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Abstract
Sign language translation (SLT) is often decomposed into video-to-gloss recognition and gloss-
to-text translation, where a gloss is a sequence of transcribed spoken-language words in the
order in which they are signed. We focus here on gloss-to-text translation, which we treat as
a low-resource neural machine translation (NMT) problem. However, unlike traditional low-
resource NMT, gloss-to-text translation differs because gloss-text pairs often have a higher lex-
ical overlap and lower syntactic overlap than pairs of spoken languages. We exploit this lexical
overlap and handle syntactic divergence by proposing two rule-based heuristics that generate
pseudo-parallel gloss-text pairs from monolingual spoken language text. By pre-training on
this synthetic data, we improve translation from American Sign Language (ASL) to English
and German Sign Language (DGS) to German by up to 3.14 and 2.20 BLEU, respectively.

1 Introduction

Sign language is the most natural mode of communication for the Deaf. However, in a predom-
inantly hearing society, they often resort to lip-reading, text-based communication, or closed-
captioning to interact with others. Sign language translation (SLT) is an important research
area that aims to improve communication between signers and non-signers while allowing each
party to use their preferred language. SLT consists of translating a sign language (SL) video
into a spoken language (SpL) text, and current approaches often decompose this task into two
steps: (1) video-to-gloss, or continuous sign language recognition (CSLR) (Cui et al., 2017;
Camgoz et al., 2018); (2) gloss-to-text, which is a text-to-text machine translation (MT) task
(Camgoz et al., 2018; Yin and Read, 2020b).

In this paper, we focus on gloss-to-text translation. SL data and resources are often scarce,
or nonexistent (§2; Bragg et al. (2019)). Gloss-to-text translation is, therefore, an example of an
extremely low-resource MT task. However, while there is extensive literature on low-resource
MT between spoken languages (Sennrich et al., 2016a; Zoph et al., 2016; Xia et al., 2019; Zhou
et al., 2019), the dissimilarity between sign and spoken languages calls for novel methods.
Specifically, as SL glosses borrow the lexical elements from their ambient spoken language,
handling syntax and morphology poses greater challenges than lexeme translation (§3).

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
1st International Workshop on Automatic Translation for Signed and Spoken Languages

Page 1



fs-JOHN FUTURE FINISH READ BOOK WHEN HOLD

When will John finish reading the book?

ASL Video:

ASL Gloss:

English:

GLOSSING

TRANSLATION

(a) ASL video with gloss annotation and English translation

FORWARD LOOK TOMORROW CHILD SEE

I'm looking forward to seeing the children tomorrow.

Synthetic Gloss:

English:

I look forward to seeing the child tomorrow.Model Output:

GENERATE

TRAIN

(b) Data augmentation and training

Figure 1: Real and synthetic gloss-spoken pairs.

In this work, we (1) discuss the scarcity of SL data and quantify how the relationship be-
tween a sign and spoken language pair is different from a pair of two spoken languages; (2)
show that the de facto method for data augmentation using back-translation is not viable in ex-
tremely low-resource SLT; (3) propose two rule-based heuristics that exploit the lexical overlap
and handles the syntactic divergence between sign and spoken language, to synthesize pseudo-
parallel gloss/text examples (Figure 1b); (4) demonstrate the effectiveness of our methods on
two sign-to-spoken language pairs.

2 Background

Sign Language Glossing SLs are often transcribed word-for-word using a spoken language
through glossing to aid in language learning, or automatic sign language processing (Ormel
et al., 2010). While many SL glosses are words from the ambient spoken language, glossing
preserves SL’s original syntactic structure and therefore differs from translation (Figure 1a).

Data Scarcity While standard machine translation architectures such as the Transformer
(Vaswani et al., 2017) achieve reasonable performance on gloss-to-text datasets (Yin and Read,
2020a; Camgoz et al., 2020), parallel SL and spoken language corpora, especially those with
gloss annotations, are usually far more scarce when compared with parallel corpora that exist
between many spoken languages (Table 1).

Language Pair # Parallel Gloss-Text Pairs Vocabulary Size (Gloss / Spoken)

Signum (von Agris and Kraiss, 2007) DGS-German 780 565 / 1,051
NCSLGR (SignStream, 2007) ASL-English 1,875 2,484 / 3,104
RWTH-PHOENIX-Weather 2014T (Camgoz et al., 2018) DGS-German 7,096 + 519 + 642 1,066 / 2,887 + 393 / 951 + 411 / 1,001
Dicta-Sign-LSF-v2 (Limsi, 2019) French SL-French 2,904 2,266 / 5,028
The Public DGS Corpus (Hanke et al., 2020) DGS-German 63,912 4,694 / 23,404

Table 1: Some publicly available SL corpora with gloss annotations and spoken language trans-
lations.

3 Sign vs. Spoken Language

Due to the paucity of parallel data for gloss-to-text translation, we can treat it as a low-resource
translation problem and apply existing techniques for improving accuracy in such settings.
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Figure 2: Lexical and syntactic similarity between different language pairs denoted by their
ISO639-2 codes.

However, we argue that the relationship between glossed SLs and their spoken counterparts is
different from the usual relationship between two spoken languages. Specifically, glossed SLs
are lexically similar but syntactically different from their spoken counterparts. This contrasts
heavily with the relationship among spoken language pairs where lexically similar languages
tend also to be syntactically similar the great majority of the time.

To demonstrate this empirically, we adopt measures from (Lin et al., 2019) to measure
the lexical and syntactic similarity between languages, two features also shown to be positively
correlated with the effectiveness of performing cross-lingual transfer in MT.

Lexical similarity between two languages is measured using word overlap:

ow =
|T1 ∩ T2|
|T1|+ |T2|

where T1 and T2 are the sets of types in a corpus for each language. The word overlap between
spoken language pairs is calculated using the TED talks dataset (Qi et al., 2018). The overlap
between sign-spoken language pairs is calculated from the corresponding corpora in Table 1.

Syntactic similarity between two languages is measured by 1−dsyn where dsyn is the syntac-
tic distance from (Littell et al., 2017) calculated by taking the cosine distance between syntactic
features adapted from the World Atlas of Language Structures (Dryer and Haspelmath, 2013).

Figure 2 shows that sign-spoken language pairs are indeed outliers with lower syntactic
similarity and higher lexical similarity. We seek to leverage this fact and the high availability
of monolingual spoken language data to compensate for the scarcity of SL resources. In the
following section, we propose data augmentation techniques using word order modifications to
create synthetic sign gloss data from spoken language corpora.

4 Data Augmentation

This section discusses methods to improve gloss-to-text translation through data augmentation,
specifically those that take monolingual corpora of standard spoken languages and generate
pseudo-parallel “gloss” text. We first discuss a standard way of doing so, back-translation, point
out its potential failings in the SL setting, then propose a novel rule-based data augmentation
algorithm.
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4.1 Back-translation
Back-translation (Irvine and Callison-Burch, 2013; Sennrich et al., 2016a) automatically creates
pseudo-parallel sentence pairs from monolingual text to improve MT in low-resource settings.
However, back-translation is only effective with sufficient parallel data to train a functional MT
model, which is not always the case in extremely low-resource settings (Currey et al., 2017), and
particularly when the domain of the parallel training data and monolingual data to be translated
are mismatched (Dou et al., 2020).

4.2 Proposed Rule-based Augmentation Strategies
Given the limitations of standard back-translation techniques, we next move to the proposed
method of using rule-based heuristics to generate SL glosses from spoken language text.

General rules The differences in SL glosses from spoken language can be summarized by
(1) A lack of word inflection, (2) An omission of punctuation and individual words, and (3)
Syntactic diversity.

We, therefore, propose the corresponding three heuristics to generate pseudo-glosses from
spoken language: (1) Lemmatization of spoken words; (2) POS-dependent and random word
deletion; (3) Random word permutation.

We use spaCy (Honnibal and Montani, 2017) for (1) lemmatization and (2) POS tagging to
only keep nouns, verbs, adjectives, adverbs, and numerals. We also drop the remaining tokens
with probability p = 0.2, and (3) randomly reorder tokens with maximum distance d = 4.

Language-specific rules While random permutation allows some degree of robustness to
word order, it cannot capture all aspects of syntactic divergence between signed and spoken
language. Therefore, inspired by previous work on rule-based syntactic transformations for re-
ordering in MT (Collins et al., 2005; Isozaki et al., 2010; Zhou et al., 2019), we manually devise
a shortlist of syntax transformation rules based on the grammar of DGS and German.

We perform lemmatization and POS filtering as before. In addition, we apply compound
splitting (Tuggener, 2016) on nouns and only keep the first noun, reorder German SVO sen-
tences to SOV, move adverbs and location words to the start of the sentence, and move negation
words to the end. We provide a detailed list of rules in Appendix A.

5 Experimental Setting

5.1 Datasets
DGS & German RWTH-PHOENIX-Weather 2014T (Camgoz et al., 2018) is a parallel cor-
pus of 8,257 DGS interpreted videos from the Phoenix1 weather news channel, with corre-
sponding SL glosses and German translations.

To obtain monolingual German data, we crawled tagesschau2 and extracted news caption
files containing the word “wetter” (German for “weather”). We split the 1,506 caption files
into 341,023 German sentences using the spaCy sentence splitter and generate synthetic glosses
using our methods described in §4.

ASL & English The NCSLGR dataset (SignStream, 2007) is a small, general domain dataset
containing 889 ASL videos with 1,875 SL glosses and English translations.

We use ASLG-PC12 (Othman and Jemni, 2012), a large synthetic ASL gloss dataset cre-
ated from English text using rule-based methods with 87,710 publicly available examples, for
our experiments on ASL-English with language-specific rules. We also create another synthetic
variation of this dataset using our proposed general rule-based augmentation.

1www.phoenix.de
2www.tagesschau.de
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Figure 3: Translation results using various amounts of annotated parallel data.

5.2 Baseline Setup

We first train a Baseline system on the small manually annotated SL dataset we have available
in each language pair. The model architecture and training method are based on Yin and Read
(2020b)’s Transformer gloss-to-text translation model. While previous work (Yin and Read
Reimpl.) used word-level tokenization, for Baseline and all other models described below, we
instead use BPE tokenization (Sennrich et al. (2016b); with 2,000 BPE codes) for efficiency
and simple handling of unknown words. For all tested methods, we repeat every experiment 3
times to account for variance in training.

5.3 Pre-training on Augmented Data

For General-pre and Specific-pre, we pre-train a tokenizer and translation model on pseudo-
parallel data obtained using general and language-specific rules respectively, until the accuracy
on the synthetic validation set drops. We test both models on the parallel SL dataset in a zero-
shot setting.

For BT-tuned, General-tuned and Specific-tuned, we take models pre-trained on pseudo-
parallel data obtained with either back-translation, general rules, or language-specific rules, and
continue training with half of the training data taken from the synthetic pseudo-parallel data and
the other half taken from the real SL data. Then, we fine-tune these models on the real SL data
and evaluate them on the test set.

6 Results

We evaluate our models across all datasets and sizes using SacreBLEU (v1.4.14) (Post, 2018)
and COMET (wmt-large-da-estimator-1719) (Rei et al., 2020). We also compare our results to
previous work on PHOENIX in Table 2. Detailed scores for each experiment are provided in
Appendix C.

First, we note results on General-pre and Specific-pre. Interestingly, the scores are non-
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PHOENIX NCSLGR
BLEU↑ COMET↑ BLEU↑ COMET↑

Yin and Read Reimpl.4 22.17 -2.93 - -
Baseline 21.15 -5.74 15.95 -61.00

General-pre (0-shot) 3.95 -69.09 0.97 -135.99
Specific-pre (0-shot) 7.26 -53.14 0.95 -134.13

BT-tuned 22.02 6.84 16.67 -51.86
General-tuned 23.35 13.65 19.09 -34.50
Specific-tuned 23.17 11.70 18.58 -39.96

Table 2: Results of our different models on PHOENIX and NCSLGR. We bold scores statisti-
cally significantly higher than baseline at the 95% confidence level.

negligible, demonstrating that the model can learn with only augmented data.3 Moreover, on
PHOENIX Specific-pre achieves significantly better performance than General-pre, which sug-
gests our hand-crafted syntax transformations effectively expose the model to the divergence
between DGS and German during pre-training.

Next, turning to the tuned models, we see that Specific and General outperform both the
baseline and BT by large margins, demonstrating the effectiveness of our proposed methods.
Interestingly, General-tuned performs slightly better, in contrast to the previous result. We
posit that, similarly to previously reported results on sampling-based back translation (Edunov
et al., 2018), General is benefiting from the diversity provided by sampling multiple reordering
candidates, even if each candidate is of lower quality.

Looking at Figure 3, we see that the superior performance of our methods holds for all data
sizes, but it is particularly pronounced when the parallel-data-only baseline achieves moderate
BLEU scores in the range of 5-20. This confirms that BT is not a viable data augmentation
method when parallel data is not plentiful enough to train a robust back-translation system.

7 Implications and Future Work

Consistent improvements over the baseline across two language pairs by our proposed rule-
based augmentation strategies demonstrate that data augmentation using monolingual spoken
language data is a promising approach for sign language translation.

Given the efficiency of our general rules compared to language-specific rules, future work
may also include a more focused approach on specifically pre-training the target-side decoder
with spoken language sentences so that by learning the syntax of the target spoken language, it
can generate fluent sentences from sign language glosses having little to no parallel examples
during training.

3In contrast, merely outputting the source sentence results in 1.36 BLEU, -90.28 COMET on PHOENIX and 1.5
BLEU, -119.45 COMET on NCSLGR.

4The original work achieves 23.32 BLEU; correspondence with the authors has led us to believe that the discrepancy
is due to different versions of the underlying software.
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A Data Augmentation Rules

A.1 General Rules
For a given sentence S:

1. Discard all tokens t ∈ S if POS(t) 6∈ {noun, verb, adjective, adverb, numeral}

2. Discard remaining tokens t ∈ S with probability p = 0.2

3. Lemmatize all tokens t ∈ S

4. Apply a random permutation σ to S verifying ∀i ∈ {1, n}, |σ(i)− i| ≤ 4

where n is the number of tokens in S at step 4 and POS is a part-of-speech tagger.

A.2 German-DGS Rules
For a given sentence S:

1. For each subject-verb-object triplet (s, v, o) ∈ S, swap the positions of v and o in S

2. Discard all tokens t ∈ S if POS(t) 6∈ {noun, verb, adjective, adverb, numeral}

3. For t ∈ S, if POS(t) = adverb, then move t to the start of s

4. For t ∈ S, if NER(t) = location, then move t to the start of s

5. For t ∈ S, if DEP(t) = negation, then move t to the end of s

6. For t ∈ S, if t is a compound noun c1c2...cn, replace t by c1

7. Lemmatize all tokens t ∈ S
where POS is a part-of-speech tagger, NER is a named entity recognizer and DEP is a depen-
dency parser.

B Model Reproduction

For reproduction purposes, here we lay the exact commands for training a single model using
OpenNMT 1.2.0 (Klein et al., 2017). These commands are taken from (Yin and Read, 2020b).

Given 6 files—train.gloss / train.txt, dev.gloss / dev.txt, test.gloss / test.txt—we start by
preprocessing the data using the following command:

onmt preprocess −dynamic dict −save data processed data \
−train src train.gloss −train tgt train.txt −valid src dev.gloss −valid tgt dev.txt

Then, we train a translation system using the train command:

onmt train −data processed data −save model model −layers 2 −rnn size 512 −word vec size 512 −heads 8 \
−encoder type transformer −decoder type transformer −position encoding −transformer ff 2048 −dropout 0.1 \
−early stopping 3 −early stopping criteria accuracy ppl −batch size 2048 −accum count 3 −batch type tokens \
−max generator batches 2 −normalization tokens −optim adam −adam beta2 0.998 −decay method noam \
−warmup steps 3000 −learning rate 0.5 −max grad norm 0 −param init 0 −param init glorot −label smoothing 0.1 \
−valid steps 100 −save checkpoint steps 100 −world size 1 −gpu ranks 0

At the end of the training procedure, it prints to console “Best model found at step X”.
Locate it, and use it for translating the data:

onmt translate −model model step X.pt −src test.gloss −output hyp.txt −gpu 0 −replace unk −beam size 4

Finally, evaluate the output using SacreBLEU:

cat hyp.txt | sacrebleu test.txt
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C Full Experimental Results

Table 3 includes the evaluation scores for all of our experiments, ran three times.

% of available annotated data used 1% 5% 25% 100%

BLEU COMET BLEU COMET BLEU COMET BLEU COMET

PHOENIX

Baseline 6.37 ± 0.89 -89.21 ± 12.82 10.18 ± 0.40 -71.37 ± 2.86 16.20 ± 0.27 -33.88 ± 4.35 21.15 ± 0.58 -5.74 ± 2.35
BT-tuned 4.12 ± 1.55 -91.87 ± 16.35 9.91 ± 0.54 -53.38 ± 4.04 17.10 ± 0.56 -16.46 ± 2.52 22.02 ± 0.50 6.84 ± 0.34
General-tuned 9.49 ± 1.01 -52.23 ± 6.31 14.78 ± 0.51 -27.13 ± 2.29 19.86 ± 0.64 -0.72 ± 2.44 23.35 ± 0.22 13.65 ± 1.68
Specific-tuned 9.70 ± 0.75 -55.94 ± 2.08 14.65 ± 0.29 -30.85 ± 1.45 19.66 ± 0.08 -5.62 ± 0.51 23.17 ± 0.30 11.70 ± 1.20

NCSLGR

Baseline 0.47 ± 0.60 -153.90 ± 11.89 2.07 ± 0.32 -145.14 ± 1.15 8.07 ± 0.43 -101.24 ± 5.14 15.95 ± 1.11 -61.00 ± 6.86
BT-tuned 1.07 ± 0.47 -139.80 ± 3.78 3.71 ± 0.55 -117.33 ± 3.03 9.11 ± 0.05 -82.41 ± 2.29 16.67 ± 0.32 -51.86 ± 0.66
General-tuned 1.58 ± 0.60 -134.22 ± 1.73 5.13 ± 0.15 -106.59 ± 1.56 11.04 ± 0.04 -66.35 ± 2.00 19.09 ± 0.20 -34.50 ± 1.19
Specific-tuned 1.30 ± 0.52 -128.14 ± 1.58 4.94 ± 0.45 -107.60 ± 4.01 10.99 ± 0.12 -71.37 ± 1.01 18.58 ± 0.84 -39.96 ± 1.91

Table 3: Mean and standard deviation of BLEU and COMET over different experimental set-
tings. We bold scores statistically significantly higher than baseline at the 95% confidence
level.
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