.g., cardinal class accepts

74

only numeric tokens, ii) Normalize: This is a deter-
ministic function that transforms the unnormalized
token into its verbalized form

A token can be classified into a class only if it is
accepted by it. By restricting the classes a token is
accepted into, we limit the kind of normalization
output that can be generated. This prevents the
model from making unacceptable errors. A token
can be accepted by multiple classes which can give
different normalizations. In such cases, the model
is responsible for predicting the appropriate class
from the context. If multiple classes give the same
normalization for a token, then during inference it
doesn’t matter which class is chosen.

We have 2 kinds of classes: i) Pre-defined: We
define limited number of classes (∼10-15) contain-
ing basic normalization rules out of which only a
small subset (∼5) contain language specific verbal-
ization rules like cardinal, ordinal etc. Rules be-
hind the normalization logic for others like self, sil,
digit, roman numerals, etc. remain similar across
many languages, only the surface form of the nor-
malized version changes. E.g., self class indicates
that the input is to be passed through as it is and it
accepts tokens containing only alphabetical char-
acters. Sil is used to represent silence, which is
typically associated with punctuation. It accepts
only punctuation or other kinds of symbols which
should not be verbalized. Roman numerals also
have language agnostic logic to convert the roman
number into number form and pass it down to its
corresponding cardinal or ordinal class for gener-
ating desired normalization. ii) Auto Generated
(AG): Apart from pre-defined classes, the model
learns automatically generated classes from the
data by going through the unnormalized to normal-
ized token mappings in the dataset. If none of the
existing classes (pre-coded or AG) can generate the
target normalization for a token in the training data,
then a class is automatically generated which ac-
cepts only the token responsible for its generation.
Its normalize function returns the target normaliza-
tion observed in the annotated data for that token.
E.g., if “12→December" is observed in the dataset
and if none of the existing classes can generate this
normalization then a class “12_to_December_AG"
is created. This class accepts only “12" and its nor-
malize function returns “December". If multiple
normalizations are observed for an unnormalized
token in the dataset which cannot be generated by
existing classes then multiple AGs are stored. AGs

enable Proteno to learn majority of the normaliza-
tions automatically from data.

3.4 Classification & Normalization
We model TN as a sequence tagging problem
where the input is a sequence of unnormalized
tokens and the output is the sequence of classes
which can generate the normalized text. Before
training the classification model, we transform
the data to get unnormalized token to class map-
pings. E.g., [‘1’,‘/’,‘1’,‘/’,‘2020’] → [ordinal,
/_to_of_AG, 1_to_January_AG, sil, year]. We pre-
pare this data by going over the unnormalized to-
ken to normalized token mapping for a sentence
and identifying which existing classes can give the
target normalization. For a token there can be mul-
tiple matching classes. E.g., ‘2’ can be correctly
normalized by both cardinal and digit classes. In
such cases of multiple matching classes we pick
the least frequent class to increase the representa-
tion of infrequent classes. This compensates for the
imbalance present in the proportion of classes in
training set. A more optimum approach to handle
cases of multiple matching classes will be explored
in the future.

To classify the sequence of unnormalized tokens
to their corresponding classes we experimented
with 4 classifiers. We first train a first order Condi-
tional Random Fields (CRFs) (Lafferty et al., 2001)
and then train neural network (NN) based architec-
tures like Bi-LSTMs (Hochreiter and Schmidhuber,
1997), BiLSTM-CRFs (Huang et al., 2015) and
Transformers (Vaswani et al., 2017). We used word
embeddings from Mikolov et al. (2018) for NN
systems. i) CRF: The features used for each un-
normalized token in the model are - part of speech
tag, list of classes which accept the token as an
input, next token in sequence, suffix of the token
(from length 1-4), prefix of the token (from length
1-4), is the token in upper case, is the token nu-
meric and is the token capitalized, ii) Bi-LSTM &
BiLSTM-CRFs: Using word embeddings and list
of classes which accept the token as input features,
iii) Transformer: A Transformer with 6 heads with
word embeddings as input features.

For each token we renormalize the probabilities
predicted over all classes to only the classes which
accept the token. Hence, the model is restricted
to classify a token only to one of its few accepted
classes. If the system is unable to find a suitable
class for the given token (i.e., none of the given
classes accept that token) then it gives a empty

75

output instead of an incorrect normalization.

3.5 Aligning tokens in order of verbalization
One of the major challenges in automated TN is
handling realignment of tokens which may be re-
quired between the written and its spoken form.
Our method so far assumes monotonic alignment
between the written unormalized tokens and their
corresponding spoken normalizations. However,
this is not always true. For our chosen languages
we saw two exceptions: currency and measure
units. E.g., $3.45→ ‘Three dollars forty five cents’
and m2 → ‘squared metres’. Seq2seq models
can naturally learn such kind of realignment from
training data (Sproat and Jaitly, 2017). However,
they are susceptible to errors specially for limited
amount of training data for specific classes.

Thus, to limit errors in such cases we define
some rules. Proteno first recognises instances of
currency/measure in the text and prevents them
from further splitting by the granular tokenizer.
The currency/measure classes have the same gran-
ular tokenisation logic along with realignment con-
ditions. They further pass the final tokens to their
corresponding classes. Thus, an entity like ‘$45.18’
is transformed into [‘45’, ‘$’, ‘18’, ‘.’] and passed
to classes as 45→cardinal, $→$_to_dollars_AG,
18→cardinal, . →_to_cents_AG.

As all currency symbols have their own AGs
automatically generated from the data there will
always be a 1:1 mapping between a symbol and
its normalized form. As a result, this approach
eliminates the possibility of an unacceptable error
like normalizing $→ Pounds.

Classes like currency and measure contain rules
that are responsible for realignment only and hence
require limited knowledge to be transferred across
languages. The normalization is handled by the al-
ready learnt or defined classes. Thus, these classes
can be skipped or be used as is for any language
which has this kind of realignment.

4 Experiment Protocol
4.1 Datasets
As the goal of Proteno is to be applicable for multi-
ple languages, we evaluate the system across 3 lan-
guages. For experimentation with new languages
we chose Spanish and Tamil. Further, we evalu-
ate Proteno on English, to see how it compares
against a language which has more evolved TN
systems available. There are no benchmarked an-
notated TN for TTS datasets available for Tamil

and Spanish. i) Spanish: We gathered data from
Wikipedia by selecting sentences rich with entities
requiring normalization. Due to budget constraints
we could collect a dataset of only 135k tokens (5k
sentences), ii) Tamil: We annotate the data sourced
from English-Tamil parallel corpus (Ramasamy
et al., 2012) and Comparable Corpora (Eckart and
Quasthoff, 2013). From these datasets we sampled
500k tokens (30k sentences) with higher preference
towards sentences that needed normalization, iii)
English: We used a portion of the annotated data
from Sproat and Jaitly (2016). First, we run the Pro-
teno tokenizer over the unnormalized section of the
dataset and got unnormalized token to normalized
token mappings using elementary rules. By doing
so, we were able to correctly match only a por-
tion of the dataset due to its different tokenization.
And then, from this subset, 300k tokens (24.7k sen-
tences) were randomly sampled to keep the data
size comparable to that used for Tamil. This is
1.5% of the data used by Pramanik and Hussain
(2019) which used first 20M tokens and 3% of data
used by Zhang et al. (2019) which used first 10M
tokens.

4.2 Training & Evaluation
Train and test data were split by the ratio of 60:40.
We keep a higher test set proportion to have a chal-
lenging setting for the systems. Word Error Rate
(WER) is used as the evaluation metric for the dif-
ferent classifiers. We use this metric instead of
classification accuracy on the classes in order to
enable comparison of results from different TN ap-
proaches in the future, which may not use the same
tokenization mechanism and hence may not have
the same classes benchmarked by previous work.

WER is measured as Levenshtein Distance (Lev-
enshtein, 1966) between the model prediction and
the desired normalization. Hence, lower WER is
desirable. We also report classification accuracy to
illustrate that classification accuracy does not di-
rectly translate into WER. We first evaluate all the
classifiers on Spanish and then choose the classifier
with lowest WER for Tamil and English.

5 Results

5.1 Spanish

Due to lack of a standard baseline, we compare
the performance of Proteno on Spanish with an
existing rule based (RB) system. This is the pro-
duction TN system containing 1.7k lines of regular

76

expressions code which required extensive linguis-
tic knowledge and programming proficiency.

Normalization was required for 27% of tokens
in both the training and the test set. 10 classes
were pre-coded with normalization logic: self, sil,
spell, currency, unit, digit, cardinal, ordinal, ro-
man cardinal and roman ordinal out of which
only 5 had language specific normalization rules
(spell, cardinal_masculine, cardinal_feminine, or-
dinal_masculine and ordinal_feminine). 279 AGs
were generated from this dataset. The WER results
from different models is given in Table 1.

Models WER(Train) WER(Test)
RB System 2.3 2.3
CRF 0.3 1.02*
BiLSTM 0.03 0.89*
BiLSTM-CRF 0.04 0.89*
Transformer 1.2 2.3

Table 1: WER for CRF vs LSTM vs Transformer.
Fields in bold are indicative of best model. * signifies
statistically significant difference in comparison to RB

On the test set, all models except Trans-
formers showed statistically significant difference
(p<<0.01) in comparison to the RB system. We
can attribute the lower performance of Transform-
ers to lack of accepted classes as input features.

Although the numbers suggest that the NN mod-
els might be overfitting, we were not able to sig-
nificantly improve them using regularization tech-
niques. Introducing dropout from 0.1-0.3 increased
the train WER from 0.03 to 0.04 but did not impact
the test WER. Further increase in dropout increased
test WER. We also try replacing the cross entropy
loss with the Weighted Categorical Cross Entropy
Loss to avoid the model’s bias towards predicting
the dominant class (in this case ‘self’). This loss
function decreased the train WER from 0.03 to
0.027 but it did not impact the test WER.

For most of the classes CRFs and NN models
performed at par with each other. Classification
accuracy by the models is given in Table 2. How-
ever, low classification accuracy, though indica-
tive of inaccurate normalization, does not directly
translate into higher WERs. Multiple classes can
give the same normalization and thus there is no
unique correct class. This is particularly prevalent
in some cases of number instances where cardi-
nal_masculine and cardinal_feminine can be used
interchangeably.

Even though Transformers give unstable perfor-
mance in class prediction, they still give a low
enough WER. This particular iteration has a bias
towards predicting cardinal_ masculine over car-
dinal_ feminine. This bias changes with different
iterations but the WER remains consistent as the
normalization output remains unaffected.

5.2 Tamil
For Tamil, we have 8 pre-coded classes
(self_english, self_tamil, sil, spell, currency, digit,
cardinal and ordinal) out of which only 3 are en-
coded with language specific normalization logic
(cardinal, ordinal and spell) and 74 AGs were gen-
erated from the dataset. To normalize text on Tamil
corpus, we trained the system which performed
the best on Spanish i.e., BiLSTMs with the same
configurations. The model gave a WER=0.6 on the
train set and WER=3.3 on the test set. The token
proportion and high-level classification accuracy
results for the tokens are detailed in Table 3.

5.3 English
To evaluate the potential of the approach and bench-
mark it with existing work we trained Proteno on
English. The model had 8 pre-coded classes (self,
sil, spell, cardinal, ordinal, digit, roman, units,
year) out of which only 4 classes contained lan-
guage specific rules (spell, cardinal, ordinal, year).
2658 AGs were generated from the data. The num-
ber of AGs in English are significantly higher than
the ones generated for Tamil or Spanish as English
tends to use much more abbreviations in written
form as compared to the other two languages. The
model achieved a WER=0.47 on the train set and
a WER=2.6 on the test set. High level classifi-
cation accuracies are detailed in Table 3. Out of
the 99.26% correctly normalized tokens, 88.2%
of the non-self tokens were normalized via AGs
i.e., 88.2% of the normalizations were learnt auto-
matically from data without relying on pre-coded
linguistic knowledge.

It is not possible to directly compare our results
with previous work done on English TN (Pramanik
and Hussain, 2019; Zhang et al., 2019) as these
works report classification accuracy on 16 manu-
ally defined classes and not WER. Moreover, Pro-
teno does not have the same set of classes due to its
granular tokenization mechanism. It also uses only
1.5%-3% of the dataset used by them and further
splits it into train and test set. It cannot use the
full dataset due to differing tokenization mecha-

77

Token Proportion CRF BiLSTM BiLSTM-CRF Transformers
Train Test Train Test Train Test Train Test Train Test

Accuracy 99.7 99.1 99.9 99.01 99.99 98.9 93.0 92.8
Accuracy per class

‘self’ 70.5 70 100 100 100 99.9 100 99.9 100 99.8
‘sil’ 13.24 13 99.7 99.8 100 99.5 99.99 99.6 100 98.7

Others 98.0 93.2 99.9 93.06 99.9 95.9 44.2 48.3
‘es_num_by_num_cardinal’ 2.14 2.1 99.9 99.2 99.9 99.2 99.9 98.6 3.85 2.4

‘es_cardinal_feminine’ 3.8 3.8 98.9 96.7 100 93.5 99.9 92.8 37.7 41.6
‘es_ordinal_masculine’ 0.38 0.4 95.2 96.7 99.7 96.7 100 97.1 0 1.9

‘spell’ 0.62 0.57 98.7 96.0 100 75.2 100 71.1 99.6 99.3
‘es_cardinal_masculine’ 1.75 2.16 98.2 89.2 100 98.8 99.8 98.6 87.0 88.1
‘es_ordinal_feminine’ 0 0.00004 n/a 0.0 n/a 0 n/a 0 n/a 100

‘mean’ 7.63 8 97.6 92.6 99.9 89.7 99.9 88.5 47.9 51.9

Table 2: Token proportions and classification accuracy across systems for Spanish. ‘mean’ depicts the average
accuracy of the remaining pre-coded and all the AG classes. Bold font highlights the best results

Language Proportion of Proportion of Accuracy on Accuracy on Overall
self tokens other tokens self tokens other tokens Accuracy

Train Test Train Test Train Test Train Test Train Test
Tamil 0.73 0.75 0.27 0.25 99.99 99.99 99.94 96.49 99.98 99.12
English 0.72 0.71 0.28 0.29 99.97 99.99 99.55 97.5 99.85 99.26

Table 3: Token proportions and classification accuracy for Tamil and English

Plain Punct Date Cardinal Verbatim Measure Ordinal Decimal Digit Fraction Letters
Train Proportion 70.2 18.8 6.13 1.13 0.82 0.21 0.11 0.20 0.04 0.0 2.39
Test Proportion 70.3 18.7 6.08 1.30 0.71 0.19 0.15 0.16 0.04 0.001 2.27

Proteno 99.9 100 98.16 99.08 96.97 96.09 73.05 90.0 41.30 100.0 79.18
P&H 99.4 99.9 99.7 99.4 99.4 97.1 98.0 98.9 79.5 92.3 97.1

Z 99.9 99.9 99.5 99.4 99.9 97.2 98.1 100 86.4 81.3 97.5

Table 4: English Classification Accuracy: Proteno vs Pramanik and Hussain (2019) vs Zhang et al. (2019)

nisms which result into mismatch in the alignment
between the unnormalized token and their corre-
sponding normalized forms. However, we extract
their pre-defined categories on the dataset we used
and evaluate how many tokens within them were
normalized correctly. In Table 4 we compare Pro-
teno accuracy with the accuracy reported by Pra-
manik and Hussain (2019) (P&H) and by Zhang
et al. (2019) (Z). It illustrates the token normal-
ization accuracy achieved by Proteno on the test
dataset for all the categories which had instances
in the small subset we have used.

Proteno performs at par with the other systems
for most of the categories in spite of seeing much
fewer instances in the train set. For complex enti-
ties likes date Proteno gave 98.16% accuracy on
the 6% tokens available in test set. The system
(Z) gives 99.5% accuracy on its set by using a cov-
ering grammar learnt from large amounts of data.
We observe comparable performance for another
complex category like measure. On the other hand,
we see a significant drop in Proteno’s performance

when normalizing ordinal and digit. This is due to
low representation of these classes during training
and hence during inference the model has a bias
towards predicting cardinal over them when seen
in similar context. This bias can be addressed by
having a more equitable representation of instances
of cardinals, ordinals and digits during training.

6 Conclusions
We propose a novel architecture suitable for scal-
ing Text Normalization for TTS across languages
using minimal language specific rules, limited an-
notated dataset and while curbing unacceptable er-
rors which makes it suitable for fast deployment in
industry applications. We treat Text Normalization
as a sequence classification problem while propos-
ing a granular tokenizer which enables majority of
normalizations to be automatically learnt from data.
We experiment across 3 languages: Spanish, Tamil
and English, while pre-coding maximum 5 classes
with language specific logic. We also demonstrate
that datasets of the order of 135k-500k tokens can
give competitive performance while still being of a

78

size practical for hand annotation.
Proteno consists of i) a granular tokenizer based

on Unicode classes, ii) a classifier of tokens into
classes, either predefined or added based on the
tokenized data, and iii) the class verbalizers, either
defined by linguists for predefined classes or au-
tomatically learnt from the data. BiLSTMs give
the best performance with WER=0.89 for Spanish,
WER=3.3 for Tamil and WER=2.6 for English. In
English, 88.2% of the normalizations were learnt
automatically from data while using less than 3% of
the data used in previous work (Zhang et al., 2019;
Pramanik and Hussain, 2019) and still showed com-
parable performance.

Given the simplicity of this architecture, we be-
lieve that Proteno can be used to benchmark TN for
many languages with limited annotated data. How-
ever, languages which are not separated by space or
highly inflected languages will be a challenge for
the proposed system (Nikulásdóttir and Guðnason,
2019). We leave the adaptation of Proteno to more
challenging languages for future work.

Acknowledgements

We would like to thank Denys Savin, Yvonne Flory,
Tarek Badr and Anton Nguyen for their founda-
tional contributions to the project and developing
the production pipeline.

References
A. Conkie and A. Finch. 2020. Scalable Multilingual

Frontend for TTS. In ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 6684–6688.

Peter Ebden and Richard Sproat. 2014. The Kestrel
TTS text normalization system. Natural Language
Engineering, 21:333–353.

Thomas Eckart and Uwe Quasthoff. 2013. Statistical
Corpus and Language Comparison on Comparable
Corpora, pages 151–165. Springer Berlin Heidel-
berg, Berlin, Heidelberg.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Comput., 9(8):1735–
1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF Models for Sequence Tagging.
CoRR, abs/1508.01991.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional Random Fields:

Probabilistic Models for Segmenting and Label-
ing Sequence Data. In Proceedings of the Eigh-
teenth International Conference on Machine Learn-
ing, ICML ’01, pages 282–289, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Vladimir Iosifovich Levenshtein. 1966. Binary codes
capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady, 10(8):707–710.
Doklady Akademii Nauk SSSR, V163 No4 845-848
1965.

Courtney Mansfield, Ming Sun, Yuzong Liu, Ankur
Gandhe, and Björn Hoffmeister. 2019. Neural text
normalization with subword units. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Industry
Papers), pages 190–196, Minneapolis, Minnesota.
Association for Computational Linguistics.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in Pre-Training Distributed Word Represen-
tations. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Anna Björk Nikulásdóttir and Jón Guðnason. 2019.
Bootstrapping a Text Normalization System for an
Inflected Language. Numbers as a Test Case. In
Proc. Interspeech 2019, pages 4455–4459.

Subhojeet Pramanik and Aman Hussain. 2019. Text
normalization using memory augmented neural net-
works. Speech Communication, 109:15–23.

Loganathan Ramasamy, Ondřej Bojar, and Zdeněk
Žabokrtský. 2012. Morphological Processing for
English-Tamil Statistical Machine Translation. In
Proceedings of the Workshop on Machine Trans-
lation and Parsing in Indian Languages (MTPIL-
2012), pages 113–122.

Keshan Sodimana, Pasindu De Silva, Richard Sproat,
A Theeraphol, Chen Fang Li, Alexander Gutkin,
Supheakmungkol Sarin, and Knot Pipatsrisawat.
2018. Text normalization for bangla, khmer, nepali,
javanese, sinhala, and sundanese tts systems. In 6th
International Workshop on Spoken Language Tech-
nologies for Under-Resourced Languages (SLTU-
2018), pages 147–151, 29–31 August, Gurugram, In-
dia.

Richard Sproat. 1996. Multilingual text analysis for
text-to-speech synthesis. Natural Language Engi-
neering, 2(4):369–380.

Richard Sproat, Alan W. Black, Stanley Chen, Shankar
Kumar, Mari Ostendorf, and Christopher Richards.
2001. Normalization of Non-standard Words. Com-
put. Speech Lang., 15(3):287–333.

Richard Sproat and Navdeep Jaitly. 2016. RNN
Approaches to Text Normalization: A Challenge.
CoRR, abs/1611.00068.

https://doi.org/10.1017/S1351324914000175
https://doi.org/10.1017/S1351324914000175
https://doi.org/10.1007/978-3-642-20128-8_8
https://doi.org/10.1007/978-3-642-20128-8_8
https://doi.org/10.1007/978-3-642-20128-8_8
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=645530.655813
https://doi.org/10.18653/v1/N19-2024
https://doi.org/10.18653/v1/N19-2024
https://doi.org/10.21437/Interspeech.2019-2367
https://doi.org/10.21437/Interspeech.2019-2367
https://doi.org/10.1016/j.specom.2019.02.003
https://doi.org/10.1016/j.specom.2019.02.003
https://doi.org/10.1016/j.specom.2019.02.003
https://www.isca-speech.org/archive/SLTU_2018/pdfs/Keshan2.pdf
https://www.isca-speech.org/archive/SLTU_2018/pdfs/Keshan2.pdf
https://doi.org/10.1017/S1351324997001654
https://doi.org/10.1017/S1351324997001654
https://doi.org/10.1006/csla.2001.0169
http://arxiv.org/abs/1611.00068
http://arxiv.org/abs/1611.00068

79

Richard Sproat and Navdeep Jaitly. 2017. An RNN
Model of Text Normalization. In Proc. Interspeech
2017, pages 754–758.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. CoRR, abs/1409.3215.

Paul Taylor. 2009. Text-to-Speech Synthesis. Cam-
bridge University Press.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. CoRR, abs/1706.03762.

Hao Zhang, Richard Sproat, Axel H. Ng, Felix
Stahlberg, Xiaochang Peng, Kyle Gorman, and
Brian Roark. 2019. Neural Models of Text Normal-
ization for Speech Applications. Computational Lin-
guistics, pages 1–49.

https://doi.org/10.21437/Interspeech.2017-35
https://doi.org/10.21437/Interspeech.2017-35
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
https://doi.org/10.1017/CBO9780511816338
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1162/COLI_a_00349
https://doi.org/10.1162/COLI_a_00349

