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Message from the Organizers

These are the conference proceedings of IWCS 2021, the 14th edition of the International Conference on
Computational Semantics. This conference is supported by the NWO-VICI grant “Lost in Translation—
Found in Meaning” (288-89-003), known from its research and creation of the Parallel Meaning Bank.

The original plan was to have this conference take place in the beautiful city of Groningen, situated in the
north of the Netherlands. However, due to the outbreak of the pandemic last year it became soon clear
that this would not be a feasible option. So we decided to go ahead anyway and organize it as a fully
online event. And indeed, it is the first time that IWCS is organized as an online event, spread over two
days from 17–18 June 2021. Four satellite workshops are organised in the days before the conference:

• ISA-17: The Seventeenth Joint ACL - ISO Workshop on Interoperable Semantic Annotation;

• MMSR I: Beyond Language: Multimodal Semantic Representations;

• NALOMA’21: Natural Logic meets Machine Learning 2021;

• SemSpace 2021: Semantic Spaces at the Intersection of NLP, Physics, and Cognitive Science.

Going back to the main conference, the call for papers triggered 50 submissions (39 long and 11 short).
Each paper was reviewed by three reviewers. There were three desk rejects. Eventually, 24 papers were
accepted for the conference, of which one was withdrawn. This results in 19 long and 4 short papers with
a final acceptance rate of 46% (49% for long and 36% for short papers). The final programme shows
a lot of diversity with topics ranging from semantic parsing, question answering, knowledge extraction,
and frame semantics. Two keynotes complement the programme, given by Rachel Rudinger (University
of Maryland) and Mirella Lapata (University of Edinburgh).

We wish you a pleasant conference!

Groningen, 1 June 2021

Lasha Abzianidze
Johan Bos
Rik van Noord
Sina Zarrieß
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Keynote Speakers

Mirella Lapata, University of Edinburgh

Title: The Democratization of Semantic Parsing via Zero-Shot Cross-lingual Learning

Abstract: Semantic parsing is the task of mapping natural language utterances to machine-interpretable
expressions such as SQL or a logical meaning representation. It has emerged as a key technology
for developing natural language interfaces, especially in the context of question answering where a
semantically complex question is mapped to an executable query to retrieve an answer, or denotation.

Datasets for semantic parsing scarcely consider languages other than English and professional translation
can be prohibitively expensive. Recent work has successfully applied machine translation to localize
parsers to new languages. However, high-quality machine translation is less viable for lower resource
languages, and can introduce performance limiting artifacts, struggling to accurately model native
speakers.

In this talk view cross-lingual semantic parsing as a zero-shot learning problem. We propose a multi-task
encoder-decoder model to transfer parsing knowledge to additional languages using only English-Logical
form paired data and unlabeled, mono-lingual utterances in each target language. Our encoder learns
language-agnostic representations and is jointly optimized for generating logical forms or utterance
reconstruction and against language discriminability. We frame zero-shot parsing as a latent-space
alignment problem and find that pre-trained models can be improved to generate logical forms with
minimal cross-lingual transfer penalty. Our parser performs above back-translation baselines and, in some
cases, approaches the supervised upper bound.

Bio: Mirella Lapata is professor of natural language processing in the School of Informatics at the
University of Edinburgh. Her research focuses on getting computers to understand, reason with, and
generate natural language. She is the first recipient (2009) of the British Computer Society and Information
Retrieval Specialist Group (BCS/IRSG) Karen Sparck Jones award, a Fellow of the ACL and the Royal
Society of Edinburgh. She has also received best paper awards in leading NLP conferences and has served
on the editorial boards of the Journal of Artificial Intelligence Research, the Transactions of the ACL, and
Computational Linguistics. She was president of SIGDAT (the group that organized EMNLP) in 2018.
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Rachel Rudinger, University of Maryland

Title: When Pigs Fly and Birds Don’t: Exploring Defeasible Inference in Natural Language

Abstract: Commonsense reasoning tasks are often posed in terms of soft inferences: given a textual
description of a scenario, determine which inferences are likely or plausibly true. For example, if a person
drops a glass, it is likely to shatter when it hits the ground. A hallmark of such inferences is that they are
defeasible, meaning they may be undermined or retracted with the introduction of new information. (E.g.,
we no longer infer that the dropped glass is likely to have shattered upon learning that it landed on a soft
pile of laundry.) While defeasible reasoning is a long-standing topic of research in Artificial Intelligence
(McCarthy, 1980; McDermott and Doyle, 1980; Reiter, 1980), it is less well studied in the context of
contemporary text-based inference tasks, like Recognizing Textual Entailment (Dagan et al., 2005), or
Natural Language Inference (MacCartney, 2009; Bowman et al., 2015). In this talk, I will present a new
line of work that merges traditional defeasible reasoning with contemporary data-driven textual inference
tasks. I argue that defeasible inference is a broadly applicable framework for different types of language
inference tasks, and present examples for physical, temporal, and social reasoning.

Bio: Rachel Rudinger is an Assistant Professor of Computer Science at the University of Maryland,
College Park. Previously, she obtained her PhD at John Hopkins University and spent a year as a Young
Investigator at AI2 in Seattle. Her research focuses on problems in natural language understanding,
including knowledge acquisition from text, commonsense inference, computationally-tractable semantic
representations, and semantic parsing. She is also a contributing member of the Decompositional
Semantics Initiative.

vii





Table of Contents

Switching Contexts: Transportability Measures for NLP
Guy Marshall, Mokanarangan Thayaparan, Philip Osborne and André Freitas . . . . . . . . . . . . . . . . . . 1

Applied Temporal Analysis: A Complete Run of the FraCaS Test Suite
Jean-Philippe Bernardy and Stergios Chatzikyriakidis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

CO-NNECT: A Framework for Revealing Commonsense Knowledge Paths as Explicitations of Implicit
Knowledge in Texts

Maria Becker, Katharina Korfhage, Debjit Paul and Anette Frank . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Computing All Quantifier Scopes with CCG
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Abstract

This paper explores the topic of transporta-
bility, as a sub-area of generalisability. By
proposing the utilisation of metrics based on
well-established statistics, we are able to esti-
mate the change in performance of NLP mod-
els in new contexts. Defining a new mea-
sure for transportability may allow for bet-
ter estimation of NLP system performance in
new domains, and is crucial when assessing
the performance of NLP systems in new tasks
and domains. Through several instances of
increasing complexity, we demonstrate how
lightweight domain similarity measures can be
used as estimators for the transportability in
NLP applications. The proposed transportabil-
ity measures are evaluated in the context of
Named Entity Recognition and Natural Lan-
guage Inference tasks.

1 Introduction

The empirical evaluation of the quality of NLP
models under a specific task is a fundamental part
of the scientific method of the NLP community.
However, commonly, many proposed models are
found to perform well in the specific context in
which they are evaluated and state-of-the-art claims
are usually found not transportable to similar but
different settings. The current evaluation metrics
may only indicate which algorithm or setup per-
forms best: they are unable to estimate perfor-
mance in a new context, to demonstrate internal
validity, or to verify causality. To offset this, sta-
tistical significance testing is sometimes applied
in conjunction with performance measures (e.g.
F1-score, BLEU) to attempt to establish validity.
However, statistical significance testing has been
shown to be lacking. Dror et al. (2018) reviewed
NLP papers from ACL17 and TACL17 and found
that only a third of these papers use significance

∗ equal contribution

testing. Further, many papers did not specify the
type of test used, and some even employed an inap-
propriate statistical test.

Performance is measured in NLP tasks primarily
through F1 score or task-specific metrics such as
BLEU. The limited scope of these as performance
evaluation techniques has been shown to have is-
sues. Søgaard et al. (2014) highlights the data selec-
tion bias in NLP system performance. Gorman and
Bedrick (2019) show issues of using standard splits,
as opposed to random splits. We support their state-
ment that “practitioners who wish to firmly estab-
lish that a new system is truly state-of-the-art aug-
ment their evaluations with Bonferroni-corrected
random split hypothesis testing”. In an NLI task,
using SNLI and MultiNLI datasets with a set of
different models, it has been shown that permuta-
tions of training data leads to substantial changes
in performance (Schluter and Varab, 2018).

Further, the lack of transportability for NLP
tasks has been raised by specialists in applied do-
mains. For example, healthcare experts have ex-
pressed their frustration in the limitations of algo-
rithms built in research settings for practical ap-
plications (Demner-Fushman and Elhadad, 2016)
and the reduction of performance “outside of their
development frame” (Maddox and Matheny, 2015).
More generally, “machine learning researchers
have noted current systems lack the ability to rec-
ognize or react to new circumstances they have
not been specifically programmed or trained for”
(Pearl, 2019).

The advantages of “more transportable” ap-
proaches, such as BERT, in terms of their perfor-
mance in multiple different domains, is currently
not expressed (other than the prevalence of such
architectures across a range of state-of-the-art tasks
and domains). To support analysis and investiga-
tion into the insight that could be gained by ex-
amination of these properties, we suggest metrics
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and a method for measuring the transportability of
models to new domains. This has immediate rel-
evance for domain experts, wishing to implement
existing solutions on novel datasets, as well as for
NLP researchers wishing to assemble new dataset,
design new models, or evaluate approaches.

To support this, we propose feature gradient, and
show it to have promise as a way to gain lexical or
semantic insight into factors influencing the perfor-
mance of different architectures in new domains.
This differs from data complexity, being a compar-
ative measure between two datasets. We aim to
start a conversation about evaluation of systems in
a broader setting, and to encourage the creation and
utilisation of new datasets.

This paper focuses on the design and evaluation
of a lightweight transportability measure in the con-
text of the empirical evaluation of NLP models. A
further aim is to provide a category of measures
which can be used to estimate the stability of the
performance of a system across different domains.
An initial transportability measure is built by for-
malising properties of performance stability and
variation under a statistical framework. The pro-
posed model is evaluated in the context of Named
Entity Recognition tasks (NER) and Natural Lan-
guage Inference (NLI) tasks across different do-
mains.

Our contribution is to present a measure that eval-
uates the transportability and robustness of an NLP
model, to evaluate domain similarity measures to
understand and anticipate the transportability of an
NLP model, and to compare state of the art models
across different datasets for NER and NLI.

2 Relevant background and related work

2.1 Terminology

To quote Campbell and Stanley (2015), “External
validity asks the question of generalizability: To
what populations, settings, treatment variables, and
measurement variables can this effect be general-
ized?”. For Pearl and Bareinboim (2014), trans-
portability is how generalisable an experimentally
identified causal effect is to a new population where
only observational studies can be conducted. “How-
ever, there is an important difference, not often
distinguished, between what might be called the
potential (or generic) transferability of a study and
its actual (or specific) transferability to another pol-
icy or practice decision context at another time and
place.” (Walker et al., 2010)

Bareinboim and Pearl (2013) explore transfer of
causal information, culminating in an algorithm for
identifying transportable relations. Transportabil-
ity in this sense does not permit retraining in the
new population, and guides our choices in this pa-
per. Other definitions of transfer learning allow for
training of the model in the new context (Pan and
Yang, 2010), or highlight the distinction between
evidential knowledge and causal assumptions (Sin-
gleton et al., 2014).

2.2 Transportability: Models evaluated
across different datasets

Rezaeinia et al. (2019) consider improving trans-
portability by demonstrating word embeddings’ ac-
curacy degrades over different datasets, and pro-
pose an algorithmic method for improved word em-
beddings by using word2vec, adding gloVe when
missing, and filling any further missing values
with random entries. In a medical tagging task,
Ferrández et al. (2012) used different train/test
datasets, and compared precision and recall with
self-trained vs transported-trained, finding that
some tag-categories performed better than others.
They postulate that degradation differences were
due to the differing prevalence of entities in the
transported training data. Another term from this
domain is “portability”, in the sense that a model
could be successfully used with consideration of
implementation issues such as different data for-
mats and target NLP vocabularies (Carroll et al.,
2012). Blitzer et al. (2007) created a multi-domain
dataset for sentiment analysis, and propose a mea-
sure of domain similarity for sentiment analysis
based on the distance between the probability dis-
tributions in terms of characteristic functions of
linear classifiers.

In image processing, domain transfer is an active
area of research. Pan et al. (2010) propose transfer
component analysis as a method to learn subspaces
which have similar data properties and data distribu-
tions in different domains. They state that domain
adaptation is “a special setting of transfer learning
which aims at transferring shared knowledge across
different but related tasks or domains”. In com-
puter vision, Peng et al. (2019) combine multiple
datasets into a larger dataset DomainNet, and con-
sider multi-source domain adaptation, formalising
for binary classification. They demonstrate multi-
source training improves model accuracy, and pub-
lish baselines for state of the art methods.
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2.3 Generalisability
The language used in literature is not consistent.
Bareinboim and Pearl (2013) highlights that gen-
eralisability goes under different “rubrics” such as
external validity, meta-analysis, overgeneralisation,
quasi-experiments and heterogeneity.

Boulenger et al. (2005) disambiguate terms in
the context of healthcare economics (such as gen-
eralisability, external validity, and transferability),
and created a self-reporting checklist to attempt to
quantify transferability. They define generalisabil-
ity as “the degree to which the results of a study
hold true in other settings”, and “the data, methods
and results of a given study are transferable if (a)
potential users can assess their applicability to their
setting and (b) they are applicable to that setting”.
They advocate a user-centric view of transferabil-
ity, considering specific usability aspects such as
explicit currency conversion rates.

Antonanzas et al. (2009) create a transferability
index at general, specific and global levels. Their
“general index” is comprised of “critical factors”,
which utilise Boulenger et al.’s factors, adding sub-
jective dimensions.

3 Transportability in NLP

3.1 Definitions
To support a rigorous discussion, notational con-
ventions are introduced. Extending the choices of
Pearl and Bareinboim (2011), we denote a domain
D with population Π, governed by feature proba-
bility distribution P , which is data taken from a
particular domain. We denote the source with a 0
subscript.

Definition 1. Generalisability: A system Ψ has
performance p for solving task T0 in domain D0.
Generalisability is how the system Ψ performs for
solving task Ti in domain Dj , relative to the origi-
nal task, without retraining.

Special cases, such as transportability or trans-
ference, have some i, j = 0 in the definition above.

Definition 2. Transportability: A system Ψ has
performance p for solving task T0 in domain D0.
Transportability is the performance of system Ψ for
solving task T0 in a new domain Di, relative to the
original task, without retraining.

Across multiple Di, we have relative perfor-
mance τp(D0,Di), from which we can estab-
lish statistical measures for transportability perfor-
mance and variation.

Source data Π0

Target Contexts DiSource Context D0

Samples

. . .

Performance

Variation τvar

Transportability

Performance τp

Internal

Validity

Target

data Π1

Target

data Π2

Target

data Πn

Figure 1: Schematic representation of the definitions

Transfer learning is a specific way of achieving
transportability (between populations or domains)
or generalisability (including between tasks). Sin-
gleton et al. (2014) state that “transport encom-
passes transfer learning in attempting to use statis-
tical evidence from a source on a target, but dif-
fers by incorporating causal assumptions derived
from a combination of empirical source data and
outside domain knowledge.”. Note that this is dif-
ferent to generalisation in the Machine Learning
sense, which is akin to internal validity (Marsland,
2011). Figure 1 shows the definitions associated
with transportability discussed in this paper.

Table 1 summarises terminology, of how the
target differs from source (Ψ0, T0,D0(Π0)).

Term Ψ T D Π

Cross-validation 0 0 0 i
New modeling i 0 0 0
Transportability 0 0 i i
Transferability 0 0,i i i
Generalisability 0 0,i 0,i 0,i

Table 1: Terminology through variation from a source.
Table body is subscripts.

Chance, bias and confounding are the three
broad categories of “threat to validity”. Broadly,
chance and bias can be assessed by cross-validity,
as it applies a model to the same task in the same
domain on different data population. Confounding,
error in interpretation of what is being measured,
is more difficult to assess. Transportability is con-
cerned with the transfer of learned information,
with particular advances in the transport of causal
knowledge.

Generalisability is the catch-all term for how ex-
ternally valid a result or model is. Any combination
of task, domain and data can be used.
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3.2 Transportability performance

We define transportability performance τp as the
gradient of the change in the performance metric’s
score from one domain to another. This measure
does not take into account the underlying proba-
bility distributions, only the change in resulting
performance measure.

τp(D0,Di) =
p(Ψ, T,Di)
p(Ψ, T,D0)

(1)

The measure uses a ratio in order to allow compari-
son between different systems. To generalise this
measure across different settings, we can take an
average to give Equation 2. Note that this is the
average percentage change in performance, not an
aggregated performance measure.

τp(D0) =
1

n

n∑

i=1

p(Ψ, T,Di)
p(Ψ, T,D0)

(2)

An analogous definition holds for different tasks
over the same domain, τp(T ).

3.3 Performance variation

Performance variation reflects how stable perfor-
mance is across different contexts and can include,
for example, to what extent the sampling method
from the source data effects the performance metric
of the algorithm. Part of this is data representative-
ness, the extent to which the source data represen-
tation also represents the target data.

More formally, performance variation
τs(Ψ, T,D) is the change in performance of
(Ψ, T,D) across different contexts. This is useful
in order to gain specific insight into external
validity and generalisability. Indeed, we can assess
the change in performance between source context
D0 and target context Di. The source context has a
privileged position, in that it is this space which
the “learning” takes place, and the proposed metric
for performance variation to multiple different
domains is based on τp to reflect this. Through
repeated measurement in different contexts, we
can go further.

Definition 3. Performance Variation: For a model
trained on domain D0 and applied on n new do-
mains Di, we define the performance variation as
the coefficient of variation of performance across

this set of domains so that:

τvar(D0) =

(
1+

1

4n

)√∑n
i=1(τp(D0,Di)−τp(D0))2

n−1

τp(D0)
(3)

The 1 + 1
4n term corrects for bias. In order to

be meaningful, the target contexts must to have a
good coverage of different domains. Enumerating
these would be a task of ontological proportions,
but can be pragmatically approximated by using
the available Gold Standard datasets.

We can also assess ability to generalise not just
over different domains, but also different tasks,
provided they can be meaningfully assessed by
the same performance measure. We can consider
n different domain-task combinations, and with
τp =

∑n
i,j=0 τp(Ψ, Ti,Dj)/n, this gives a more

general form for Equation 3, with n large:

τvar =

√∑
i>0,j>0(τp(Ψ,Ti,Dj)−τp)2

n−1

τp
(4)

In the case where different tasks cannot be assessed
by the same measure, we are still able to compare
different systems by looking at how the respective
measures change.

3.3.1 Performance variation properties
For a purely random system, the transportability
should be related to how similar the distributions
of “answers” in the test dataset are. A random sys-
tem should really be transportable by our measures.
Similarly, we can consider trivial systems, such as
identity and constant functions, which are neces-
sarily entirely transportable. That is, for a system
that is an identity function Ψ = I , τp = f(P ), and
τvar(I, T,Di) = τvar(I, T,Dj) = 0, ∀i, j. Note
that we would not expect the same performance of
these functions on different tasks.

A stable system will have τvar(Ψ, T,D0) ≈
τvar(Ψ, T,Di)∀i, reflecting that it is resilient to
the domain on which it is trained.

3.3.2 Factors influencing performance
variation

Through repeated measurement, we can quantify
how F1-score changes with respect to different
measures A (e.g. dataset complexity), ∂F1

∂A , with
other properties held constant.

NLP system performance is dependent on A.
This list may include gold standard feature distribu-
tion (in terms of representativeness of the semantic
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or linguistic phenomena), and task difficulty or sen-
sitivity.

Users of NLP systems would benefit from be-
ing able to estimate the performance of an existing
NLP system on a new domain, without performing
the full implementation. Important for the perfor-
mance of an NLP system, especially for few or zero
shot learning, is having a common set of features
(or phenomena) across domains. We proceed to
propose three measures of increasing complexity,
in order to attempt to understand how “similar” two
domains are.

Lexical feature difference: A measure
grounded on lexical features (i.e. bag of words).
The intuition behind this measure is for treating
the set of lexical features as a representation.
Linguistic space is observed as materialised tokens,
which in turn are in some higher-dimensional
semantic space, which enable interpretation. The
measure considers the overlap of these linguistic
spaces, and indeed the extent to which the
linguistic space is covered by the data. Due to the
simplicity of this measure, correlation between this
and actual transportability performance is likely to
be weaker than other measures but is simpler to
calculate.

Lexical Feature Difference = 1−|Di ∩ D0|
|Di|

, i > 0

(5)
Where |Di| is the number of features in the target
domainDi, and |Di∩D0| is the number of features
overlapping. This measure is then the proportion
of unseen features in the new dataset. If all features
of Di are found in D0, then the feature difference
is 0. If no features of Di are found in D0, then the
feature difference is 1. The feature overlap is task
specific, and therefore appropriate to consider for
transportability, but not generalisability.

In the simplest case, the transported performance
of a bag of words model should be precisely the
lexical feature difference combined with distribu-
tions of the source and target domains. The feature
set can range from binary lexical features to latent
vector spaces. For different models, which target
different aspects of semantic phenomena, different
semantic and syntactic features will matter more.
For this reason, considering a set of measures for
domain complexity is warranted. In the context
of this work, two measures are used over more
complex feature spaces.

NER:

CoNNL-2003

NLI:
SNLI

MultiNLI

SciTail

Stanford NER

SpaCy v2

ELMo

BERT

Figure 2: Overview of the experiments undertaken, in-
dicating the models being applied to each dataset

Cosine distance: Specifically, we use Doc2Vec
(Le and Mikolov, 2014) to embed the documents
from each domain in a 300-dimensional feature-
vector space, normalise, and calculate cosine dis-
tance to compare source and target domains.

Kullback–Leibler divergence: Considering
each domain as a distribution of features, we can
use relative entropy to understand the difference
between the source and target domains. Similar
to cosine distance, we convert the corpus to a
vector using Doc2Vec and normalize. We treat
these values as discrete probability distributions to
calculate the KL divergence.

The usefulness of any of these domain similarity
measures depends on the semantic phenomena and
supporting corpora underlying the system, for ex-
ample if the system requires a large training dataset,
it may be more appropriate to use a measure which
considers the underlying probability distributions
in each feature. In this case, we can restrict to
the case of the same task in order to keep the es-
sential features reasonably consistent across do-
mains. This makes this a measure of transportabil-
ity (rather than generalisability).

There are additional dimensions of transportabil-
ity potentially worthy of further investigation and
quantification: (i) domain similarity (e.g. missing
features), (ii) data efficiency (redundant/repeated
features), (iii) data preparation (initial setup and for-
matting) and (iv) data manipulation required (data
pipeline).

4 Experiments

4.1 Setup

The experiments aim to evaluate the consistency
of the proposed transportability measures in the
context of two standard tasks: named entity recog-
nition and natural language inference. For repro-
ducibility purposes the code and supporting data
are available online1.

We calculated the F1 score of multiple models on

1https://github.com/ai-systems/
transportability
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Dataset Model

Stanford SpaCy ELMo

CoNLL-
2003

Train 98.69 99.32 99.97
Dev 93.22 81.56 98.17
Test 88.78 88.11 93.79

Wiki 66.31 52.14 79.4

WNUT
Train 51.63 27.03 36.3
Dev 53.59 32.23 48.8
Test 47.11 26.28 58.1

Table 2: NER F1 scores for different models trained on
CoNLL dataset transported across different corpora

multiple datasets (Figure 2). Note that in general
the applicability of the proposed transportability
measures are not limited to the use of F1 score, but
this is simpler as the same measure applies for both
tasks. All models and datasets are standard. For
NER, the datasets were chosen as they have the
consistent tags: Location, Person and Organisation.
Stanford NER (Finkel et al., 2005) is a CRF classi-
fier, SpaCy v2 is a CNN, ELMo (Peters et al., 2018)
is a vector embedding model which outperforms
GloVe and word2vec. Each of the three models
used are trained on the CoNLL-2003 dataset (Sang
and De Meulder, 2003). We evaluated these models
on CoNLL-2003, Wikipedia NER (Ghaddar and
Langlais, 2017) (Wiki) and WNUT datasets (Bald-
win et al., 2015) for NER in twitter microposts.

For NLI, we chose to use standard datasets.
SNLI (Bowman et al., 2015) is well established
with a limited range of NLI statements, MultiNLI
(Williams et al., 2018) is multigenre with a more di-
verse range of texts, and SciTail (Khot et al., 2018)
is based on scientific exam questions. We applied
BERT (Devlin et al., 2018), a state of the art em-
bedding model, to these datasets.

4.2 Results

NER: Table 2 shows results for the NER task,
trained on CoNLL. Unsurprisingly, all models per-
formed better when the target was in the CoNLL do-
main. The reduced performance on Wiki was more
extreme than expected, particularly for ELMo,
which was expected to be resilient to domain
change (i.e. transportable). Table 6 and Table 4
illustrate the transportability and domain similarity
scores for different NER models respectively.

NLI: Table 3 shows results for the NLI task, us-
ing BERT. We find that, despite the vast training
data, BERT’s performance is substantially higher
when it has been trained on data from that domain.
BERT trained on SciTail performs poorly when
transported to SNLI or MultiNLI. Table 7 and Ta-
ble 5 illustrates the transportability and domain
similarity scores for different NLI corpora.

4.3 Analysis

Every model had τp � 1, meaning they performed
worse on the new domain. This is as expected,
though this would not be true in general.

NER: Examining the F1 scores (88.11 vs. 88.78)
of SpaCy and Stanford they appear almost compa-
rable. However, the latter transports much more ef-
fectively, with τp score difference (0.671 Vs 0.524
when transporting to Wiki) (refer Table 6).

ELMo is one of the state of the art approaches
for NER, as evidenced by the high F1 scores for the
source corpus. However, Stanford NER transports
equally well, and when transported outperforms
ELMo for twitter domain. While the absolute F1
score difference between them is 5, the τp scores
are almost identical, with a difference of 0.003.
In terms of transportability, it is notable that an
approach that employs CRF tagger with linguistic
features outperforms significantly the CNN-based
SpaCy approach and stands in comparison to a
computationally expensive model like ELMo.

Stanford NER also has the lowest τvar. This
indicates this to be the most robust model out of
the three. This conclusion was facilitated by the τp
and τvar measures.

NER for English is assumed to be an accom-
plished task as supported by the traditional F1
scores. By using τp we argue that there is a need
for more robust models, with better transportability
performance.

Figure 3a and Figure 3b illustrates the decrease
in F1 scores as cosine distance and KL divergence
increase. A simple 3 parameter non-linear regres-
sion model on KL Divergence and Cosine distance
is able to predict the F1 score with an mean error of
3.33 and 2.66 respectively. Considering the lexical
difference has similar results (Table 4). This im-
plies that by using these measures we may be able
to anticipate the accuracy of a model in a new do-
main based on easy to compute domain similarity,
which is straightforward to compute.
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Source Dataset
Target Dataset

SNLI Dataset MultiNLI Dataset SciTail Dataset

Train Dev Test Train Dev Train Dev Test

SNLI (Train) 96.81 90.83 90.40 72.51 72.29 54.04 61.34 52.72
Multi NLI (Train) 77.13 79.05 79.31 97.78 83.50 66.52 67.79 67.26
SciTail (Train) 42.68 44.36 44.20 47.49 44.49 99.88 94.78 93.08

Table 3: NLI accuracy scores for BERT model trained on one dataset transported to a different dataset
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(a) NER F1 scores Vs Doc2Vec cosine distance
from training (CoNLL) corpus
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Figure 3: NER F1 score plotted against different measures of corpus similarity

Dataset Lexical Cosine KL
Diver-
gence

CoNLL
Train 0.000 0.000 0.000
Dev 0.121 0.001 0.345
Test 0.197 0.003 0.463

Wiki 0.290 0.007 0.701

WNUT
Train 0.421 0.134 2.129
Dev 0.511 0.167 1.473
Test 0.481 0.130 1.137

Table 4: Domain similarity scores between the training
corpus (CoNLL-2003) across other NER datasets

NLI: Applying BERT to different domains was
not as resilient to domain transport as we expected.
The average τp is 0.612 over transported domains,
despite these being standard corpora from the do-
mains. We found MultiNLI(Train) to be more trans-
portable than the others, since its performance in
new domains is not much worse than new data
from the same domain. This is as expected, since
MultiNLI has been built to have good domain cov-
erage. Specifically, MultiNLI has τp = 0.744 and
τvar = 8.582, whilst SNLI has τp = 0.646 and
τvar = 15.22 and SciTail has τp = 0.446 and

τvar = 3.921. SciTail transports poorly, and does
so reliably! SNLI transports in between, but vari-
ably, being quite “hit or miss” with different sam-
ples of SciTail. These results suggest a threshold
for τp of perhaps 0.8 as being “appropriate” for
transportability performance. A threshold for τvar
is more difficult to establish and would benefit from
further investigation. Clearly, these measures de-
pend on the domains chosen.

As with NER, we found lexical difference in-
dicative of transported performance, and that for
NLI, accuracy scores decrease with increasing lexi-
cal difference, cosine distance and KL divergence
(Tables 3 and 5, and Figures 4a and 4b). A sim-
ple 3 parameter non-linear regression model on KL
Divergence and Cosine distance is able to predict
the accuracy score with an mean error of 3.98 and
1.95 respectively.

4.4 Discussion

τp and τvar as complementary to traditional
measures. We are not breaking new ground in
terms of evaluation methodology, but the experi-
ments demonstrate that traditional F1 and accuracy
measures do not capture a complete picture. Trans-
portability measure are not only simple enough to
calculate and convey but also evaluates a model
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Dataset Measurement
SNLI MultiNLI SciTail

Train Dev Test Train Dev Train Dev Test

SNLI (Train)
Lexical 0.000 0.003 0.003 0.086 0.088 0.136 0.115 0.119
Cosine 0.000 0.002 0.002 0.008 0.007 0.233 0.242 0.242
KL Divergence 0.000 3.277 4.283 6.489 8.982 16.02 17.50 18.20

MultiNLI
(Train)

Lexical 0.008 0.008 0.008 0.000 0.008 0.063 0.063 0.047
Cosine 0.008 0.018 0.016 0.000 0.002 0.298 0.307 0.306
KL Divergence 11.07 7.613 6.333 0.000 3.342 33.10 35.27 34.69

SciTail
(Train)

Lexical 0.282 0.282 0.282 0.277 0.278 0.000 0.028 0.025
Cosine 0.233 0.230 0.231 0.262 0.298 0.000 0.001 0.002
KL Divergence 11.17 7.04 7.492 5.220 6.682 0.000 1.097 1.424

Table 5: Domain similarity scores between the source training corpus and target corpora
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Figure 4: NLI accuracy score plotted against different measures of corpus similarity

Stanford SpaCy ELMo

τp(wiki) 0.671 0.524 0.794
τp(wnut) 0.514 0.287 0.477
τp(wnut & wiki) 0.553 0.346 0.556

τvar 15.051 35.171 32.666

Table 6: Transportability measures for NER models

with regards to generalisability and robustness.

Low cost ways of anticipating performance for
a new task or domain. Most of the state of the
art models are computationally expensive. With the
transportability and domain similarity measures we
are able to predict performance in a new domain
with reasonable accuracy. These similarity mea-
sures are relatively simpler to run.

5 Conclusion

We have presented a model of transportability for
NLP tasks, together with metrics to allow for the

SNLI MultiNLI SciTail

τp 0.646 0.744 0.446
τvar 15.22 8.582 3.921

Table 7: Transportability measures for NLI corpora

quantification in the change in performance. We
have shown that the proposed transportability mea-
sure allows for direct comparison of NLP systems’
performance in new contexts. Further, we demon-
strated domain similiarity as a measure to model
corpus and domain complexity, and predict NLP
system performance in unseen domains. This pa-
per lays the foundations for further work in more
complex transportability measures and estimation
of NLP system performance in new contexts.
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Abstract

In this paper, we propose an implementation of
temporal semantics that translates syntax trees
to logical formulas, suitable for consumption
by the Coq proof assistant. The analysis sup-
ports a wide range of phenomena including:
temporal references, temporal adverbs, aspec-
tual classes and progressives. The new seman-
tics are built on top of a previous system han-
dling all sections of the FraCaS test suite ex-
cept the temporal reference section, and we ob-
tain an accuracy of 81 percent overall and 73
percent for the problems explicitly marked as
related to temporal reference. To the best of
our knowledge, this is the best performance of
a logical system on the whole of the FraCaS.

1 Introduction

The semantics of tense and aspect has been a long
standing issue in the study of formal semantics
since the early days of Montague Grammar and a
number of different ideas have been put forth to
deal with them throughout the years. Recent pro-
posals include the works of the following authors:
Dowty (2012); Prior and Hasle (2003); Steedman
(2000); Higginbotham (2009); Fernando (2015).
The semantics of tense and aspect have been also
considered in the study of Natural Language In-
ference (NLI). The various datasets for NLI that
have been proposed by the years contain examples
that have some implicit or explicit reliance on infer-
ences related to tense and aspect. One of the early
datasets used to test logical approaches, the FraCaS
test suite (Cooper et al., 1996) contains a whole sec-
tion dedicated to temporal and aspectual inference
(section 7 of the dataset). This part of the FraCaS
test suite has been difficult to tackle. That is, so far,
no computational system has been capable to deal
with it in its entirety: when authors report accuracy
over the FraCaS test suite they skip this section. In
fact, they also often skip the anaphora and ellipsis

sections, the exception being the system presented
by Bernardy and Chatzikyriakidis (2017, 2019),
which includes support for anaphora and ellipsis
but still omit the temporal section.1 In this paper,
we take up the challenge of providing a computa-
tionally viable account of tense and aspect to deal
with the section 7 of the FraCaS test suite. Our
account is not meant to be a theoretically extensive
account of tense and aspect, but rather an account
that is driven by the need to cover the test suite
in a way that is general enough to capture the test
suite examples, while still covering the rest of the
FraCaS test suite.

The account is evaluated on the entailment prop-
erties of various temporal and aspectual examples,
as given by the test suite. As such, we are not get-
ting into the discussion of how tense and aspect
might affect grammaticality or infelicitousness of
various sentences. We assume that the sentences
of the FraCaS suite are syntactically and semanti-
cally correct, and strive to produce accurate logical
representations given that assumption. We further
assume that the entailment annotations of various
problems are valid, and we use those to evaluate
the correctness of the logical representations of
sentences.

The paper is structured as follows: in Section 2,
we give a brief summary of the computational
frameworks whose various subsystems rely on. In
particular, the Grammatical Framework is used to
construct the syntactic parser, the Coq proof assis-
tant checks all the reasoning and a monad-based
dynamic semantics deals with Montague-style se-

1One can consider that MacCartney and Manning (2007)
have made a run against the whole test suite. However, they do
not deal with multi-premise cases. Consequently only 36/75
cases in the temporal section are attempted. The general ac-
curacy of the system is .59, and .61 for the temporal section.
Our system, as shown Table 1, presents considerable improve-
ments in coverage and accuracy over that of MacCartney and
Manning.
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mantics, and references (anaphora). We also pro-
vide some brief remarks on temporal semantics.
In Section 3, we discuss the main aspects of the
compositional semantics of our system, using var-
ious examples from the FraCaS suite to illustrate
its effectiveness. In Section 5, we evaluate how
our system performs with respect to the FraCaS
suite. We ran the system across the whole suite:
our system is thus the first which is capable of han-
dling the complete FraCaS test suite. Yet, we are
interested in particular in the performance on the
temporal section. In Section 6, we conclude and
discuss avenues for future work.

2 Temporal-Semantics in a Logic-based
NLI System

Our temporal analysis places itself in the context
of a complete NLI system – which is why we can
test it on the FraCaS suite. In this section we give
a brief overview of the phases of the system, refer-
ring the reader to published work for details.

GF The first phase of the system, parsing, is
taken care of by the Grammatical Framework (GF,
Ranta (2004)), which is a powerful parser genera-
tor for natural languages, based on type-theoretical
abstract grammars. The present work leverages a
syntactic representation of the FraCaS test suite
in GF abstract syntax, in effect a GF FraCaS tree-
bank (Ljunglöf and Siverbo, 2011). Thanks to this,
we skip the parsing phase and avoid any syntactic
ambiguity.

For the purpose of this paper, the important fea-
ture of GF syntax is that it aims at a balance of
sufficient abstraction to provide a semantically-
relevant structure, but at the same time it embeds
sufficiently many syntactic features to be able to
reconstruct natural-language text. That is, the parse
trees generally satisfy the homomorphism require-
ment of Montague (1970, 1974), and we can focus
on the translation of syntactic trees to logical forms.
Consequently, the system presented here does not
aim at textual natural language understanding, but
rather provides a testable, systematic formal seman-
tics of temporal phenomena. Example (1) shows
an example abstract syntax tree and its realisation
in English.

Dynamic Semantics Parse trees are then pro-
cessed by a dynamic semantic component. Its role
is essentially to support (non-temporal) anaphora,
using a monadic-based dynamic semantics, gen-

erally following the state of the art in this matter
(Unger, 2011; Charlow, 2015, 2017). Our partic-
ular implementation has weaknesses in certain ar-
eas (including group readings and counting; see
Bernardy et al. (2020) for details) but non-temporal
anaphoroi in the testsuite are generally resolved
as they should be: on the whole accuracy is not
affected significantly by issues in this subsystem.

As it is the case for other basic phenomena, there
is not much interaction between our treatment of
time and non-temporal anaphora. Critical excep-
tions are discussed in Section 3 and Section 5.

Montagovian Semantics Non-withstanding spe-
cial support for anaphora, the core of the translation
of syntax trees to logical form follows a standard
montagovian semantics. In brief, sentences are in-
terpreted as propositions, verbs and noun-phrases
as predicates. We use type-raising of noun-phrases,
to support quantifiers (Montague, 1974).

We support additionally the basic constructions
and phenomena present in the testsuite, including
adjectives, adverbs, nouns, verbs, anaphora, etc.
The method is outlined by Montague (1970, 1973),
but we direct the reader to our previous work for
details Bernardy and Chatzikyriakidis (2017, 2019)
, but the particular treatment of such phenomena
is essentially independent from our treatment of
time: in this paper we simply ignore these aspects
beyond the fact that they are handled correctly in
the FraCaS testsuite, except in a few pathological
cases.

Inference using Coq Logical forms are then fed
to the Coq interactive theorem prover (proof assis-
tant). Coq is based on the calculus of co-inductive
constructions (Werner, 1994) We do not use any
co-induction (or even induction) in this paper, rely-
ing on the pure lambda-calculus inner core of Coq.
Coq is a very powerful reasoning engine that makes
it fit for implementing natural language semantics.
Coq also supports dependent typing and subtyping.
Both concepts are instrumental in expressing NL
semantics (Chatzikyriakidis and Luo, 2014). Be-
sides, on a more practical side, it works well for
the the task of NLI, when the latter is formalised as
a theorem proving task: its many tactics mean that
many tasks in theorem proving are trivialised. In
particular, all problems of time-intervals inclusion,
which occur in every temporal problems, are solved
with Coq’s linear arithmetic tactic.
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3 Our Treatment of Time

In montagovian semantics, (intransitive) verbs are
one-place predicates; in types, they are functions
from entities to propositions (e → t). Our ba-
sic approach is to generalise the interpretation of
verbs, so that it takes two additional time param-
eters, one corresponding to the starting time of
the action and one corresponding to its stopping
time ((e × time × time) → t). For example, if
John walked between t0 and t1, we would have:
walk(john, t0, t1). From now on we will call an
interval of time points [t0, t1] a timespan, where
t0 and t1 are elements of the time type, which is
represented in Coq as an abstract ordered ring. Ev-
ery timespan [t0, t1] has the property t0 ≤ t1: it
starts no later than it stops. (We are thus using a
simple Newtonian model of time, corresponding
to a layman intuition of a linear constant flow of
time.)

In principle, common nouns and adjectives
should undergo the same procedure. For simplic-
ity we will however only consider verbs from now
on. (In fact, even in our implementation we chose
not to extend nouns nor adjectives with timespan
parameters. This choice limits the increase in com-
plexity of the formulas compared to non-temporal
semantics, at the expense of inaccuracy for a cou-
ple of problems in the FraCaS test suite: problems
271 and 272 use a an adjective as a copula which
is subject to temporal reasoning.)

(271) A unknown
P1 Smith was present.
P2 Jones was present.
P3 Smith was present after Jones was

present.
H Jones was present before Smith was

present.

Temporal Context We adjust the montagovian
semantics so that the interpretation of every cat-
egory (propositions, verb phrases, etc.) takes a
temporal context as an additional parameter, which
serves as a time reference for the interpretation
of all time-dependent semantics within the phrase.
(While some categories do not need this temporal
context, we pass it everywhere for consistency.)
This context propagates through the compositional
interpretation down to lexical items with atomic
representation (verbs). By default, every interpreta-
tion passes the temporal context down to its com-
ponents without changing it. However some key

elements will act on it on nontrivial ways, which
we proceed to detail below.

This temporal context is an optional timespan.
That is, it can be a timespan or an explicitly un-
specified context. The timespan in the context is
optional because, in certain situations, the seman-
tics is different depending on whether a timespan
has been specified externally or not, as we explain
below. A non-present timespan will be represented
as −. If a semantic function does not depend on
the temporal context at all, we will write ∗ instead.

Tenses The principal non-trivial manipulators of
timespans are tense markers. In our syntax, inher-
ited from GF, tenses are represented syntactically
as an attribute of clauses. An illustration of a past-
tense clause and its interpretation follows in Exam-
ple (1). Notice in particular the past argument to
the useCl constructor.

(1) A scandinavian won the nobel prize.
useCl past pPos

(predV P (detCN (detQuant indefArt numSg)

scandinavian CN)

(complSlash (slashV awin V )

(detCN (detQuant indefArt numSg)

nobel prize CN)))

In our semantics we deal only with present and
past tenses (simple and continuous). Indeed we
find that FraCas does not exercise additional spe-
cific tenses. (When a more complicated tense is
used, the additional information is also carried by
adverbs or adverbial phrases, in a more specific
way). While we believe that many other tenses can
be captured under the same general framework, we
leave a detailed study to further work.

Even though we discuss a refinement to handle
the past continuous at the end of this section, the
procedure to handle tense annotations is as follows:

• If the tense is the past, and the temporal
context is unspecified, then we locally quan-
tify over a time interval [t0, t1], such that
t1 < now, where now is a logical constant
representing the current timepoint. The tem-
poral context then becomes this interval.

• If the tense is the present and the temporal con-
text is unspecified, then the temporal context
becomes the simple (now, now) interval.

• If the temporal context is specified (for exam-
ple due to the presence of an adverb or an ad-
verbial clause, such as “before James swam”),
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then the tense does not create a new interval,
but it may constrain it. Typically, a past tense
adds the constraint that the temporal context
ends before the timepoint now.

Temporal Adverbs The other single most im-
portant source of interesting timespans are adverbs.
Most of the temporal adverbs fall in either of the
following categories:

exact For such adverbs, an exact interval is pro-
vided. In fact, such adverbs typically specify
a single point in time (so the start and the end
of the interval coincide).

Jat 5 pm, sK(∗) = JsK(5pm, 5pm)

existentially quantifying The majority of temporal
adverbs existentially quantify over a timespan.
Examples include “since 1991”, “in 1996”,
“for two years”, etc. The common theme is
to introduce the interval and then restrict its
bounds or its duration in some way. Some-
times the restriction is an equality, as in “for
exactly two hours”. In the following exam-
ple we show the inclusion constraint, for “in
1992”.

Jin 1992, sK(∗) =
∃t1, t2.[t1, t2] ⊆ 1992, JsK(t1, t2)

In the FraCaS test suite, we normally do not
find several time-modifying adverbs modify-
ing a single verb phrase. Indeed, sentences
such as “in 1992, in 1991 john wrote a novel”
are infelicitous. This justifies ignoring the in-
put timespan in the above interpretation – we
are in particular not interested in modelling
felicity with our semantics, only giving an ac-
curate semantics when the input is felicitous.

universally quantifying A few adverbs introduce
intervals via a universal quantification (some-
times with a constraint). Examples include
“always” and “never”.

If there is no explicit time context, then “al-
ways” has no constraint on the interval, other-
wise the quantified interval must be included
in it:

Jalways sK(t0, t1) =
∀t′0, t′1.[t′0, t′1] ⊆ [t0, t1], JsK(t′0, t′1)

Note that here we do use the input interval,
resulting in a correct interpretation for phrases
such as “In 1994, Itel was always on time.” .

Aside: aspectual classes in the literature In
this paper we borrow several notions from classi-
cal temporal semantics such as “stative”, “achieve-
ment”, “activity”, etc., even though our definitions
do not perfectly match the classical ones. We ex-
plain our precise meaning for these terms in the
body of the paper. Nevertheless, we refer the reader
to Steedman (2000) for an extensive review of for-
mal temporal semantics.

For the cognoscenti, we can already point out
some differences in terminology: we use the term
activity as a general term which encompasses the
three classical notions of activites, achievements
and accomplishments. Indeed, insofar as the test
suite is concerned, we find that these three cate-
gories can be collapsed into a single one (they are
subject to Eq. (1)). That is, it is sufficient for the
testsuite to distinguish between events and states.
(In this paper, we always assume that the problems
in the FraCaS testsuite are correctly annotated.)

Time references and aspectual classes A com-
mon theme in the testsuite is the reference to previ-
ous occurrences of an event:

(262) P1 Smith left after Jones left.
P2 Jones left after Anderson left.
H Did Smith leave after Anderson left?

To be able to conclude that there is entailment, as
the testsuite expects, we have to make sure that the
two occurrences of “Jones left” (in P1 and P2) refer
to the same time intervals. For this purpose we pos-
tulate unicity of action for certain time-dependent
propositions:

unicityP : P (t1, t2)→ P (t3, t4)→
(t1 = t3) ∧ (t2 = t4) (1)

Unicity of action holds only if the aspectual class
of the proposition P is activity (Steedman, 2000)
(which, for our purposes, includes achievements
and accomplishments as well).

(The difference between activity and accomplish-
ments on the one hand and achievement on the
other hand is that for the latter, time intervals can
be assumed to be of nil duration. In reality, this is
an oversimplification as achievements are usually
of short duration, but not nil. However, this plays
little role in our analysis. As far as we can tell the
FraCaS test suite does exercise temporal semantics
to such a level of precision.)

Unicity of action plays the role of event coref-
erence in (neo-)Davidsonian accounts (Parsons,
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1990). It is also a fine-grained principle, allowing
coreference to take into account certain arguments
when referencing. As we detail below, taking ar-
guments into account yields is critical to handle
repeatability of achievements.

Unicity of action appears to be a non-logical
principle. Indeed, it is quite possible that “Jones
left” several times. However, it seems that this prin-
ciple is never contradicted by the testsuite. As such,
even though unicity of action is only a pragmatic
rule, it can be taken as a valid one by default: it
is only when we have a sufficiently constrained
situation that one should reject it. Consider the
following discourse:

(1) Smith left at 1pm.
(2) Smith went to his appointment with the

lawyer.
(3) Smith left at 4pm.

One would normally not say that there is contra-
diction. However if the middle sentence were not
present, a contradiction should be flagged. We
leave such discourse analysis as future work, and
simply apply unicity of action everywhere: it is
valid uniformly in the FraCaS test suite for activity
aspect classes.

Statives A contrario, if P is stative, then we get
a time-interval subsumption property:

subsumptionP :

[t3, t4] ⊆ [t1, t2]→ P (t1, t2)→ P (t3, t4)

This principle is used to reason about problem
(314), below (note that “Smith” is used as a sur-
name in the FraCaS and can take both feminine and
masculine values):

(314) P1 Smith arrived in Paris on the 5th of May,
1995.

P2 Today is the 15th of May, 1995.
P3 She is still in Paris.
H Smith was in Paris on the 7th of May,

1995.

Indeed, from P3 we get that Smith was in Paris
between May 5th and May 15th. Because “being in
Paris” is stative, we also get that Smith was in Paris
in any sub-interval. Contrary to unicity of action,
subsumption is always valid.

Class-modifying adverbs It should be noted
that some adverbs can locally disable the appli-
cation of subsumption. For example, problem 299
features the sentence “Smith lived in Birmingham
for exactly a year”. Even though “live” is normally
stative, one can no longer apply subsumption in
the context of “exactly a year” — this can be done
by propagating another context flag in the mon-
tagovian semantics (in addition to the temporal
context).

(Un)repeatable Achievements The principle of
using unicity of action interacts well with the
usual interpretation of existential quantifiers (and
anaphora). Indeed, using it, we can refute problem
(279), as expected by the testsuite:

(279) P1 Smith wrote a novel in 1991.
H Smith wrote it in 1992.

Indeed, following our account, the above (contra-
dictory) inference problem is to be interpreted as

∀x.novel(x)∧
∃t1, t2.[t1, t2] ⊆ 1991 ∧ write(smith, x, t1, t2)∧
∃t3, t4.[t3, t4] ⊆ 1992 ∧ write(smith, x, t3, t4)
−→⊥

(2)
Note here that the scope for the existential is ex-
tended beyond the scope of P1, and its polarity
switched (to universal). This extension can fol-
low the account of Unger (2011), and our imple-
mented analysis of anaphora(Bernardy et al., 2020;
Bernardy and Chatzikyriakidis, 2019).

Thanks to the unicity of action of
write(smith, x, ...) (the subject and direct
object are fixed) we find [t1, t2] = [t3, t4], and
due to the years 1991 and 1992 being disjoint we
obtain contradiction. In sum, no special notion of
accomplishment is needs to be invoked: we only
need the principle of unicity of action.

Yet, the testsuite instructs that we should not be
able to refute problem (280), with the justification
that “wrote a novel” is a repeatable accomplish-
ment:

(280) P1 Smith wrote a novel in 1991.
H Smith wrote a novel in 1992.

Here our interpretation is:
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(∃x.novel(x)∧
∃t1, t2.[t1, t2] ⊆ 1991 ∧ write(smith, x, t1, t2))∧
(∃y.novel(y)∧
∃t3, t4.[t3, t4] ⊆ 1992 ∧ write(smith, y, t3, t4))
−→⊥

Our analysis does not need to treat this last case
specially. Indeed, even if write(smith, x, ., .) is
an activity and thus subject to unicity of action,
in (280), x is quantified existentially; we have
two different actions: write(smith, x, t1, t2) and
write(smith, y, t3, t4), because x 6= y, and thus
we cannot deduce equality of the intervals t1, t2 and
t3, t4. In turn, the hypothesis cannot be refuted.

Action-modification Verbs The final class of
lexemes carrying a temporal-dependent semantics
are verbs taking a proposition as argument, like
“finish”, “start”, etc. These verbs modify the tem-
poral context in non-trivial ways. Consider for
example “finish to ...”. The timespan of the argu-
ment of “finish” should end within the timespan of
the finishing action:

Jfinish to sK(t0, t1) =
∃(t′0, t′1).t′1 ∈ [t0, t1] ∧ JsK(t′0, t′1)

Progressive Aspect We treat verbs in
the progressive form as different seman-
tically from the non-progressive form.
For example, “John was writing a book”
is encoded as ∃(t1, t2).t1 ≤ t2, t2 ≤
now, PROG write(John, book, t1, t2), while
“John wrote a book” is encoded as ∃(t1, t2).t1 ≤
t2, t2 ≤ now,write(John, book, t1, t2). This
distinction is necessary because in our analysis
the progressive form (PROG write) is subject
to subsumption. That is, if John is writing in
the interval [t1, t2] then he is writing in any
sub-interval of [t1, t2]. This interpretation cor-
responds to the idea that the action takes place
continuously over the whole interval. However, the
same cannot be said of the non-continuous form
(write): the end-points of the interval indicate the
time needed to complete the achievement. (For
example, “John wrote a book in 1993” neither
entails “John wrote a book in January 1993” nor
“John wrote a book in December 1993”.) (In
fact, write, in the non-progressive from, is on the
contrary subject to unicity.) Finally, we also have
write(x, y, t1, t2) → PROG write(x, y, t1, t2).

That is, the achievement (or activity in our
terminology) variant implies the stative variant,
for the same interval. Consequently we get the
entailment from “John wrote a book in 1993” to
“John was writing a book in 1993”, but not the
other way around.

We note however that this interpretation differs
only slightly from the usual accounts of the progres-
sive in the literature. Ogihara (2007) summarises
the position of Bennett and Partee (1978) as fol-
lows: a progressive sentence is true at an inter-
val [t0, t1] iff there is an interval [t′0, t

′
1] such that

[t0, t1] is a non-final subinterval of [t′0, t
′
1] and the

progressive sentence is true at [t′0, t
′
1]. This is very

similar to our approach (subsumption for the pro-
gressive form only), but there is a difference regard-
ing final intervals. Yet in our view this difference
is hard to justify: we cannot see why “John was
writing a book in 1993” entails that he was writing
it January, February, etc. but not in December.

Ogihara (2007) argues that this simple account
of the progressive fails to reject a sentence such
as “Lee is resembling Terri.” while “Lee is walk-
ing” is acceptable. We argue instead that the latter
should be rejected for pragmatic reasons. Indeed,
when a predicate holds for a very long interval, one
typically uses the simple present tense in English.
Therefore the continuous form pragmatically im-
plies that the predicate holds for a limited interval.
But, without further context, the predicate “resem-
ble Terri” does not vary over time (while “walk”
generally does). Therefore the continuous form
“Lee is resembling Terri” is confusing: one implies
a limited interval, but the semantics of resembling
normally yield an unlimited interval. Because we
do not account for pragmatics, we prefer to retain
the simplest account based on the subinterval prop-
erty (which we call subsumption here).

Finally we stress that not all verbs are subject
to the stative/achievement distinction induced by
the progressive. For example, the phrases “John
ran” and “John was running” appear to be logically
equivalent, for entailment purposes.

4 Worked out example

To give a sense of the additional details necessary
to deal with the precision demanded by a proof-
assistant such as Coq we show how problem (279)
is worked out in full details.

We start with input trees in GF format, given by
Ljunglöf and Siverbo (2011). They can be rendered
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as follows:
s_279_1_p=
sentence
(useCl past pPos
(predVP
(usePN (lexemePN "smith_PN"))
(advVP

(complSlash
(slashV2a (lexemeV2 "write_V2")))

(detCN (detQuant indefArt numSg)
(useN (lexemeN "novel_N"))))
(lexemeAdv "in_1991_Adv")))

s_279_3_h=
sentence
(useCl past pPos
(predVP (usePN
(lexemePN "smith_PN"))
(advVP

(complSlash
(slashV2a (lexemeV2 "write_V2"))
(usePron it_Pron))

(lexemeAdv "in_1992_Adv"))))

Of particular note is the use of the pronoun “it”,
and the fact that adverbial expressions such that
“in 1992” are lexicalized. We also follow the GF
convention to postfix lexical items with the name of
their category. Most of the other categories follow
usual naming conventions. We remind the reader
that “slash” categories are used to swap the order
of arguments (compared to non-slashed categories
of similar names).

Our dynamic and temporal semantics gives the
following interpretation for s_279_1_p implies
s_279_3_h.
FORALL (fun a=>novel_N a)
(fun a=>(exists (b: Time),
((exists (c: Time),
(IS_INTERVAL Date_19910101 b /\
IS_INTERVAL c Date_19911231 /\
IS_INTERVAL b c /\
appTime b c (write_V2 a)
(PN2object smith_PN))))) ->

Not (exists (f: Time),
((exists (g: Time),
(IS_INTERVAL Date_19920101 f /\
IS_INTERVAL g Date_19921231 /\
IS_INTERVAL f g /\
appTime f g (write_V2 a)
(PN2object smith_PN)))))).

In the above, one should remark the top-level
quantification over the novel (as explained in Sec-
tion 3), the quantification over time intervals as
individual timepoints, and the use of custom op-
erators for several constructions (FORALL, Not,
IS_INTERVAL, appTime). This use of custom
operators is useful for several generalisations (for
example, we have quantifiers such as MOST in ad-
dition to FORALL — see Bernardy and Chatzikyri-
akidis (2017) )

Unfolding the definitions for these operators
yield the following proposition:

forall x : object,
novel_N x ->
(exists b c : Z,

Date_19910101 <= b /\
c <= Date_19911231 /\
b <= c /\ write_V2 x SMITH b c) ->

(exists f g : Z,
Date_19920101 <= f /\
g <= Date_19921231 /\
f <= g /\ write_V2 x SMITH f g) ->

False

This is very close to our idealised representation
of the problem Eq. (2). One difference is the use of
abstract Coq integers for timepoints. Using a dis-
crete time allows us to use predefined Coq tactics.
The discrete nature of integers does not interfere
with the reasoning.

Finally, we can show a Coq proof for the above
proposition:
Theorem problem279 : Problem279aFalse.
cbv.
intros novel isSmithsNovel P1 H.
destruct P1 as

[t0 [t1 [ct1 [ct2 [ct3 P1]]]]].
destruct H as

[u0 [u1 [cu1 [cu2 [cu3 H]]]]].
specialize writeUnique
with (x := novel)(y := SMITH) as A.

unfold UniqueActivity in A.
specialize (A _ _ _ _ P1 H) as B.
lia.
Qed.

The intros and destruct tactics serve bookkeep-
ing purposes. The critical part is the use of the
writeUnique axiom, which witnesses the aspec-
tual class of the predicate write V2. The proof
is completed by the use of the lia tactic, which is
embeds a decision procedure for linear arithmetic
problems2. Fortunately, lia can take care of all
the problems which arise in the FraCaS testsuite.

5 Results and Evaluation

Our target is the FraCaS testsuite, which aims at
covering a wide range of common natural-language
phenomena. The suite is structured according to the
semantic phenomena involved in the inference pro-
cess for each example, and contains nine sections:
Quantifiers, Plurals, Anaphora, Ellipsis, Adjectives,
Comparatives, Temporal, Verbs and Attitudes. The
system described here focuses on the Temporal
section. However, it also supports the other eight
sections. To our knowledge this is the first system
which attempts to target the temporal section in full.
But in fact, our system even provides support for
all the other sections. Thus, a couple of decades

2It solves linear goals over rings by searching for linear
refutations and cutting planes
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Section #FraCaS This FC2 FC MINE Nut LP
Quantifiers 75 .93 .96 .96 .77 .53 .93

74 74 44

Plurals 33 .79 .82 .76 .67 .52 .73
24

Anaphora 28 .79 .86 - - - -
Ellipsis 52 .81 .87 - - - -
Adjectives 22 .95 .95 .95 .68 .32 .73

20 20 12

Comparatives 31 .65 .87 .56 .48 .45 -
Temporal 75 .73 - - - - -
Verbs 8 .75 .75 - - - -
Attitudes 13 .85 .92 .85 .77 .46 .92

9

Total 337 .81 .89 .83 .69 .50 .85
329 259 174 174 174 89

Table 1: Accuracy of our system compared to others.
“This” refers to the approach presented in this paper.
When a system does not handle the nominal number
of test cases (shown in the second column), the actual
number of test cases attempted is shown below the ac-
curacy figure, in smaller font. “FC” refers to the work
of Bernardy and Chatzikyriakidis (2017), and “FC2”
its followup (Bernardy and Chatzikyriakidis, 2019).
“MINE” refers to the approach of Mineshima et al.
(2015), “NUT” to the CCG system that utilises the
first-order automated theorem prover nutcracker (Bos,
2008), and “LP” to the system presented by Abzianidze
(2015). A dash indicates that no attempt was made for
the section.

after its formulation, we propose a first attempt at
covering the whole suite. As such, there it is no
other system to compare our system with, in all
aspects. We can however compare with systems
which target parts of the FraCaS testsuite, as shown
in Table 1.

Interaction with anaphora One reason explain-
ing the lower performance of our system on some
sections of the testsuite is that our interpretation
of time interacts imperfectly with anaphora and
ellipsis. Consider the following example:

(232) P1 ITEL won more orders than APCOM
did.

P2 APCOM won ten orders.
H ITEL won at least eleven orders.

In the first premise, our system essentially re-
solves the ellipsis to get the following reading:
“ITEL won X orders and APCOM won Y orders
and X > Y .”. One would need each of the verb
phrases “won X orders” and “won Y orders” to in-
troduce their own timespans with existential quan-
tifiers. However, the organisation of our system is
such that the existentials are introduced before the

ellipsis is expanded. Consequently we get a wrong
interpretation and the inference cannot be made.

6 Conclusions and Future Work

We have presented a first attempt for a computa-
tional approach dealing with the temporal section
of the FraCaS test suite. To do this, we have pro-
vided a simplified taxonomy of aspectual classes
for verb phrases, guided by the applicability of the
unicity of action and temporal subsumption proper-
ties. While part of this simplification is accidental
(conflation of activity and accomplishment), we
find that other parts (the automatic distinction be-
tween repeatable and unrepeatable achievements)
constitute theoretical improvements.

Besides inference, formal interpretation of tense
is found in natural-language interfaces to databases.
Of note is the work of Androutsopoulos et al.
(1998), which handles many of the time-aware ad-
verbial clauses that we address. However, we cover
many more logical aspects of inference, such as
coreference via unity of action and interaction with
quantifiers.

Bernardy and Chatzikyriakidis (2019) presented
a logical system for handling 8 of the 9 sections of
the FraCaS test suite, but excluded section 7, sug-
gesting that it requires many examples that need
an ad hoc treatment. Here, we took up this chal-
lenge and have shown that a system similar to theirs
can be extended to cover the remaining section of
the test suite, without considerably decreasing the
performance of the rest of the sections. This is in-
deed a common problem with logical approaches,
namely the fact that one can have theoretically mo-
tivated implementations of individual phenomena,
e.g. anaphora, ellipsis, quantifiers, temporal ref-
erence etc., but when one tries to put all these to-
gether into a unified system, this proves to be a
daunting task. We believe that this paper presents
an exception, and provides a system that can deal
with all these different semantic phenomena under
a unified system with very good results. We use
the same combination of a number of well-studied
tools as Bernardy and Chatzikyriakidis (2019) :
type theory, parsing using the Grammatical Frame-
work (GF), Monadic Dynamic Semantics and proof
assistant technology (Coq). The system achieves
an accuracy of 0.73 on the Temporal Section and
0.81 overall. The whole system, including data sets,
is available at the following url: https://github.
com/GU-CLASP/FraCoq/tree/iwcs2021.
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One of the things to be looked at is fixing the
issues associated with parts of the test suite that
“broke” when the temporal analysis was introduced.
Some of these have been already mentioned: inter-
action of the temporal variables with anaphora.

Another extension of this work is to reflect more
temporal semantic inference properties in an ex-
tended test suite. Indeed, there as properties which
are not captured in the FraCaS test suite, such as
fine-grained examples of lexical and grammatical
aspect, as well as the interaction between those
two, for example cases where one needs to actually
distinguish between achievements and accomplish-
ments on the basis of their inferential properties:

(∗1) P1 John found his keys.
H John was finding his keys (UNK).

(∗2) P1 John wrote a book.
H John was writing a book (YES).

In the first of the two examples involving an
achievement verb, the inference is UNK, since
there is no guarantee that the action is non-
instantaneous. To the contrary, for accomplishment
verbs, the inference follows.

Further cases to be included in an extended Fra-
CaS future suite involve examples where the in-
teraction between different tenses needs to be cap-
tured:3

(∗3) P1 When the phone rang, John had entered
the house.

H John entered the house before the phone
rang (YES).

Finally it would be desirable to improve automa-
tion of the system, and evaluate it on a larger test
set. As it stands Coq fully checks the proof of en-
tailment for each (provable) problem. However,
the construction of such proofs has demanded hu-
man intervention. It would be desirable to fully
automate the proof construction step. For this to
make sense however we need a much larger test
suite, properly separated into a development and a
(secret) test set. Otherwise, only the limited power

3While this work was completed, the work by (Vashishtha
et al., 2020) was published. The authors present a five datasets
to be used for the training of neural models’ ability to cap-
ture temporal reasoning. It would be interesting to check the
amount of data covered, most specifiaclly the level of fine-
grainedness of temporal reasoning needed to capture those
examples, as compared to what we have been discussing in
this paper. We thank an anonymous reviewer for bringing this
work to our attention.

of the logic prevents us (or any followup work) to
fine-tune the rules of the system until one gets full
coverage. This kind of observation holds in gen-
eral of any rule-based system, and thus applies not
only to the proof-construction phase, but also to the
underlying dynamic semantics and parsing phase
(which is limited only by the power of the language
and frameworks used for its implementation). In
sum, contrary to statistical approaches to language
understanding, the value of the present work lies
not in the bare accuracy numbers which we are able
to achieve, but in the details of how we do so: the
of set of rules which we use, which is described
in detail here and in the work which we base our-
selves upon (Bernardy et al., 2020; Bernardy and
Chatzikyriakidis, 2019).
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20



Proceedings of the 14th International Conference on Computational Semantics, pages 21–32
June 17–18, 2021. ©2021 Association for Computational Linguistics

CO-NNECT: A Framework for Revealing Commonsense Knowledge
Paths as Explicitations of Implicit Knowledge in Texts

Maria Becker, Katharina Korfhage, Debjit Paul, Anette Frank
Department of Computational Linguistics, Heidelberg University

mbecker|korfhage|paul|frank@cl.uni-heidelberg.de

Abstract

In this work we leverage commonsense knowl-
edge in the form of knowledge paths to es-
tablish connections between sentences, as a
form of explicitation of implicit knowledge.
Such connections can be direct (singlehop
paths) or require intermediate concepts (mul-
tihop paths). To construct such paths we com-
bine two model types in a joint framework we
call CO-NNECT: a relation classifier that pre-
dicts direct connections between concepts; and
a target prediction model that generates tar-
get or intermediate concepts given a source
concept and a relation, which we use to con-
struct multihop paths. Unlike prior work that
relies exclusively on static knowledge sources,
we leverage language models finetuned on
knowledge stored in ConceptNet, to dynam-
ically generate knowledge paths, as explana-
tions of implicit knowledge that connects sen-
tences in texts. As a central contribution we
design manual and automatic evaluation set-
tings for assessing the quality of the generated
paths. We conduct evaluations on two argu-
mentative datasets and show that a combina-
tion of the two model types generates mean-
ingful, high-quality knowledge paths between
sentences that reveal implicit knowledge con-
veyed in text.

1 Introduction

Commonsense knowledge covers simple facts
about the world, people and everyday life, e.g.,
Birds can fly or Cars are used for driving. It is
increasily used for many NLP tasks, e.g. for ques-
tion answering (Mihaylov et al., 2018), textual en-
tailment (Weissenborn et al., 2018), or classifying
argumentative functions (Paul et al., 2020). In this
work, we leverage commonsense knowledge in the
form of single- and multihop knowledge paths for
establishing connections between concepts from
different sentences in texts, and show that these

paths can explicate implicit information conveyed
by the text. Connections can either be direct, e.g.
given the sentences The car was too old and The
engine broke down, the concepts car and engine
can be linked with a direct relation (singlehop path)
car→ HASA → engine; or indirect – here inter-
mediate concepts are required to establish the link,
as between Berliners produce too much waste and
Environmental protection should play a more im-
portant role, where the link between waste and envi-
ronmental protection requires a multihop reasoning
path: waste→ RECEIVESACTION → recycle→
PARTOF→ environmental protection.

We show that two complementary model types
can be combined to solve the two subtasks: (i)
for predicting singlehop paths between concepts,
we propose a relation classification model that is
very precise, but restricted to direct connections be-
tween concepts; (ii) for constructing longer paths
we rely on a target prediction model that can gen-
erate intermediate concepts and is thus able to
generate multihop paths. However, the interme-
diate concepts can be irrelevant or misleading. To
our knowledge, prior work has applied either re-
lation classification or target prediction models.
We propose CO-NNECT, a framework that estab-
lishes COmmonsense knowledge paths for CON-
NECTing sentences by combining relation classi-
fication and target prediction models, leveraging
their strengths and minimizing their weaknesses.
With CO-NNECT, we obtain high-quality knowl-
edge paths that explicate implicit knowledge con-
veyed by the text.

We focus on commonsense knowledge in Con-
ceptNet (Speer et al., 2017), a knowledge graph
(KG) that represents concepts (words or phrases)
as nodes, and relations between them as edges,
e.g., 〈oven,USEDFOR, baking〉. As instances of the
model types we use COREC (Becker et al., 2019), a
multi-label relation classifier that predicts relation
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types and that we enhance with a pretrained lan-
guage model; and COMET (Bosselut et al., 2019),
a pretrained transformer model that learns to gen-
erate target concepts given a source concept and a
relation. In contrast to models that retrieve knowl-
edge from static KGs (Mihaylov et al., 2018; Lin
et al., 2019), both models are fine-tuned on Con-
ceptNet and applied on the fly, to dynamically gen-
erate knowledge paths that generalize beyond the
static knowledge, allowing us to predict unseen
knowledge paths. We compare our models to a
baseline model that solely relies on static KGs.

We evaluate our framework on two English argu-
mentative datasets, IKAT (Becker et al., 2020) and
ARC (Habernal et al., 2018), which offer annota-
tions that explain implicit connections between sen-
tences. While knowledge paths have been widely
used in NLP downstream tasks, a careful evalua-
tion of these paths has not received much attention.
As a central contribution of our work, we address
this shortcoming by designing manual and auto-
matic settings for path evaluation: we evaluate the
relevance and quality of the paths and their ability
to represent implicit knowledge in an annotation
experiment; and we compare the paths to the anno-
tations of implicit knowledge in IKAT and ARC,
using automatic similarity metrics.

Our main contributions are: i) we propose CO-
NNECT, a framework that combines two comple-
mentary types of knowledge path prediction models
that have previously only been applied separately;1

ii) we show that commonsense knowledge paths
generated with CO-NNECT effectively represent
implied knowledge between sentences; iii) we pro-
pose an evaluation scheme that measures the qual-
ity of the knowledge paths, going beyond many ap-
proaches that use knowledge paths for downstream
applications without analyzing their quality.

2 Related Work

In this work we combine relation classification
and target prediction for generating commonsense
knowledge representations over text. Relation
classification covers a range of methods and learn-
ing paradigms for representing relations. A vari-
ety of neural architectures such as RNNs (Zhang
et al., 2018), CNNs (Guo et al., 2019), sequence-
to-sequence models (Trisedya et al., 2019) or lan-
guage models (Wu and He, 2019) achieved state-

1The code for our framework can be found here: https:
//github.com/Heidelberg-NLP/CO-NNECT.

of-the-art results. To our knowledge, Becker et al.
(2019) is the only work that proposed a relation
classification model specifically for ConceptNet
relations, which we adapt for our work. Besides
COMET (Bosselut et al., 2019), the model used
in our approach, Saito et al. (2018) perform tar-
get prediction on ConceptNet using an attentional
encoder-decoder model. They improve the KB
completion model of Li et al. (2016) by jointly
scoring triples and predicting target concepts.

Utilizing commonsense knowledge paths.
When using commonsense knowledge for question
answering (Mihaylov et al., 2018), commonsense
reasoning (Lin et al., 2019) or NLI (Kapanipathi
et al., 2020), most approaches rely on paths re-
trieved from static knowledge resources. In con-
trast, we propose a framework that in addition
makes use of dynamic knowledge provided by lan-
guage models. Few other models have used knowl-
edge paths dynamically, e.g. Paul et al. (2020),
who enrich ConceptNet on the fly when classifying
argumentative functions.
Wang et al. (2020) make use of language mod-
els for question answering. They generate multi-
hop paths by sampling random walks from Con-
ceptNet and finetune a language model on these
paths to connect question and answers, improving
accuracy on two question answering benchmarks.
Bosselut et al. (2021) generate knowledge paths
using a language model for zero-shot question an-
swering, which they use to select the answer to
a question, surpassing performance of pretrained
language models on SocialIQA (a multiple-choice
question answering dataset for probing machine’s
emotional and social intelligence in a variety of
everyday situations). Similarly, Chang et al. (2020)
incorporate knowledge from ConceptNet in pre-
trained language models for SocialIQA. They ex-
tract keywords from question and answers, query
ConceptNet for relevant triples, and incorporate
them in their language models via attention. Their
evaluation shows that their knowledge-enhanced
model outperforms knowledge-agnostic baselines.
Finally, Paul and Frank (2020) propose an atten-
tion model that encodes commonsense inference
rules and incorporates them in a transformer based
reasoning cell, taking advantage of pretrained lan-
guage models and structured knowledge. Their
evaluation on two reasoning tasks shows that their
model improves performance over models that lack
external knowledge. Hence, none of these sys-
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tems directly evaluates the quality of the generated
paths, but measure the effectiveness of common-
sense knowledge indirectly by evaluation on down-
stream tasks. We will address this shortcoming in
our work by carefully evaluating the quality of the
generated paths.

3 Enriching Texts with Commonsense
Knowledge Paths

This section describes CO-NNECT, the framework
we propose for enriching texts with commonsense
knowledge, by establishing relations or paths be-
tween concepts from different sentences. Towards
this aim, we apply relation classification and target
prediction models in combination. We first charac-
terize differences between the two model types and
their instantiations, COREC-LM and COMET, de-
scribe how we adapt them to our task and evaluate
them on ConceptNet to assess their performance
(§3.1). We then show how we utilize the models
to establish connections between concepts in texts
(§3.2) and present a baseline model that uses Con-
ceptNet as a static KG to establish commonsense
knowledge paths (§3.3).

3.1 Comparing and Evaluating Model Types

Relation classification and target prediction both
aim at representing relational commonsense knowl-
edge, but the respective task settings are funda-
mentally different. We choose two models that
have been developed for representing common-
sense knowledge in CN: COREC, a relation classi-
fication and COMET, a target prediction model.

Relation Classification with COREC-LM. A
relation classifier is ideally suited to predict direct
relations between concepts, hence we can apply
COREC (Becker et al., 2019), an open-world multi-
label relation classification system, for this task.
Given a pair of concepts cs, ct from sentences, it
predicts one or several relations ri from a set of
relation types RCN that hold between cs and ct. We
enhance the original neural model with the pre-
trained language model DistilBERT (Sanh et al.,
2019) to construct a classifier we call COREC-LM.
We finetune this model on ConceptNet by mask-
ing the relations and use sigmoid as output layer
to model the probability of each relation indepen-
dently, accounting for ambiguous relations in CN.

Target Prediction with COMET. To generate
multihop paths that include (possibly novel) in-
termediate concepts, we apply COMET (Bosselut

et al., 2019), a transformer encoder-decoder based
on GPT-2 (Radford et al., 2019). Input to the model
is a source concept cs and a relation ri. Then the
pretrained language model is finetuned using Con-
ceptNet as labelled train set for the task of gener-
ating new concepts. Depending on the beam size,
COMET can propose multiple targets per input
instance.

Datasets. To compare model performances, we
evaluate COREC-LM and COMET on the CN-
100k benchmark dataset of Li et al. (2016), which
is based on the OMCS subpart of ConceptNet. The
dataset comprises 37 relation types such as ISA,
PARTOF or CAUSES and contains 100k relation
triples in the train set and 1200 in the develop-
ment and the test set, respectively. CN-100k con-
tains a lot of infrequent relations which are hard
to learn and often overspecific (e.g. HASFIRST-
SUBEVENT), and hence not useful for establishing
high quality relations and paths between concepts.
We therefore extract a subset that contains all triples
of the 13 most frequent relations (CN-13).2 CN-13
covers 90,600 triples for training, 1080 triples for
development, and 1080 triples for testing.

Since our application task requires that the re-
lation classifier also learns to detect that a given
concept pair is not related, we extend the data for
training and testing COREC-LM with a RANDOM

class that contains unrelated concept pairs, which
we add to CN-100k and CN-13.3

PoS Sequence Filtering. We apply a type-
based PoS sequence filtering for COREC-LM and
COMET, where the type is dependent on the pre-
dicted relation. The relation ISA, for example,
is supposed to connect two noun phrases; in con-
trast, HASPREREQUISITE typically relates two
verb phrases. We determine frequent PoS sequence
patterns for specific argument types from the Con-
ceptNet resource and use them to filter relation and
path predictions.

Metrics. We evaluate COREC-LM in terms of
weighted F1-scores, precision and recall, which
is its genuine evaluation setting. For COMET we
report precision scores for the first prediction with
highest confidence score (hits@1); we further re-
port hits@10 which gives information if the correct

2These are: ATLOCATION, CAUSES, CAPABLEOF,
ISA, HASPREREQUISITE, HASPROPERTY, HASSUBEVENT,
USEDFOR, CAUSESDESIRE, DESIRES, HASA, MOTIVATED-
BYGOAL and RECEIVESACTION.

3For details about the construction of the RANDOM class,
cf. Appendix.
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Figure 1: Our framework CO-NNECT: It finds single- and multihop paths between concepts, as explicitations of
implicit knowledge that connects sentences.

triple is included in the first ten predictions (which
will be important since we later use a beamsize
of 10 for generating paths). In addition, we re-
port accuracy using the Bilinear AVG model of
Li et al. (2016) (COMET’s genuine evaluation set-
ting), which is trained on CN-100k and produces
a probability for a generated relation triple to be
correct. Following Bosselut et al. (2019), we apply
a beamsize of 1 and a threshold at 0.5 for judging
a triple as correct.

Model Performances. COREC-LM achieves
high F1-scores on CN-100k (76.5) and CN-13
(86.0).4 Scores are significantly lower when adding
the RANDOM class (-7pp on CN-100k&CN-13),
indicating that detecting unrelated concept pairs
is not trivial. The results show that a strength
of COREC-LM is its precision (90.1/CN-100k;
88.2/CN-13) – which we will leverage when com-
bining models. COMET achieves high accuracy
scores (92.3/CN-100k; 96.3/CN-13) according to
the bi-score. For the much stricter metric hits@1
which judges a triple as correct only if it matches
the respective triple in the testset, much lower
scores are achieved (25/CN-100k; 23.5/CN-13),
which is evident given the wide range of possi-
ble target generations. Higher scores for hits@10
(65.3/CN-100k; 65.9/CN-13) show that the chance
for correct predictions significantly rises with in-
creasing beam size.

In sum, COREC-LM and COMET both aim

4The original version of COREC (Becker et al., 2019)
achieves F1 of 53.31/CN-100k; 72.33/CN-13.

at learning commonsense knowledge representa-
tions, but tackle different tasks and have different
strengths and weaknesses. COREC-LM is very
precise in its predictions, but is restricted to pre-
dicting direct relations between two given concepts.
COMET is more powerful since it can genuinely
generate novel target concepts and thus can gener-
ate multihop paths. However, it tends to be more
imprecise, and bears the risk of generating irrele-
vant or noisy concepts. Hence, a combination of
models seems beneficial, to predict high-quality
single- and multihop paths between concepts.

3.2 Establishing Connections Using Relation
Classification and Target Prediction

In the following we describe how we combine and
apply COREC-LM and COMET in a joint frame-
work, CO-NNECT, to establish high-quality knowl-
edge paths between sentences. An overview is
given in Fig.1. In the first step we extract relevant
concepts from the text. For this we integrate the
concept extraction tool COCO-EX (Becker et al.,
2021a), which extracts meaningful concepts from
texts and maps them to concept nodes in CN, con-
sidering all surface forms.

Linking Concepts with Direct Relations. We
construct all possible pairs of concepts extracted
from S1 and S2 by taking the cross product cs×ct,
where cs is a concept from S1, and ct a concept
from S2 (Fig. 1, Step 2, left). We then apply
COREC-LM trained on CN-13+RANDOM with
a tuned threshold of 0.9 for predicting which rela-
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tion ri ∈ RCN13 holds between the concept pairs,
or whether no relation holds (RANDOM) (cf. Fig.
1, Step 3 (left) for examples).

Linking Concepts with Multihop Paths.
COMET requires as input a source concept and
a relation. For each concept pair cs, ct we build
such inputs by combining cs with each relation ri
∈ RCN13, yielding 13 pairs cs, ri which we input
for target prediction (Step 2, right). To discover
relation chains starting from S2, we apply the same
process to ct, using cs as target concept. We also
include inverse relations, which gives us greater
flexibility for connecting entities, i.e., paths are al-
lowed to contain inverted triplets (e.g. baking←
USEDFOR← oven→ ATLOCATION→ kitchen).
To this end, we switch the order of concept pairs
within a given relation ri, relabel the relation as
r−1i , and add the inverted relation pair to COMET’s
training set.

Forward Chaining. For all pairs in the cross-
product cs × ct, for each input cs, ri and cs, r−1i

we generate the 10 most confident concepts cti
with COMET (beamsize 10) trained on CN-13 in-
cluding inverse triples. We continue with all paths
where the generated concept cti has minimum co-
sine distance of 0.7 to the respective target concept
ct. We generate the next hop by using each cti as
a new source concept, combine it with each of the
13 original and inverse relations, generate novel
target predictions, and again compare to the tar-
get concept. This similarity comparison guides
the forward chaining process towards the chosen
target concepts and helps detecting contextually
relevant paths. We use ConceptNet numberbatch
embeddings for the encoding of concepts; for mul-
tiword concepts we average the embeddings of all
non-stopwords.

Terminating Paths. We terminate path genera-
tion as soon as the similarity between cti and ct is
higher than 0.95 – here we expect the two concepts
to express the same meaning. We restrict the path
length to 3 hops and consider only completed paths
for evaluation (Step 3, right in Fig. 1).

Combining Approaches. With our framework
CO-NNECT we leverage the potential of the com-
plementarity of the two model types by combining
COREC-LM and COMET in a straightforward way.
Our hypothesis is that a system that admits both sin-
gle and multihop connections for establishing links
between concepts offers the greatest flexibility. We
further hypothesize that direct relations should be

preferred over indirect multihop paths, since the
latter could include irrelevant or misleading inter-
mediate nodes. Thus, we discard all multihop paths
for each concept pair for which COREC-LM pre-
dicted a direct connection (Fig. 1, Step 4, pair 4).
If COMET and COREC-LM produce a singlehop
path, we also prefer COREC-LM’s prediction, re-
lying on the model’s high precision (pair 1 in Step
4). We keep the paths generated by COMET for
concept pairs for which no direct relation could be
established (i.e., COREC-LM predicted RANDOM

or no prediction above its threshold, pair 3&6), as-
suming that in such cases intermediate concepts are
required to establish a link. If only one of the mod-
els establishes a link, we keep this connection (pair
2), and if none of the models finds a link, we as-
sume that the concepts are not (closely) connected
(pair 5).

3.3 Static Baseline Model

We compare COREC-LM and COMET against the
model of Paul and Frank (2019) that uses Concept-
Net as a static KG. The system extracts paths be-
tween pairs of concepts from sentence pairs, hence
conforms well to our setting. Following Paul and
Frank (2019), starting from concepts in a sentence
pair (§3.2), we construct a subgraph G′ = (V ′, E′)
of the ConceptNet graph, where V ′ comprises all
concepts ci in 〈S1, S2〉. The system then finds all
shortest paths p′ from ConceptNet that connect any
concept pairs in V ′, and includes them in G′. It
then includes, for any concepts in G′, all directly
connected concepts from ConceptNet together with
their edges. This yields a small sub-graph from
ConceptNet that contains concepts and relations
relevant for capturing conceptual links across the
sentence pair. To select relevant paths,G′ is filtered
by computing scores for vertices and paths using
PageRank and Closeness Centrality score, and we
constrain path lengths to 3 hops.

4 Revealing Implicit Knowledge through
Knowledge Paths: Experiments and
Evaluation

In this section we evaluate the paths generated by
our proposed models. We first present our datasets
and statistics on established connections (§4.1),
and then evaluate the quality of the paths manu-
ally (§4.2) and automatically (§4.3).
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Figure 2: Example generations from our three model types (first three instances from IKAT, last two from ARC).

4.1 Datasets and Statistics

The IKAT dataset (Becker et al., 2020) is based
on the English Microtexts Corpus of short argu-
mentative texts (Peldszus and Stede, 2016). For all
sentence pairs that are adjacent or argumentatively
related, annotators added the implicit knowledge
that connects them, using short sentences. IKAT
contains 719 such sentence pairs, from which we
extracted 60,294 concept pairs. The ARC dataset
(Habernal et al., 2018) contains arguments taken
from online discussions in English, consisting of
a claim and a premise, and an annotated implicit
warrant that explains why the claim follows from
the premise. We evaluate our models on the ARC
test set that comprises 444 argument pairs, from
which we extracted 21,898 concept pairs; and the
corresponding warrants.

Example generations for both datasets from
our three model types – COREC-LM, COREC,
and ranked CN-graphs – appear in Fig. 2, where
the first three sentence pairs come from IKAT, and
the last two from ARC.

Number of links and hops. Table 1 gives statis-
tics of the paths generated between concepts from
sentence pairs from IKAT and ARC using our dif-
ferent models. We find that COREC-LM finds rela-
tions between around 22k from 66k concept pairs
in IKAT, while COMET only generates paths be-
tween 3,660 pairs. This can be explained by the
very high similarity threshold we imposed for guid-
ing the forward chaining process towards the target
concept, since our motivation was not to gener-
ate as many paths as possible, but paths that are
meaningful and contextually relevant. When com-
bining paths from COMET and COREC-LM, we
find links for more than 24k concept pairs in IKAT.
The highest number of links is established by rank-
ing CN-subgraphs (50k linked concept pairs). For

ARC, which contains 22k concept pairs, COREC-
LM finds links between around 10k and COMET
around 2k concept pairs, while almost 15k pairs
can be connected using ranked CN-graphs. In both
datasets, the ranked CN-graphs contain on average
2.1 hops (relations) per path, while the paths gen-
erated by COMET are shorter (1.4 on IKAT/1.5 on
ARC). In fact, COMET establishes many direct re-
lations (69% of all paths are single hops), whereas
the ranked CN-graphs are mostly two- (49%) or
three-hop paths (37%).

Replacing Vague Relations in CN-Graphs.
We find that in contrast to COREC-LM and
COMET, the ranked CN-graphs are constructed
using mostly the very general relation RELAT-
EDTO (71%/IKAT; 72%/ARC), followed by the
likewise vague relation HASCONTEXT (8% in both
datasets).5 For determining the impact of vague
relations on path quality, we replace all RELAT-
EDTO and HASCONTEXT relations in the ranked
CN-graphs with relations predicted by COREC-
LM (trained on CN-13, threshold 0.9). For IKAT,
we replace 43.4% of all RELATEDTO and 46.2%
of all HASCONTEXT instances, in ARC we replace
70.7% of all RELATEDTO and 37% of all HAS-
CONTEXT relations. We use this version when
evaluating paths, in addition to the original ranked
CN-graphs.

4.2 Manual Evaluation of Path Quality
Our statistics showed that most links between con-
cepts can be revealed using knowledge paths re-
trieved from ConceptNet as a static KG, whereby
these paths tend to contain multiple hops and a
high amount of vague relations. Fewer links are
established using the dynamic models COREC-LM
and COMET, which produce shorter paths using

5For details on relation distributions cf. Appendix.
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COR COM CONN CN
IKAT linked pairs 21,934 3,660 24,063 50,003

avg. hops 1 1.4 1.1 2.1

ARC linked pairs 9,844 1,826 10,828 14,940
avg. hops 1 1.5 1.1 2.1

Table 1: Statistics of paths generated by COREC-LM,
COMET, their combination (CO-NNECT), and ranking
CN-graphs (CN): number of concepts pairs between
which a link was found, and average number of hops
per path.

only specific relation types from CN-13. Since our
aim is to construct high-quality, meaningful knowl-
edge paths that help to explain implicit information
(rather than establishing as many links as possi-
ble), we now examine the quality and relevance of
the knowledge paths. We set up an annotation ex-
periment, providing annotators with 100 sentence
pairs from each dataset, with marked concepts (one
from S1 and one from S2) and the path gener-
ated between these concepts by (i) COREC-LM,
(ii) COMET, (iii) ranked paths from CN, and (iv)
ranked paths with replaced vague relations (CN-r).

Annotation Setup. For each sentence pair,
our annotators evaluated if 1) the path is a
meaningful and relevant explanation for the con-
nection between the two sentences (very rele-
vant/relevant/neutral/not relevant/misleading); if
2) the path represents implicit information not ex-
plicitly expressed in the sentences (yes/no); and 3)
which model generates the path that is most helpful
and expressive for understanding the connection
between the sentences. 4) To evaluate the combina-
tion of COREC-LM and COMET in CO-NNECT,
we generate a subset for each dataset that includes
all sentence/concept pairs for which COREC-LM
predicted a singlehop path and COMET generated
a multihop path (10 pairs per subset). For these
instances we ask in addition whether the multihop
paths include unrelated, unnecessary or uninforma-
tive intermediate nodes (yes/no), misleading inter-
mediate nodes (yes/no); or intermediate nodes that
are important for explaining the connection and
missing in the direct relation predicted by COREC-
LM (yes/no).6 Annotations were performed by
two annotators with a linguistic background. We
measure IAA using Cohen’s Kappa and achieve
an agreement of 81%. Remaining conflicts were

6The annotation manual together with example anno-
tations can be found here: https://github.com/
Heidelberg-NLP/CO-NNECT/blob/main/manual.
pdf

IKAT ARC
COR COM CN CN-r COR COM CN CN-r

Predictions 74 64 88 88 78 60 76 76
Relev. +2 70 50 36 40 63 49 30 34

+1 19 27 22 24 25 28 28 32
0 8 18 27 21 8 9 29 22
-1 3 5 10 10 2 6 4 3
-2 0 0 5 5 2 8 9 9

Impl. yes 80 78 57 67 87 81 57 62
Knowl. no 20 22 43 33 13 19 43 38
Best Link 65 64 28 34 76 70 7 14

Table 2: Manual evaluation of paths from COREC-LM,
COMET, ranked CN-graphs (CN), and CN-graphs with re-
placed vague relations (CN-r); all numbers in %.: How many
concept pairs could be linked (line 1), are the links relevant
and meaningful (2-6), do the links represent implicit knowl-
edge (7-8), how often a link was chosen to be most helpful for
understanding the connection (9).

resolved by an expert annotator.
Results. Table 2 shows the results of our an-

notation experiment. On IKAT, 89% of the paths
established by COREC-LM and 77% of the rela-
tions predicted by COMET were annotated as very
relevant (+2) or relevant connections (+1), which
only applies for 58% of the ranked CN-paths. 15%
of the ranked CN-paths were annotated as not rele-
vant (-1) or misleading (-2), which can be explained
by noisy intermediate nodes; and 27% as vague (0),
which can be explained by the large amount of un-
specific relations. When replacing RELATEDTO

and HASCONTEXT (CN-r), the amount of paths an-
notated as vague slightly decreases, and the amount
of paths labelled as relevant and very relevant in-
creases.

Moreover, paths generated by COREC-LM and
COMET were found to yield better implicit knowl-
edge representations than ranked CN-paths (line
8-9, Table 2), while we find that replacing vague
relations in the CN-paths improves their ability of
representing implicit knowledge. Finally, 65% of
relations predicted by COREC-LM and 64% of
paths generated by COMET were chosen as ex-
plaining the connections between sentences best,
which is only the case for 28% of the CN-paths,
and slightly better for the replaced version of the
CN-paths (34%).

On ARC, the high amount of CN-paths anno-
tated as vague (29%) again indicates uninforma-
tive connections and can be reduced when replac-
ing vague with more specific relations. Relations
predicted by COREC-LM were found to be less
relevant for connecting sentences in ARC than in
IKAT, but 87% of them were evaluated as appropri-
ate expressions of implicit knowledge. 76% of the
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relations predicted by COREC-LM were evaluated
as best connections, which applies only for 7% of
CN-paths and 14% of CN-paths with replaced re-
lations. For COMET we find overall comparable
results between IKAT and ARC.

Regarding the combination of COREC-LM and
COMET addressed with question 4, according to
our annotators 50% of the multihop paths in the
IKAT subset include misleading nodes and all of
them include irrelevant or uninformative nodes.
Still, compared against the direct relations pre-
dicted by COREC-LM, annotators state for 30% of
the multihop paths from COMET that they contain
intermediate concepts that are important for ex-
plaining the connection. On the ARC subset, 40%
of the multihop paths include misleading and 60%
include irrelevant nodes, and only 20% contain
important intermediate concepts that are missing
in the direct relation. For each subset, annotators
preferred the shorter path over the multihop path
in 90% of the given sentence pairs. Comparing
singlehop paths generated by COMET to direct
relations predicted by COREC-LM for the same
concept pairs, our annotators preferred the relation
predicted by COREC-LM in 64% of the cases, in
29% the link was annotated as equally good, and
only in 7% COMET’s generation was preferred.

To summarize, according to our manual evalu-
ation, the dynamic models COMET and COREC-
LM are better suited for generating meaningful
knowledge paths that express implicit knowledge
between sentences than ranked paths from the static
CN knowledge graph, even though replacing vague
by more specific relations slightly improves results.
When comparing multihop paths to direct relations
established between the same concept pairs, we
find that longer paths tend to contain irrelevant or
even misleading nodes, and that direct relations
are preferred by human annotators. These findings
support our proposed joint framework CO-NNECT,
which gives preference to direct relations and uti-
lizes multihop paths only if no direct connection
between concepts can be revealed.

4.3 Automatic Evaluation Against Gold

Our goal is to generate meaningful paths that con-
vey implicit knowledge between sentences. In our
automatic evaluation we compare the set of model-
generated paths between all concept pairs from two
related sentences to the implicit knowledge anno-
tated in IKAT and ARC for these sentences, using

similarity metrics.

Since the generated relation and path represen-
tations differ from the annotated natural sentences,
we approximate a common representation as fol-
lows: We encode the golden annotations of im-
plicit knowledge – usually short sentences – using
three settings: (i) Silver Paths: we encode their re-
lational knowledge, by extracting all concepts from
each golden implicit knowledge sentence (My dog
has a bone→ dog, bone) using the CN-extraction
tool COCO-EX (Becker et al., 2021a), and pre-
dict the relations between them using COREC-LM,
trained on CN-13 (dog, HASA, bone). If a sentence
contains more than two relations, we concatenate
the predicted relation triples. (ii) IKAT provides
manual annotations of ConceptNet relations for the
golden implicit knowledge sentences, which we
use as Gold Paths (The tree is in the garden →
tree ATLOCATION garden). (iii) Gold-NL: Here
we use the implicit knowledge (in natural language)
as provided in the datasets: IKAT’s implicit knowl-
edge sentences and ARC’s implicit warrants.

For encoding the generated paths we apply
two settings: (i) we concatenate all concepts and
relations within the paths; (Generated Paths) and
(ii) we translate the relation triples and paths to
(pseudo) natural language using templates provided
by ConceptNet (e.g. cs CAUSES ct→ The effect of
cs is ct; Generated Paths-NL).

We apply two automatic similarity metrics,
comparing (a) Generated vs. Silver Paths, (b) Gen-
erated Paths-NL vs. Gold-NL, and (c) Generated vs.
Gold Paths (only IKAT). (i) We encode each rep-
resentation as described above using ConceptNet
numberbatch embeddings (Speer et al., 2017) (for
multiword concepts we average the embeddings
of all non-stopwords), and compute cosine simi-
larity between them, and (ii) we use BERTScore
F1 (Zhang et al., 2020) to compare representations,
which computes string similarity using contextual-
ized embeddings. Both metrics lie in [−1, 1].

Results. Table 3 shows that the paths gen-
erated by combining COREC-LM and COMET
in our framework CO-NNECT achieve the high-
est similarity scores according to Numberbatch-
Cosim on IKAT in setting (a) and (b), while for
(c) we get the highest Cosim scores for ranked CN-
graphs with replaced vague relations. According
to BERTScore, either COREC-LM (setting a) or
COMET (setting b) applied separately, or both ap-
plied in combination (setting c) achieve highest
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COR COM CONN CN CN-r
(a) Generated Paths vs. Silver Paths

IKAT .61/.85 .54/.82 .62/.84 .57/.78 .58/.80
ARC .41/.84 .39/.82 .42/.86 .40/.77 .40/.78

(b) Generated Paths-NL vs. Gold-NL
IKAT .69/.81 .65/.83 .70/.81 .65/.75 .69/.76
ARC .72/.81 .66/.82 .72/.81 .71/.75 .77/.76

(c) Generated Paths vs. Gold Paths
IKAT .57/.78 .49/.78 .58/.79 .66/.73 .67/.74

Table 3: Comparing generated paths to implicit knowl-
edge annotations on IKAT and ARC, measured by
Cosim/BERTScore (F1).

results on IKAT. On ARC, CO-NNECT achieves
both highest Cosim and BERTScores in setting (a),
while in (b) we get the best scores for CN-r ac-
cording to Cosim, and the best scores for COMET
according to BERTScore.

Summarizing our insights from automatic eval-
uations, we find that COREC-LM achieves high
scores when applied separately or in combination
with COMET (CO-NNECT). COMET applied
in isolation does not yield the highest scores, but
helps to boost COREC-LM’s performance in the
joint CO-NNECT framework. Ranked CN-graphs
achieve highest Cosim in two settings/datasets
(ARC–b; IKAT–c), but we do not find significant
improvements when replacing vague relations in
CN-graphs (expect for Cosim in setting b). This
can be explained by the fact that even though
many RELATEDTO and HASCONTEXT instances
could be replaced, for both datasets a large amount
of vague relations still remain (56.6% of RELAT-
EDTO/53.2% of HASCONTEXT in IKAT; 29.3%
RELATEDTO/63% HASCONTEXT in ARC). There-
fore, the vague relation types in the CN-graphs
still remain problematic when representing implicit
knowledge.

When comparing our manual evaluation results
to the automatic scores, we find that the genera-
tions that were manually evaluated as most relevant
and meaningful explanations of implicit knowledge
are not always highest-ranked by automatic metrics,
which points to two limitations of our automatic
evaluation: Besides well-known issues regarding
the reliability, interpretability, and biases of auto-
matic metrics (Callison-Burch et al., 2006), we
evaluate the generated paths against an annotated
reference – paths or sentences – which is often only
one among several valid options for expressing the
implicit knowledge (cf. Becker et al. 2017). This
means that a generated path may still be a relevant

explicitation of implicit information, even if not
similar to the reference. Hence, automatic scores
are to be considered with caution.

5 Conclusion

Our work aims to leverage commonsense knowl-
edge in the form of single and multihop paths, to
establish knowledge connections between concepts
from different sentences, as a form of explicitation
of implicitly conveyed information. We combine
existing relation classification and target predic-
tion models in a dynamic knowledge prediction
framework, CO-NNECT, utilizing language models
finetuned on knowledge relations from Concept-
Net. We compare against a path ranking system
that employs static knowledge from ConceptNet as
a baseline and evaluate the quality of the obtained
paths (i) through manual evaluation and (ii) using
automatic similarity metrics, by comparing gener-
ated paths to annotations of implicit knowledge in
two argumentative datasets. Our evaluations show
that we obtain the highest number of connections
from the static ConceptNet graph, however, they
are often noisy due to unrelated intermediate nodes,
and – even after replacements – still contain many
unspecific relations. Our framework CO-NNECT,
instead, combines relation classification and target
prediction, leveraging the high precision of the for-
mer, and the ability to perform forward chaining
of the latter, and obtain high-quality, meaningful
and relevant knowledge paths that reveal implicit
knowledge conveyed by the text, as shown in a
profound manual evaluation experiment.

We believe that CO-NNECT is a useful frame-
work which can be applied for different tasks,
such as enriching texts with commonsense knowl-
edge relations and paths, for dynamically enriching
knowledge bases, or for building knowledge con-
straints for language generation. In Becker et al.
(2021b) for example we inject single- and multi-
hop commonsense knowledge paths predicted by
CO-NNECT as constraints into language models
and show that this improves the model’s ability of
generating sentences that explicate implicit knowl-
edge which connects sentences in texts. We fur-
thermore believe that the paths established with
CO-NNECT, which can provide explicitations of
implicit knowledge, can be useful to enhance many
other NLP downstream tasks, such as argument
classification, stance detection, or commonsense
reasoning.

29



Acknowledgements

This work has been funded by the DFG within
the project ExpLAIN as part of the Priority Pro-
gram “Robust Argumentation Machines” (SPP-
1999). We thank our annotators for their contri-
bution.

References
Maria Becker, Katharina Korfhage, and Anette Frank.

2020. Implicit Knowledge in Argumentative Texts:
An Annotated Corpus. In Proceedings of the Con-
ference on Language Resources and Evaluation
(LREC), pages 2316–2324, Online.

Maria Becker, Katharina Korfhage, and Anette Frank.
2021a. COCO-EX: A Tool for Linking Concepts
from Texts to ConceptNet. In Proceedings of the
Conference of the European Chapter of the Associ-
ation for Computational Linguistics (EACL), Demo
Papers, Online.

Maria Becker, Siting Liang, and Anette Frank. 2021b.
Reconstructing Implicit Knowledge with Language
Models. Accepted at: Deep Learning Inside Out
(DeeLIO): Workshop on Knowledge Extraction and
Integration for Deep Learning Architectures.

Maria Becker, Michael Staniek, Vivi Nastase, and
Anette Frank. 2017. Enriching Argumentative Texts
with Implicit Knowledge. In Applications of Natu-
ral Language to Data Bases (NLDB) - Natural Lan-
guage Processing and Information Systems, Lecture
Notes in Computer Science, pages 84–96. Springer.

Maria Becker, Michael Staniek, Vivi Nastase, and
Anette Frank. 2019. Assessing the Difficulty of
Classifying ConceptNet Relations in a Multi-Label
Classification Setting. In Proceedings of RELA-
TIONS - Workshop on Meaning Relations between
Phrases and Sentences, pages 1–15, Gothenburg,
Sweden.

Antoine Bosselut, Ronan Le Bras, , and Yejin Choi.
2021. Dynamic neuro-symbolic knowledge graph
construction for zero-shot commonsense question
answering. In Proceedings of the 35th AAAI Con-
ference on Artificial Intelligence (AAAI).

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: Commonsense transformers for au-
tomatic knowledge graph construction. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4762–4779,
Florence, Italy. Association for Computational Lin-
guistics.

Chris Callison-Burch, Miles Osborne, and Philipp
Koehn. 2006. Re-evaluating the role of Bleu in ma-
chine translation research. In 11th Conference of

the European Chapter of the Association for Com-
putational Linguistics, Trento, Italy. Association for
Computational Linguistics.

Ting-Yun Chang, Yang Liu, Karthik Gopalakrishnan,
Behnam Hedayatnia, Pei Zhou, and Dilek Hakkani-
Tur. 2020. Incorporating commonsense knowledge
graph in pretrained models for social commonsense
tasks. In Proceedings of Deep Learning Inside Out
(DeeLIO): The First Workshop on Knowledge Ex-
traction and Integration for Deep Learning Architec-
tures, pages 74–79, Online. Association for Compu-
tational Linguistics.

Zhijiang Guo, Yan Zhang, and Wei Lu. 2019. Atten-
tion guided graph convolutional networks for rela-
tion extraction. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 241–251, Florence, Italy. Association
for Computational Linguistics.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018. The argument reasoning
comprehension task: Identification and reconstruc-
tion of implicit warrants. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 1930–1940, New Orleans, Louisiana. Associ-
ation for Computational Linguistics.

Pavan Kapanipathi, Veronika Thost, Siva Patel,
Spencer Whitehead, Ibrahim Abdelaziz, Avinash
Balakrishnan, Maria Chang, Kshitij Fadnis, Chulaka
Gunasekara, Bassem Makni, Nicholas Mattei, Kar-
tik Talamadupula, and Achille Fokoue. 2020. Infus-
ing knowledge into the textual entailment task using
graph convolutional networks. Proceedings of the
AAAI Conference on Artificial Intelligence, 34:8074–
8081.

Xiang Li, Aynaz Taheri, Lifu Tu, and Kevin Gimpel.
2016. Commonsense knowledge base completion.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1445–1455, Berlin, Germany.
Association for Computational Linguistics.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xi-
ang Ren. 2019. KagNet: Knowledge-aware graph
networks for commonsense reasoning. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2829–2839, Hong
Kong, China. Association for Computational Lin-
guistics.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381–2391, Brussels, Belgium. Association
for Computational Linguistics.

30



Debjit Paul and Anette Frank. 2019. Ranking and se-
lecting multi-hop knowledge paths to better predict
human needs. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3671–3681, Minneapolis, Minnesota.
Association for Computational Linguistics.

Debjit Paul and Anette Frank. 2020. Social common-
sense reasoning with multi-head knowledge atten-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 2969–2980,
Online. Association for Computational Linguistics.

Debjit Paul, Juri Opitz, Maria Becker, Jonathan Kobbe,
Graeme Hirst, and Anette Frank. 2020. Argu-
mentative Relation Classification with Background
Knowledge. In Proceedings of the International
Conference on Computational Models of Argument
(COMMA), pages 319–330, Online.

Andreas Peldszus and Manfred Stede. 2016. An anno-
tated corpus of argumentative microtexts. In Argu-
mentation and Reasoned Action: Proceedings of the
1st European Conference on Argumentation, Lisbon
2015 / Vol. 2, pages 801–815, London. College Pub-
lications.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
Models are Unsupervised Multitask Learners.

Itsumi Saito, Kyosuke Nishida, Hisako Asano, and
Junji Tomita. 2018. Commonsense knowledge base
completion and generation. In Proceedings of the
22nd Conference on Computational Natural Lan-
guage Learning, pages 141–150, Brussels, Belgium.
Association for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. EMC2̂: 5th
Edition. Co-located with NeurIPS’19.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, Febru-
ary 4-9, 2017, San Francisco, California, USA,
pages 4444–4451. AAAI Press.

Bayu Distiawan Trisedya, Gerhard Weikum, Jianzhong
Qi, and Rui Zhang. 2019. Neural relation extrac-
tion for knowledge base enrichment. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 229–240, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Ekaterina Vylomova, Laura Rimell, Trevor Cohn, and
Timothy Baldwin. 2016. Take and took, gaggle and
goose, book and read: Evaluating the utility of vec-
tor differences for lexical relation learning. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long

Papers), pages 1671–1682, Berlin, Germany. Asso-
ciation for Computational Linguistics.

Peifeng Wang, Nanyun Peng, Filip Ilievski, Pedro
Szekely, and Xiang Ren. 2020. Connecting the dots:
A knowledgeable path generator for commonsense
question answering. EMNLP Findings, pages 4129–
4140.

Dirk Weissenborn, Tomas Kocisky, and Chris Dyer.
2018. Dynamic Integration of Background Knowl-
edge in Neural NLU Systems. ICLR 2018.

Shanchan Wu and Yifan He. 2019. Enriching pre-
trained language model with entity information
for relation classification. In Proceedings of the
28th ACM International Conference on Informa-
tion and Knowledge Management, CIKM ’19, page
2361–2364, New York, NY, USA. Association for
Computing Machinery.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In ICLR.

Xiaobin Zhang, Fucai Chen, and Ruiyang Huang. 2018.
A Combination of RNN and CNN for Attention-
based Relation Classification. In Procedia Com-
puter Science, volume 131, pages 911 – 917.

APPENDIX

A Constructing the RANDOM Class for
Training COREC-LM in an Open World
Setting

Our downstream application task – finding connec-
tions between concepts – requires that our relation
classifier also learns to detect that no direct relation
holds between a given pair of concepts. We thus
extend the data for training and testing COREC-
LM with a RANDOM class which contains concept
pairs that are not related which we add to CN-100k
and CN-13 Instances for this class are generated
similarly to Vylomova et al. (2016): 50% of them
are opposite pairs which we obtain by switching the
order of concept pairs within the same relation, and
50% are corrupt pairs, obtained by replacing one
concept in a pair with a random concept from the
same relation. Corrupt pairs ensure that COREC-
LM learns to encode relation instances rather than
simply learning properties of the word classes. We
add these instances (2070 for training and 260 for
development and testing, respectively) to CN-100k
and CN-13 when training and evaluating in an open
world setting.
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COREC-LM COMET CONNECT CN Subgraphs
IKAT ATLOCATION(25%) ISA(19%) ATLOCATION(22%) RELATEDTO(71%)

HASPROPERTY(20%) HASA(18%) ISA(17%) HASCONTEXT(8%)
ISA(17%) CAUSES(17%) HASPROPERTY(16%) IsA(7%)

ARC ATLOCATION(31%) ATLOCATION(22%) ATLOCATION(27%) RELATEDTO(72%)
ISA(18%) CAUSES(20%) ISA(15%) HASCONTEXT(8%)
HASPROPERTY(14%) HASA(18%) HASPROPERTY(10%) ISA(7%)

Table 4: Most frequently used relations when constructing single and multihop knowledge paths using COMET,
COREC-LM, their combination, and ranked subgraphs from CN.

B Relations Used for Constructing Single- and
Multihop Paths
Table 4 lists the three most frequently used relations
when constructing single and multihop knowledge
paths using COMET, COREC-LM, their combi-
nation, and ranked subgraphs, respectively for the
two datasets IKAT and ARC. The top three rela-
tions used by COREC-LM within both datasets
are ATLOCATION, HASPROPERTY, and ISA. In-
terestingly, besides ISA and HASA, COMET fre-
quently uses the only causal relation in the CN
inventory CAUSES. In contrast to COREC-LM and
COMET, the ranked CN-graphs are constructed us-
ing mostly the very general relation RELATEDTO,
followed by the likewise vague relation HASCON-
TEXT. When excluding paths that contain RELAT-
EDTO, only 2,551 connected concept pairs remain
in IKAT and 6,858 in ARC.
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Abstract
We present a method for computing all quan-
tifer scopes that can be extracted from a sin-
gle CCG derivation. To do that we build
on the proposal of Steedman (1999, 2011)
where all existential quantifiers are treated as
Skolem functions. We extend the approach
by introducing a better packed representation
of all possible specifications that also includes
node addresses where the specifications hap-
pen. These addresses are necessary for recov-
ering all, and only, possible readings.

1 Introduction

Quantifiers often introduce a peculiar type of
semantic ambiguity. Take for instance the
following sentence: Every farmer owns a donkey.
This sentence has two readings: a wide reading
where there is one donkey that all farmers share
and narrow reading where each farmer has a
different donkey. If we express these readings
as first-order logic they would look as follows:
Wide:
∃a [donkey′(a)∧∀b [farmer′(b)⇒ own′(b,a)]]

Narrow:
∀b [∃a [donkey′(a)∧ (farmer′(b)⇒ own′(b,a))]]
From these formulas it is clear where the name

for different readings come from. In the wide read-
ing the existential quantifier takes the wide scope
i.e. it contains the universal quantifier. In the nar-
row reading the existential quantifier’s scope does
not cover the universal quantifier.

Any theory of the syntax-semantics interface
needs to account for the fact that quantifiers can
introduce scope ambiguity. Early approaches to
this problem involved either representing the two
meanings with distinct logical forms like the above,
obtained from the surface string either by treating
every farmer and a donkey as generalized quanti-
fiers or “quantifying in” in either order to a proposi-
tion containing distinguished variables (Montague,

1973), or via equivalent structure-changing oper-
ations of “quantifier raising” (May, 1985). Later
approaches decoupled scope from syntactic deriva-
tion by the use of “storage” to pass scope informa-
tion (Cooper, 1983; Keller, 1988). However, all of
these approaches overgenerate unattested readings
for certain examples involving coordination, first
noted by (Geach, 1970) and considered in section 3
below. The approach of (Steedman, 2011) can be
thought of as reuniting a storage-like account with
surface-compositional syntactic derivation.

2 Computing Scope with CCG

Steedman (1999, 2011) introduces a different
view of existential quantifiers, according to which
the only true quantifiers are universal quantifiers
and that existential quantifiers can be treated as
generalized Skolem terms in the following way:
Wide: ∀b

[
farmer′(b)⇒ own′(b,sk{}donkey′)

]

Narrow: ∀b
[
farmer′(b)⇒ own′(b,sk{b}donkey′)

]

Here, skα
β represents the Skolem function whose

arguments are variables of type α and whose result
is of type β .

In the wide scope reading sk{}donkey′ is a Skolem
constant (Skolem function with no arguments).
This means that it will produce only a unique value
of type donkey′, somewhat like a proper name. In
the narrow scope reading sk{b}donkey′ is a Skolem func-
tion that has the variable b bound by the universal
as its argument. This function will produce a dif-
ferent value for each b, in other words there will be
a different donkey′ for each farmer′.

Other non-universal generalized quantifiers are
also treated as Skolem terms. Steedman (2011)
also discusses negation which we do not present
here, but our approach naturally extends to it. We
do not deal with intentionality.

This view of quantifiers allows for a simple
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Every farmer owns a donkey

S/(S\NP) (S\NP)/NP S\(S/NP)
λa. ∀b [ f armer′(b)⇒ (a b)] λa. λb. own′ (b,a) λa. a(skolem donkey′)

>B . . . . . . . . . . . . . . . . . . . . . . .
S/NP : λa. ∀b [ f armer′(b)⇒ own′(b,a)] S\(S/NP) : λa. a sk{}donkey′

<

S : ∀b
[

f armer′(b)⇒ own′(b,sk{}donkey′)
]

(a) Wide reading.

Every farmer owns a donkey

S/(S\NP) (S\NP)/NP S\(S/NP)
λa. ∀b [ f armer′(b)⇒ (a b)] λa. λb. own′ (b,a) λa. a(skolem donkey′)

>B
S/NP : λa. ∀b [ f armer′(b)⇒ own′(b,a)]

<
S : ∀b [ f armer′(b)⇒ own′(b,skolem donkey′)]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S : ∀b

[
f armer′(b)⇒ own′(b,sk{b}donkey′)

]

(b) Narrow reading.

Figure 1: Two different readings.

Every farmer owns a donkey

S/(S\NP) (S\NP)/NP S\(S/NP)
λa. ∀b [ f armer′(b)⇒ (a b)] λa. λb. own′ (b,a) λa. a(sk{}donkey′)

>B
S/NP :λa. ∀b [ f armer′(b)⇒ own′(b,a)]

<

S :∀b
[

f armer′(b)⇒ own′(b,sk{} {b}donkey′)
]

Figure 2: Packed representation.

syntax-semantics interface. CCG derivations for
wide and narrow readings are presented in Fig-
ure 1, for one of the two derivation trees allowed
by CCG. Syntactic component of these two trees
is the same, only the semantics differ. Semantic
entry for all words are the usual lambda expres-
sions except for the indefinite articles whose entry
is λa.λb.b(skolem a). Here skolem a is a under-
specified Skolem term of type a. An underspecified
Skolem term becomes a Skolem function/constant
when it is specified. Skolem specification is marked
in the derivation tree with a dotted underline, and in-
fluences only the logical form, converting an under-
specified Skolem terms by giving it as arguments
all universally bound variables into whose scope
it has been brought by the derivation so far. In
Figure 1a that set is empty, so the result of Skolem
specification is a Skolem constant, yielding the
wide scope reading. In Figure 1b, that set includes
the single variable b. By choosing to specify at a
different point in the derivation, we get a different
narrow-scope reading for the sentence.

In order to prevent overgeneration of unattested
readings, we must impose a further rather natural
constraint on Skolem specification requiring that
any embedded unspecified Skolem terms are
specified at the same time in the same environment.
Thus we get the following readings for “every
farmer owns a donkey that ate a hat”:
∀b[ f armer′(b)⇒ own′(b,sk{}

λa.donkey′(a)∧ate′(a,sk{}hat′ )
)]

∀b[ f armer′(b)⇒ own′(b,sk{b}
λa.donkey′(a)∧ate′(a,sk{b}hat′ )

)]

∀b[ f armer′(b)⇒ own′(b,sk{b}
λa.donkey′(a)∧ate′(a,sk{}hat′ )

)]

However, we exclude a fourth reading with a

wide-scope Skolem constant donkey eating multi-
ple farmer-dependent hats:1

#∀b[ f armer(b)⇒ own′(b,sk{}
λa.donkey′(a)∧ate′(a,sk{b}hat′ )

)]

To ensure that all available readings are obtained,
it is inefficient to choose all possible specification
points in the derivation, because most of them yield
duplicate results where there has been no change in
the set of scoping variables. To eliminate such re-
dundancy, Steedman (2011) proposed a packed rep-
resentation presented in Figure 2 where the Skolem
term is associated with multiple bindings. At points
in the derivation where the binding environment of
the function changes, a new argument combination
is introduced.

3 Problems with Taking Scope over
Coordination

The proposal of Steedman (2011) was implemented
by Kartsaklis (2010) and it works quite well for
examples that we have seen so far. However, coor-
dination poses some challenges for the packed rep-
resentation. Consider coordination of two universal
quantifiers in Figure 3a. Here NP↑ is a shorthand
for a type-raised NP. For a moment ignore addi-
tional annotations in the arguments of the Skolem
functions. In this example, the specification of an
apple will either happen before it is combined with
the universals, or after. This means that either it
will be in the scope of both or none. The only two
readings are given in Figure 3b. However, if we
were to unpack the packed formula by computing
all combinations of Skolem arguments we would
get four readings, including the impossible reading
of an apple being within scope of one universal
quantifier but not the other. We stress that this is
a problem arising from the packed representation,
not the theory of scope itself.

It may look like the solution to this problem
is simple: take all Skolems stemming from the

1This condition was inadvertently omitted from the origi-
nal proposal.
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same noun phrase and combine their arguments
in order i.e. first arguments of both Skolems go
together and second arguments of both Skolems
go together. While this solves the example in Fig-
ure 3, it does not work on that in Figure 4 where we
coordinate one universal and one existential quanti-
fier. Here there is no clear correspondence between
arguments of two Skolem functions: one of them
has two different arguments ({} and {a}) while the
other one has only one possible argument ({}). Of
course, in principle the difference in the number of
possible combinations could be significantly larger
and it may not be clear how to combine them. To
solve this problem we need a more principled so-
lution that directly reflects the mechanism of the
non-packed derivations.

4 Proposed Solution

The packed representation can be seen as a dynamic
programming approach to computing all possible
orders of specifications of Skolem terms. How-
ever, the packed representation of Steedman (2011)
that we considered so far is incomplete: from a
given packed representation we cannot reconstruct
the non-packed representations that are encoded
in it. That is caused by the missing information
of the location in the tree where the specification
was done. We extend the packed representation
with this information: whenever a new argument
combination is added, together with it we add the
Gorn address of the current node. For instance
sk{}

trrl {a}t
apple′ from Figure 4a signifies that there are

two possible arguments for this Skolem function:
an empty argument list specified at Gorn address
trrrl (top→ right→ right→ right→ left) and a
non-empty argument {a} at address t (top). We
know that all the Gorn addresses for a given Skolem
function will be on a single path from the root of
the tree to the determiner that introduced it into
derivation. This means that, for a given function,
we can sort all addresses by their height in the tree.

Assume we have a Skolem function with k possi-
ble argument sets e1,e2, . . . ,ek sorted by the height
of their Gorn addresses g1,g2, . . . ,gk such that gk
is closest to the root of the tree. We can say that
every argument set ei corresponds to the special-
izations done on any node g for which it holds
gi ≤ g < gi+1.2 In other words g can be any node
between gi and gi+1, including gi but excluding

2For simplicity, when gk 6= t we can consider gk+1 = t in
order to have a complete coverage to the root of the tree.

gi+1. If we take again sk{}
trrl {a}t

apple′ as an example
we can say that the argument {} corresponds to
specialization of Skolem function for nodes trrl,
trr and tr.

Additional important point is that we know for
certain that g1 is the address of the leaf of the tree
because that is the first point in the derivation where
the specification can be done. This is important
because in the cases of coordination the logical
formula can have copies of the Skolem term that
comes from the same noun phrase. We can use
the Gorn address of the leaf to identify the Skolem
terms that originate in the same noun phrase. Steed-
man (2011) uses a special index to keep track of
this information, but that index is not necessary
in our representation due to the existance of Gorn
addresses.

Now we can define unpacking of the new version
of the packed representation. We will illustrate it
with the example packed formula from the top node
of Figure 4a: ∀a

[
man′ (a)⇒ eat′

(
a,sk{}

trrl {a}t
apple′

)]
∧

eat′
(

sk{}
tlrrl

woman′ ,sk{}
trrl

apple′

)

step 1 Group Skolem terms by the NP they belong
to. For that we can use the first Gorn address
that specifies the leaf node. In the example
that would give {sk{}

tlrrl

woman′} for the first NP and

{sk{}
trrl {a}t

apple′ ,sk{}
trrl

apple′} for the second.

step 2 For each group of the Skolems extract the
unique Gorn addresses where specification
changes. In this example that would be {tlrrl}
for the first noun phrase and {trrl, t} for the
second.

step 3 Compute the Cartesian product of the sets
of Gorn addresses. That will give all possible
combinations of specification points. Each
combination will correspond to one possible
reading of the sentence. In the example that
will give {(tlrrl, trrl),(tlrrl, t)}.

step 4 To transform each entry to a reading we fil-
ter the Skolem arguments by the Gorn address.
Let us consider how we extract the reading
for entry (tlrrl, t). Filtering arguments for the

first noun phrase Skolem term {sk{}
tlrrl

woman′}with
tlrrl is easy because there is only one entry
that matches it exactly. Filtering arguments
for the second noun phrase is more interesting
because there are two copies of it. We need to
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Every man and every woman eat an apple

NP↑/N N conj NP↑/N N (S\NP)/NP NP↑/N N
λa. λb. ∀c [(a c)⇒ (b c)] man′ and′ λa. λb. ∀c [(a c)⇒ (b c)] woman′ λa. λb. eat′ (b,a) λa. λb. b sk{}

trrl

a apple′
> > >

NP↑ NP↑ NP↑

λa. ∀b [man′ (b)⇒ (a b)] λa. ∀b [woman′ (b)⇒ (a b)] λa. a sk{}
trrl

apple′
>Φ >

NP↑\NP↑ S\NP
λa. λb. (a b)∧∀c [woman′ (c)⇒ (b c)] λa. eat′

(
a,sk{}

trrl

apple′

)

<
NP↑

λa. ∀b [man′ (b)⇒ (a b)]∧∀c [woman′ (c)⇒ (a c)]
<

S
∀a
[
man′ (a)⇒ eat′

(
a,sk{}

trrl {a}t
apple′

)]
∧∀b

[
woman′ (b)⇒ eat′

(
b,sk{}

trrl {b}t
apple′

)]

(a) Packed derivation.

∀a
[
man′ (a)⇒ eat′

(
a,sk{}

trrl

apple′

)]
∧∀b

[
woman′ (b)⇒ eat′

(
b,sk{}

trrl

apple′

)]

∀a
[
man′ (a)⇒ eat′

(
a,sk{a}

t

apple′

)]
∧∀b

[
woman′ (b)⇒ eat′

(
b,sk{b}

t

apple′

)]

(b) Readings.

Figure 3: Coordination with two universal quantifiers.

Every man and some woman eat an apple

NP↑/N N conj NP↑/N N (S\NP)/NP NP↑/N N
λa. λb. ∀c [(a c)⇒ (b c)] man′ and′ λa. λb. b sk{}

tlrrl

a woman′ λa. λb. eat′ (b,a) λa. λb. b sk{}
trrl

a apple′
> > >

NP↑ NP↑ NP↑

λa. ∀b [man′ (b)⇒ (a b)] λa. a sk{}
tlrrl

woman′ λa. a sk{}
trrl

apple′
>Φ >

NP↑\NP↑ S\NP
λa. λb. (a b)∧

(
b sk{}

tlrrl

woman′

)
λa. eat′

(
a,sk{}

trrl

apple′

)

<
NP↑

λa. ∀b [man′ (b)⇒ (a b)]∧
(

a sk{}
tlrrl

woman′

)

<
S

∀a
[
man′ (a)⇒ eat′

(
a,sk{}

trrl {a}t
apple′

)]
∧ eat′

(
sk{}

tlrrl

woman′ ,sk{}
trrl

apple′

)

(a) Packed derivation.

∀a
[
man′ (a)⇒ eat′

(
a,sk{}

trrl

apple′

)]
∧ eat′

(
sk{}

tlrrl

woman′ ,sk{}
trrl

apple′

)

∀a
[
man′ (a)⇒ eat′

(
a,sk{a}

t

apple′

)]
∧ eat′

(
sk{}

tlrrl

woman′ ,sk{}
trrl

apple′

)

(b) Readings.

Figure 4: Coordination with one universal and one existential quantifier.

select for specification on node t. In the first
copy sk{}

trrl {a}t
apple′ we just select argument {a}

since it corresponds to node t. In the second
copy sk{}

trrl

apple′ we select for {} because it covers
all nodes from trrl to the root including t.

5 Conclusion

This approach is really just a full dynamic pro-
gramming representation of the unpacked repre-
sentations that could easily be extracted from this
representation. We do not have to explicitly encode
all the nodes where specification happens, but only
for the places where that specification changes the

existing result and we also encode exactly at which
places in the tree this happens.

Here we have described how to get all possible
readings from a single CCG derivation. However,
in some cases there can be alternative CCG deriva-
tions that can provide additional readings. To get
those readings we can apply the same method on
all alternative derivations either by chart parsing,
as described in (Steedman, 2011), or by recover-
ing alternative derivations with the tree-rotation
operation (Niv, 1994; Stanojević and Steedman,
2019)

Evang and Bos (2013) show that there is a strong
preference for subject to take scope over object.
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Our representation of Skolem terms could be ex-
tended to encode the information of the type of
noun phrase they originate from. With this ex-
tension we could rank the extracted readings by
subject> object preference.

The implementation of our approach is
available at https://github.com/stanojevic/

CCG-Quantifiers.
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Abstract
This paper describes N-XKT (Neural encod-
ing based on eXplanatory Knowledge Trans-
fer), a novel method for the automatic transfer
of explanatory knowledge through neural en-
coding mechanisms. We demonstrate that N-
XKT is able to improve accuracy and general-
ization on science Question Answering (QA).
Specifically, by leveraging facts from back-
ground explanatory knowledge corpora, the N-
XKT model shows a clear improvement on
zero-shot QA. Furthermore, we show that N-
XKT can be fine-tuned on a target QA dataset,
enabling faster convergence and more accurate
results. A systematic analysis is conducted to
quantitatively analyze the performance of the
N-XKT model and the impact of different cat-
egories of knowledge on the zero-shot general-
ization task.

1 Introduction

Contemporary Question Answering (QA) is evolv-
ing in the direction of addressing more abstrac-
tive reasoning tasks (Thayaparan et al., 2020; Dua
et al., 2019; Clark et al., 2018; Mihaylov et al.,
2018), supported by multi-hop inference (Khot
et al., 2020; Yang et al., 2018) and explanatory
scientific facts (Jansen and Ustalov, 2019; Jansen
et al., 2018, 2016).

This trend of aiming to address more complex,
multi-evidence and chained inference is pushing
the envelope for novel representation and architec-
tural patterns (Ding et al., 2019; Qiu et al., 2019;
Asai et al., 2020; Thayaparan et al., 2019; Kundu
et al., 2019; Valentino et al., 2021), which are mov-
ing from modelling meaning from immediate distri-
butional semantics patterns into deeper abstractive
capabilities. This poses a paradigmatic challenge
on the design of QA architectures, which need to
operate over high-level semantic patterns and ac-
quire the necessary knowledge to perform abstrac-
tion (Clark et al., 2018). At the same time, the

design of new strategies to incorporate explana-
tory knowledge into neural representation has the
potential to address fundamental data efficiency
problems and promote zero-shot generalisation on
out-of-distribution examples.

Explanation-based Science QA (Jansen et al.,
2018) provides a rich framework to evaluate these
emerging requirements, as the task typically re-
quires multi-hop reasoning through the compo-
sition of explanatory facts. While existing ap-
proaches in the field mainly focus on the construc-
tion of natural language explanations (Jansen et al.,
2018; Jansen and Ustalov, 2019), this work aims
to explore the impact of explanatory knowledge on
zero-shot generalisation.

In this paper, we argue that explanation-centred
corpora can serve as a resource to boost zero-shot
capabilities on Question Answering tasks which
demand deeper inference. To this end, we explore
the adoption of latent knowledge representations
for supporting generalisation on downstream QA
tasks requiring multi-hop inference.

Our hypothesis is that explanatory scientific
knowledge expressed in natural language can be
transferred into neural network representations, and
subsequently used to achieve knowledge based in-
ference on scientific QA tasks. To validate this
hypothesis, this paper proposes a unified approach
that frames Question Answering as an explanatory
knowledge reasoning problem. The unification
between the two tasks allows us to explore the
adoption of pre-training strategies over explana-
tory knowledge bases, and subsequently leverage
the same paradigm to generalise on the Question
Answering task.

An empirical evaluation is performed on
Transformers-based architectures adopting the
WorldTree corpus as a knowledge base (Xie et al.,
2020; Jansen et al., 2018) and measuring generalisa-
tion on ARC (Clark et al., 2018) and OpenbookQA
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(Mihaylov et al., 2018). The main contributions of
this paper are as follows:

• We propose N-XKT, a neural mechanism for
encoding and transferring explanatory knowl-
edge for science QA. To the best of our knowl-
edge, N-XKT is the first work tackling sci-
ence QA tasks through the transfer of external
explanatory knowledge via neural encoding
mechanisms.

• We introduce the explanatory knowledge
transfer task on explanation-centred knowl-
edge bases, describing the methodology to
implement N-XKT for knowledge acquisition
and downstream Question Answering using
Transformer-based models as neural encoders.

• We conduct a systematic empirical analysis to
demonstrate the effectiveness of N-XKT on
improving downstream QA accuracy and over-
all convergence speed in the training phase.
An ablation analysis on different types of
knowledge facts is performed to measure the
impact of different knowledge categories.

2 Related Work

In this section we describe several works related to
knowledge-based scientific QA.

Explanation Bank Explanation Bank1 is a core
component of the WorldTree corpus (Jansen et al.,
2018; Xie et al., 2020). The dataset provides ex-
planations for multiple-choice science questions
in the form of graphs connecting questions and
correct answers, where multiple sentences from
a knowledge base (KB) are aggregated through
lexical overlap between terms. The background
knowledge used for the explanations is grouped
in semi-structured tables, whose facts range from
common-sense to core scientific statements. Expla-
nation Bank has been proposed for the task of ex-
planation regeneration (Jansen and Ustalov, 2019)
– i.e. given a multiple-choice science question, re-
generate the gold explanation supporting the cor-
rect answer. The explanation regeneration task has
been framed as an Information Retrieval (IR) prob-
lem (Valentino et al., 2021). In this paper, we aim
to leverage the knowledge expressed in the expla-
nations to enhance generalisation and zero-shot
capability on multiple-choice scientific question
answering.

1http://cognitiveai.org/explanationbank/

Bidirectional Encoder Representations from
Transformers BERT represents the foundation
which defines the state-of-the-art in several NLP
tasks (Devlin et al., 2019). This model adopts a
Transformer-based architecture composed of sev-
eral layers of attention (Vaswani et al., 2017) that
are used to learn a deep bidirectional representa-
tion of language. BERT-based models have demon-
strated remarkable results in Question Answering
when directly fine-tuned on the answer prediction
task or additionally pre-trained using domain spe-
cific knowledge (Clark et al., 2020; Beltagy et al.,
2019). A recent line of research attempts to en-
rich the input of BERT with background knowl-
edge in the form of explanations in order to boost
generalisation and accuracy for challenging QA
settings. Here, the explanations are explicitly con-
structed through the adoption of language models
(Rajani et al., 2019) or information retrieval (IR)
approaches (Valentino et al., 2021; Yadav et al.,
2019). Conversely, this paper explores mechanisms
to implicitly encode explanatory knowledge in the
neural representation to improve the capability of
performing downstream inference. Specifically, in
this work, we adopt Transformers as text neural
encoders.

Leveraging External Knowledge for Scientific
QA Recently, many solutions have been pro-
posed for science QA that leverage either exter-
nal reference corpora (Khot et al., 2017; Khashabi
et al., 2018; Zhang et al., 2018) or existing knowl-
edge graphs (Li and Clark, 2015; Sachan et al.,
2016; Wang et al., 2018; Musa et al., 2019; Zhong
et al., 2019). Generally, previous works rely on
Information Retrieval models or on structural em-
beddings for Knowledge Bases, while our work
focuses on directly encoding explanatory knowl-
edge, evaluating it in a downstream scientific QA
setting.

3 Methodology

Scientific Question Answering has the distinctive
property of requiring the articulation of multi-hop
and explanatory reasoning. This can be contrasted
with the lexical-retrieval style of factoid Question
Answering. Additionally, the explanatory chains
required to arrive at the correct answer typically
operate at an abstract level, through the combina-
tion of definitions and scientific laws (Thayaparan
et al., 2020). This characteristic makes the gener-
alisation process more challenging, as the answer
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 Explanatory
Facts

(WorldTree)

QA Training-set
(WorldTree)

Triplify (subject,
predicate, object)

(1) Triplification

QA Test-set

Explanatory
Knowledge
Acquisition

Cloze-style QA

(2) Pre-training (3) Fine-tuning
on Worldtree

Zero-shot QA Fine-tuning QA

(4) Question Answering

What is a common use of the mineral
graphite? (A) to make glass (B) as a

source of iron (C) to make pencil leads (D)
as a household cleaner

<'mineral graphite', 'is used for', 'making pencil lead'>
 <'pencil lead', 'contains', 'mineral graphite'>

'mineral graphite is used for [mask]'
'[mask] contains mineral graphite'

θK θK+Q

Target QA
Training-set

Cloze-style QA

(4) Fine-tuning
on target
dataset

θFqt , ct

lpred lpred

qK , aK, lK qQ , aQ, lQ qS , aS, lS

Figure 1: Outline of the proposed approach.

prediction model needs to acquire the ability to per-
form abstraction from the specific context in the
question.

This paper hypothesises that it is possible to au-
tomatically transfer abstractive knowledge from ex-
planatory facts into neural encoding representation
for more accurate scientific QA, and for enabling
zero-shot generalization. To this end, we propose
N-XKT (Neural encoding based on eXplanatory
Knowledge Transfer) which encodes abstractive
knowledge into neural representation to improve
the effectiveness in both zero-shot QA task and
fine-tuning based QA task. The general neural
encoding mechanism is evaluated adopting the fol-
lowing training tasks:

1. Explanatory Knowledge Acquisition: In
this pre-training task, the N-XKT model en-
codes the explanatory textual knowledge from
a set of explanatory facts into supporting em-
beddings. This process aims to acquire the
necessary explanatory knowledge to test gen-
eralization on downstream science QA. We
frame this problem as a knowledge base com-
pletion task. Specifically, after casting each
explanatory fact in the knowledge base into a
tuple composed of subject, object, and predi-
cate, the model is trained on completing each
fact by alternatively masking each element in

the tuple (additional details can be found in
section 3.1).

2. Cloze-style Question Answering: To keep
the encoding mechanism consistent with the
pre-training explanatory knowledge acquisi-
tion task, we cast Multiple-choice Question
Answering into a cloze-style QA problem.
Specifically, we train the N-XKT model to
complete the question with the expected can-
didate answer. This task aims to acquire addi-
tional knowledge for addressing downstream
science QA since the patterns in the questions
are typically more complex than the back-
ground explanatory facts (additional details
can be found in section 3.2).

The training tasks defined above can be used
to encode different types and levels of knowledge
into the N-XKT model, allowing us to perform
a detailed evaluation on both zero-shot and fine-
tuning-based Question Answering tasks.

Figure 1 shows a schematic representation of the
proposed approach.

3.1 Explanatory Knowledge Acquisition
The WorldTree corpus (Jansen et al., 2018) con-
tains natural language explanatory facts, which are
stored in semi-structured tables whose columns
correspond to semantic roles. The knowledge base
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contains a total of 82 tables, where each table rep-
resents a different knowledge type, with different
arity and argument types. N-XKT can be used
as a unified approach for transferring knowledge
from heterogeneous explanatory facts via a neural
encoding mechanism.

To acquire the explanatory knowledge in a uni-
fied way for subsequent transfer learning, we nor-
malize the semi-structured facts using a binary
predicate-argument structure as typical practice in
standard knowledge-base completion tasks (Bordes
et al., 2013; Wang et al., 2014; Lin et al., 2015).
Specifically, for each table, we map the columns
into three main components: subject, predicate,
and object. After performing the mapping for each
table in the knowledge base, we generate triples for
all the facts in the knowledge base.

By framing the explanatory knowledge acquisi-
tion task as a knowledge base completion problem,
we alternatively mask subjects and objects from the
triples and train the model to predict the missing
component in the triple by giving in input the re-
maining ones. Specifically, we simulate a question
answering problem adopting either subject or ob-
ject as an answer, and the other two components in
the triple as a question.

The neural encoder of N-XKT learns an embed-
ding representation for each pair in input. A soft-
max layer is added on top of the embedding to
predict the probability of the missing component
in the triple. The configuration adopted for the
N-XKT model is described in equation 1;.

θK ← argminθL(N-XKTθ(qK , aK), lK) (1)

Here, qK and aK represent the simulated question-
answer pair generated from a generic explanatory
fact triple, while lK represents the target labels (i.e.
1 if a is the correct component for completing the
triple, 0 otherwise). θK is the set of parameters
optimised during the explanatory knowledge acqui-
sition stage. The negative samples are generated by
replacing each correct answer with a random com-
ponent extracted from different explanatory facts
in the knowledge base.

The transformer neural network is used as a tex-
tual neural encoder component of N-XKT, where
each question-answer pair is compiled into the in-
put token sequence:

[CLS][question][SEP ][answer][SEP ] (2)

The final hidden vectorC ∈ RH of the Transformer
neural network that corresponds to the first input

token ([CLS]) is used as an embedding to perform
the final classification.

3.2 Cloze-style Question Answering

Normally, the explanatory knowledge patterns do
not contain the complete information to address
downstream Question Answering. However, the
questions in WorldTree can be used as additional
knowledge to deal with complex structured science
questions, allowing N-XKT to learn to recognize
more complex patterns.

To acquire additional knowledge while keeping
the encoding mechanism consistent with the pre-
training explanatory knowledge acquisition task,
we cast Multiple-choice Question Answering into
a cloze-style QA problem. The particular encoding
configuration of the N-XKT model can be used
in fact to address this type of question answering
problems, where the model is trained to complete
the question with the expected candidate answer.
The detailed parameters and inputs adopted for
cloze-style QA are described in equation 3:

θK+Q ← argminθL(N-XKTθK (q
Q, aQ), lQ)

(3)

The setting adopted for cloze-style QA is similar
to the one adopted for explanatory knowledge ac-
quisition, but with two main differences: 1) In
this case, the question qQ, the answer aQ, and the
target label lK are generated from the WorldTree
multiple-choice question answering set, where the
right candidate answer of each question acts as a
positive sample, and the incorrect candidate an-
swers act as the negative samples. 2) The initial
parameters are initially set with θK , that is, we
adopt the parameters that have been optimised dur-
ing the explanatory knowledge acquisition stage.

3.3 Zero-shot and Fine-tuning Settings

Given a multiple-choice science question, N-XKT
can perform question answering by framing it as
a sequence classification problem, where the ques-
tion is paired with each candidate answer to com-
pute a probability score. The candidate choice with
highest score can then be selected as the predicted
answer. We evaluate N-XKT in two different set-
tings: zero-shot and fine-tuning-based QA.

Regarding the zero-shot setting, the N-XKT is
trained only on the explanatory knowledge acqui-
sition task and then directly tested on downstream
Question Answering. We also evaluate the model
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trained jointly on explanatory knowledge and sci-
ence questions in WorldTree, evaluating its gener-
alization capabilities on different multiple-choice
Question Answering datasets, such as ARC2 (Clark
et al., 2018) and OpenBook QA3 (Mihaylov et al.,
2018). For each pair of question and candidate
answer, the scores are computed as described in
equation 4. Here, (qT , cT ) represent the test ques-
tion and a candidate answer, while lTpred is the score
predicted by the model.

lTpred = N-XKTθK+Q
(qT , cT ) (4)

In the fine-tuning setting, the N-XKT model is
additionally fine-tuned on each target QA dataset as
in equation 6. Here, (qS , aS) represents a question-
answer pair from the target QA training set, while
lS is the label indicating whether the answer is
correct or not.

θF ← argminθL(N-XKTθK+Q
(qS , aS), lS) (5)

As shown in equation 6, we adopt the same config-
uration as in the zero-shot setting, where the only
difference is represented by the fine-tuned parame-
ters set θF :

lTpred = N-XKTθF (q
T , cT ) (6)

4 Empirical Evaluation

We conduct our experiments on four widely used
science QA datasets, WorldTree V2.0 (Xie et al.,
2020), ARC Easy and Challenge (Clark et al.,
2018), and Openbook QA (Mihaylov et al., 2018).
The results tend to confirm our research hypothesis
that explanatory knowledge encoding can improve
generalization in downstream science Question An-
swering (QA) tasks. Furthermore, we systemati-
cally analyze several factors which may have an
impact on the final results, including the use of
Transformer-based models with a larger number
of parameters (BERT-large), testing the model on
QA tasks using different types of explanatory back-
ground knowledge, and measuring training and test
performance by further fine-tuning the model on
other datasets.

4.1 Experimental Setup
QA dataset size. In order to conduct a thor-
ough quantitative analysis, we use four science QA

2https://allenai.org/data/arc
3https://allenai.org/data/open-book-qa

Table 1: QA datasets size.

Dataset #Train #Dev #Test

WorldTree V2.0 3,947 1,019 4,165
ARC Easy 2,251 570 2,376
ARC Challenge 1,119 299 1,172
Openbook QA 4,957 500 500

Table 2: Number of instances in each explanatory
knowledge category.

Type Size

All 9,701
Retrieval 7,006
Inference-supporting 1,670
Complex Inference 1,025

datasets, WorldTree V2.0 (Xie et al., 2020), ARC
Easy and Challenge (Clark et al., 2018), and Open-
book QA (Mihaylov et al., 2018). The number of
question-answer pairs in each dataset is listed in
Table. 1.

Explanatory knowledge dataset size. We en-
code different types of explanatory knowledge in
the WorldTree corpus into Transformer neural net-
works. The statistics of the adopted explanatory
facts are reported in Table 2. Because we further
analyze the impact of different types of knowledge,
the number of each knowledge type is also given
in the table.

Hyperparameters configuration. We adjust
two major hyperparameters for the training of the
model, namely batch size and learning rate. We
optimize the parameters considering the follow-
ing combinations: we adopt training batch sizes in
{16, 32}, and learning rate in {1e−5, 3e−5, 5e−
5}. The best results are obtained with batch size
32 and learning rate 3e − 5 for the BERT-base
model, and batch size 16 and learning rate 1e− 5
for BERT-large (Devlin et al., 2019).

Information Retrieval baseline. We adopt an
Information Retrieval (IR) baseline similar to the
one described in Clark et al. (2018). Given a
question q, for each candidate answer ci ∈ C =
{c1, . . . , cn}, the IR solver uses BM25 vectors and
cosine similarity to retrieve the top K sentences in
the WorldTree corpus that are most similar to the
concatenation of q and ci. The score of a candi-
date answer ci is then obtained by considering the
sum of the BM25 relevance scores associated to
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Table 3: N-XKT Question Answering accuracy results.

Config Explanation Bank ARC Easy ARC Challenge Openbook QA
Dev Test Dev Test Dev Test Dev Test

IR BM25 (K = 5) 50.29% 44.55% 54.56% 50.00% 37.46% 31.14% 24.80% 26.80%

K base 49.30% 44.74% 50.18% 50.89% 34.38% 33.17% 30.96% 32.72%
Q base 44.86% 40.34% 50.81% 47.43% 24.41% 26.86% 27.92% 33.12%
K+Q base 58.14% 50.42% 58.53% 57.98% 37.46% 35.87% 35.32% 37.60%

K large 51.62% 45.85% 52.81% 52.58% 37.53% 33.07% 31.72% 34.12%
Q large 47.54% 43.47% 53.61% 51.41% 27.09% 28.63% 28.24% 36.04%
K+Q large 60.16% 50.98% 61.19% 58.24% 39.00% 37.63% 35.64% 38.20%

base FT - - 53.61% 53.82% 36.72% 32.71% 53.64% 53.16%

K base FT - - 53.61% 52.81% 35.79% 34.90% 53.60% 54.60%
Q base FT - - 59.05% 58.44% 33.65% 35.09% 56.04% 57.08%
K+Q base FT 59.33% 58.79% 38.13% 38.09% 56.12% 56.56%

Table 4: Question Answering accuracy results using different explanatory knowledge categories.

Knowledge Config Explanation Bank ARC Easy ARC Challenge Openbook QA
Dev Test Dev Test Dev Test Dev Test

None Q base 44.86% 40.34% 50.81% 47.43% 24.41% 26.86% 27.92% 33.12%

Retrieval K base 39.05% 38.72% 44.42% 45.25% 23.75% 26.25% 27.12% 29.96%
K+Q base 51.00% 46.08% 51.79% 53.22% 34.65% 33.00% 31.96% 32.96%

Inference-supporting K base 41.60% 38.24% 45.96% 44.77% 26.09% 26.02% 27.40% 30.88%
K+Q base 52.72% 47.33% 54.35% 54.32% 34.85% 34.40% 33.64% 37.16%

Complex inference K base 41.01% 38.58% 46.32% 45.98% 24.95% 23.75% 26.96% 29.76%
K+Q base 52.99% 46.12% 55.30% 52.74% 34.78% 34.51% 32.08% 35.08%

All K base 49.30% 44.74% 50.18% 50.89% 34.38% 33.17% 30.96% 32.72%
K+Q base 58.14% 50.42% 58.53% 57.98% 37.46% 35.87% 35.32% 37.60%

the retrieved sentences. The predicted answer cor-
responds to the candidate choice with the highest
score. To test the generalisation of this approach on
ARC and OpenbookQA, we keep the same back-
ground knowledge throughout the experiments.

Configuration Setting. We adopt different con-
figurations in the experiments to control for training
data, Transformer model, and target QA test dataset
fine-tuning. We report the different configurations
in the “Config” column of Table 6 and Table 7.
The label “K” indicates that the model is trained
only on the explanatory knowledge acquisition task,
“Q” means that the model is trained only on the
cloze-style QA task using WorldTree as reference
dataset, “K+Q” means that the model is pre-trained
for explanatory knowledge acquisition and then fur-
ther fine-tuned on cloze-style QA (again using only
WorldTree as training dataset). Moreover, “base”
means using BERT-base as Transformer model,
while “large” means using BERT-large. Finally,
“FT” means that the model is additionally fine-
tuned on the target QA dataset’s training data.

4.2 Overall Results on Zero-shot Science
Question Answering

In Table 6, we report the performance of N-XKT
under different configurations along with the accu-
racy of the BM25 baseline with K = 5 number
of facts. The models are tested across multiple
QA datasets including WorldTree, ARC, and Open-
bookQA.

From the results, we derive the following con-
clusions. First, the proposed N-XKT model can
clearly achieve better accuracy than the BM25 base-
line since N-XKT uses Transformer-based neural
mechanisms to acquire and encode external knowl-
edge. Second, using BERT-large instead of BERT-
base as initial Transformer can improve the perfor-
mance since BERT-large contains more parameters
than BERT-base. However, we found that the ad-
vantage of using BERT-large is not significant since
more parameters implies more resources needed for
training. Third, we observe than N-XKT obtains
better performance than pre-trained BERT when
fine-tuning on the target datasets.
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Table 5: Accuracy comparison between N-XKT and othe approaches. External KB adopted by the models: 1.ARC-
corpus (Clark et al., 2018), 2.ConceptNet (Speer et al., 2017), 3.Wikipedia (https://www.wikipedia.org/), 4.SciTail
(Khot et al., 2018), 5.SNLI (Bowman et al., 2015), 6.MultiNLI (Williams et al., 2018), 7.RACE (Lai et al., 2017),
8.MCScript (Ostermann et al., 2018), 9.WorldTree (Jansen et al., 2018).

ARC Easy ARC Challenge Openbook QA External KB IR-based Fine-tuned

IR BM25 (K = 5) 50.00% 31.14% 26.80% 9 yes no
Clark et al. (2018) 62.60% 20.30% - 1 yes yes
Mihaylov et al. (2018) - - 50.20% 2, 3 yes yes
Khot et al. (2018) 59.00% 27.10% 24.40% 4 yes yes
Zhang et al. (2018) - 31.70% - 1 no yes
Yadav et al. (2018) 58.40% 26.60% - none no yes
Musa et al. (2019) 52.20% 33.20% - 1 yes yes
Zhong et al. (2019) - 33.40% - 2 no yes
Pı̂rtoacă et al. (2019) 61.10% 26.90% - 4, 5, 6 no yes
Ni et al. (2019) - 36.60% - 7, 8 no yes
GPT II (Radford, 2018) 57.00% 38.20% 52.00% 7 no yes
RSII (Sun et al., 2019) 66.60% 40.70% 55.20% 7 no yes

N-XKT K+Q base (ours) 57.98% 35.87% 37.60% 9 no no

4.3 Ablation Analysis on Impact of Different
Explanatory Knowledge Types

To understand the impact of different types of ex-
planation on the final accuracy, we breakdown
the facts stored in the knowledge base using
three different categories (i.e., retrieval, inference-
supporting and complex inference) and rerun the
training of the N-XKT model using only one cate-
gory per time.

The adopted categories are provided in the
WorldTree corpus and can be described as follows:

• Retrieval: facts expressing knowledge about
taxonomic relations and/or properties.

• Inference-Supporting: Facts expressing
knowledge about actions, affordances,
requirements.

• Complex Inference: Facts expressing knowl-
edge about causality, processes, and if/then
relationships.

The obtained accuracy is showed in Table 7. The
results highlight the importance of using all the
explanation categories to achieve the final accuracy
for the combined approach. However, the retrieval
category seems to have a higher impact on the gen-
eralisation. We believe that this result is due to the
taxonomic knowledge encoded in the retrieval cat-
egory (i.e. “x is a kind of y”), which facilitates the
acquisition of the implicit explanatory capabilities
necessary for answering science questions.

In Table 7, we compare the impact of different
explanatory knowledge types and get the follow-
ing conclusion. 1) All three types of explanatory

knowledge are helpful for further science QA task.
The results using all three types of knowledge are
significantly better than the results obtained when
using no explanatory knowledge at all (first rown in
Table 7). 2) The model trained on all explanatory
knowledge outperforms the models using each in-
dividual type of knowledge alone, confirming that
different types of knowledge are complementary
for achieving the final performance.

4.4 Evaluating Zero-shot N-XKT with
Start-of-the-art baselines

In Table 5, we evaluate several start-of-the-art meth-
ods as baselines along with N-XKT trained only
on the WorldTree. The table reports the accuracy
results on ARC and OpenbookQA. In the “External
KB” column, we list the external Knowledge Bases
(KB) adopted by different models. The “IR-based”
column indicates whether the model adopts Infor-
mation Retrieval (IR) techniques, and the “Fine-
tuned” column indicates whether the approach is
fine-tuned on the target dataset.

Table 5 is intended to provide a general compara-
tive analysis between N-XKT and the baseline mod-
els, most of them fine-tuned on the target datasets.
N-XKT is able to achieve comparable performance
under a transfer learning setting. The generaliza-
tion performance of the proposed model is more
noticeable for the ARC Challenge dataset, which
requires the implicit encoding of more complex
explanatory knowledge.
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Figure 2: Convergence curve when fine-tuning different version of N-XTK on the target QA datasets.

4.5 Improvement on Fine-tuning
Convergence

In Figure 2, we visualize the convergence curve for
the fine-tuning over three science QA tasks (ARC
Easy, ARC Challenge and OpenBookQA), com-
paring a pure BERT-based N-XKT model with a
pre-trained N-XKT models using different config-
urations, AFK (pre-trained on explanatory knowl-
edge acquisition), QAP (pre-trained on WorldTree
cloze-style QA), AFK+QAP (pre-trained on both).
It is noticeable that the encoding of explanatory
knowledge impacts the convergence of the model
for all three datasets, with a particular emphasis on
the two ARC variants.

5 Conclusion

In this paper, we proposed a neural encoding mech-
anism for explanatory knowledge acquisition and
transfer, N-XKT. We evaluated the impact of the
encoding mechanism on downstream science QA.
The proposed model delivers better generalisation
and accuracy for QA tasks that require multi-hop
and explanatory inference. The proposed encod-
ing mechanism can be used to deliver zero-shot
inference capabilities, providing comparable per-
formance when compared to supervised models on
QA. These results supports the hypothesis that pre-
training tasks targeting abstract and explanatory
knowledge acquisition can constitute and impor-
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tant direction to improve inference capabilities and
generalization of state-of-the-art neural models.
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A Hyperparameters tuning

The N-XKT mainly use a transformer network as
natural language encoder component, the hyper-
parameters of transformer network training have
been tuned manually for the optimisation is the
maximisation of the accuracy in answer prediction.
Specifically, 3 parameters should be set for training,
train batch size β, learning rate α, and train epoch
N . The values used in pre-training on explanation
knowledge base are as follows:

• β = 32

• α = 5e-5

• N = 5

The values used in fine-tuning on Question Answer
are as follows:

• β = 32

• α = 5e-5

• N = 40

B Data

We use two versions of Explanation Bank Sci-
entific Question Answer datasets in this paper.
The version 1 of Explanation Bank dataset can
be downloaded at the following URL: http:

//cognitiveai.org/dist/worldtree_corpus_

textgraphs2019sharedtask_withgraphvis.

zip. The version 2 of Explanation Bank dataset
is available at the following URL: https:

//github.com/cognitiveailab/tg2020task.

C Computing Infrastructure

To accelerate the training process of the experi-
ments, we adopt a NVIDIA Tesla V100 GPU.

D Accuracy Results Including Standard
Deviation

We repeat the N-XKT model Question Answering
training process on all the dataset for 5 times, each
time with random parameters initialization. Addi-
tion to the tables provided in paper, we report the
detailed results with standard deviation in follow-
ing tables.
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Table 6: N-XKT Question Answering accuracy result comparison

Config Explanation Bank ARC Easy ARC Challenge Openbook QA
Dev Test Dev Test Dev Test Dev Test

IR BM25 (K = 5) 50.29% 44.55% 54.56% 50.00% 37.46% 31.14% 24.80% 26.80%

K base 49.30% 44.74% 50.18% 50.89% 34.38% 33.17% 30.96% 32.72%
±0.0238 ±0.0166 ±0.0167 ±0.0198 ±0.0255 ±0.0165 ±0.0359 ±0.0273

Q base 44.86% 40.34% 50.81% 47.43% 24.41% 26.86% 27.92% 33.12%
±0.0229 ±0.0087 ±0.0258 ±0.0136 ±0.0101 ±0.0049 ±0.0342 ±0.0176

K+Q base 58.14% 50.42% 58.53% 57.98% 37.46% 35.87% 35.32% 37.60%
±0.0119 ±0.0039 ±0.0047 ±0.0014 ±0.0135 ±0.0149 ±0.0124 ±0.0085

K large 51.62% 45.85% 52.81% 52.58% 37.53% 33.07% 31.72% 34.12%
±0.0159 ±0.0089 ±0.004 ±0.0136 ±0.0109 ±0.0129 ±0.0199 ±0.0232

Q large 47.54% 43.47% 53.61% 51.41% 27.09% 28.63% 28.24% 36.04%
±0.0131 ±0.0061 ±0.0176 ±0.0073 ±0.012 ±0.0125 ±0.0118 ±0.0167

K+Q large 60.16% 50.98% 61.19% 58.24% 39.00% 37.63% 35.64% 38.20%
±0.0168 ±0.0102 ±0.0108 ±0.0076 ±0.0268 ±0.0155 ±0.0076 ±0.0161

base FT - - 53.61% 53.82% 36.72% 32.71% 53.64% 53.16%
- - ±0.0168 ±0.0093 ±0.0104 ±0.0086 ±0.0182 ±0.0223

K base FT - - 53.61% 52.81% 35.79% 34.90% 53.60% 54.60%
- - ±0.0159 ±0.0241 ±0.0218 ±0.0239 ±0.0248 ±0.0281

Q base FT - - 59.05% 58.44% 33.65% 35.09% 56.04% 57.08%
- - ±0.0177 ±0.0070 ±0.0280 ±0.0065 ±0.0126 ±0.0178

K+Q base FT 59.33% 58.79% 38.13% 38.09% 56.12% 56.56%
- - ±0.0187 ±0.0087 ±0.0224 ±0.0124 ±0.0186 ±0.0111

Table 7: Question Answering accuracy result in different abstractive knowledge categories

Knowledge Config Explanation Bank ARC Easy ARC Challenge Openbook QA
Dev Test Dev Test Dev Test Dev Test

None Q base 44.86% 40.34% 50.81% 47.43% 24.41% 26.86% 27.92% 33.12%
±0.0229 ±0.0087 ±0.0258 ±0.0136 ±0.0101 ±0.0049 ±0.0342 ±0.0176

RET
K base 39.05% 38.72% 44.42% 45.25% 23.75% 26.25% 27.12% 29.96%

±0.0258 ±0.0106 ±0.011 ±0.0139 ±0.0165 ±0.0141 ±0.0099 ±0.0202

K+Q base 51.00% 46.08% 51.79% 53.22% 34.65% 33.00% 31.96% 32.96%
±0.0173 ±0.0135 ±0.0178 ±0.0141 ±0.0321 ±0.0128 ±0.0192 ±0.0182

INSUPP
K base 41.60% 38.24% 45.96% 44.77% 26.09% 26.02% 27.40% 30.88%

±0.0149 ±0.0075 ±0.0127 ±0.0118 ±0.0164 ±0.0099 ±0.0168 ±0.0122

K+Q base 52.72% 47.33% 54.35% 54.32% 34.85% 34.40% 33.64% 37.16%
±0.0247 ±0.0062 ±0.0206 ±0.0092 ±0.031 ±0.0128 ±0.0279 ±0.0306

COMPLEX
K base 41.01% 38.58% 46.32% 45.98% 24.95% 23.75% 26.96% 29.76%

±0.0132 ±0.0035 ±0.0134 ±0.0091 ±0.0263 ±0.0066 ±0.012 ±0.0163

K+Q base 52.99% 46.12% 55.30% 52.74% 34.78% 34.51% 32.08% 35.08%
±0.0098 ±0.0131 ±0.0081 ±0.0087 ±0.0112 ±0.0194 ±0.018 ±0.0153

All
K base 49.30% 44.74% 50.18% 50.89% 34.38% 33.17% 30.96% 32.72%

±0.0238 ±0.0166 ±0.0167 ±0.0198 ±0.0255 ±0.0165 ±0.0359 ±0.0273

K+Q base 58.14% 50.42% 58.53% 57.98% 37.46% 35.87% 35.32% 37.60%
±0.0119 ±0.0039 ±0.0047 ±0.0014 ±0.0135 ±0.0149 ±0.0124 ±0.0085
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Tab. 6 is for overall accuracy of N-XKT model
on QA tasks, and Tab. 7 is for ablation analysis
results, only use part of explanations in training
process.
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Abstract

Despite recent advances in semantic role la-
beling propelled by pre-trained text encoders
like BERT, performance lags behind when ap-
plied to predicates observed infrequently dur-
ing training or to sentences in new domains.
In this work, we investigate how semantic
role labeling performance on low-frequency
predicates and out-of-domain data can be im-
proved by using VerbNet, a verb lexicon that
groups verbs into hierarchical classes based on
shared syntactic and semantic behavior and de-
fines semantic representations describing rela-
tions between arguments. We find that Verb-
Net classes provide an effective level of ab-
straction, improving generalization on low-
frequency predicates by allowing them to learn
from the training examples of other predicates
belonging to the same class. We also find
that joint training of VerbNet role labeling and
predicate disambiguation of VerbNet classes
for polysemous verbs leads to improvements
in both tasks, naturally supporting the extrac-
tion of VerbNet’s semantic representations.

1 Introduction

Semantic role labeling (SRL) is a form of shallow
semantic parsing that involves the extraction of
predicate arguments and their assignment to consis-
tent roles with respect to the predicate, facilitating
the labeling of e.g. who did what to whom (Gildea
and Jurafsky, 2000). SRL systems have been
broadly applied to applications such as question
answering (Berant et al., 2014; Wang et al., 2015),
machine translation (Liu and Gildea, 2010; Bazraf-
shan and Gildea, 2013), dialog systems (Tur and
Hakkani-Tür, 2005; Chen et al., 2013), metaphor
detection (Stowe et al., 2019), and clinical infor-
mation extraction (Gung, 2013; MacAvaney et al.,
2017). Recent approaches to SRL have achieved

∗Work done prior to joining Amazon.

Billy consoled the puppy

PB Arg0 console.01 Arg1
VN Stimulus amuse-31.1 Experiencer

Billy walked the puppy

PB Arg0 walk.01 Arg1
VN Agent run-51.3.2-2-1 Theme

Table 1: Comparison of PropBank (PB) and VerbNet
(VN) roles for predicates console and walk. VerbNet’s
thematic role assignments (e.g. Stimulus vs. Agent
and Experiencer vs. Theme) are more dependent on
the predicate than PropBank’s numbered arguments.

large gains in performance through the use of pre-
trained text encoders like ELMo and BERT (Peters
et al., 2018; Devlin et al., 2019). Despite these ad-
vances, performance on low-frequency predicates
and out-of-domain data remains low relative to
in-domain performance on higher frequency predi-
cates.

The assignment of role labels to a predicate’s
arguments is dependent upon the predicate’s sense.
PropBank (Palmer et al., 2005) divides each pred-
icate into one or more rolesets, which are coarse-
grained sense distinctions that each provide a set
of core numbered arguments (A0-A5) and their
corresponding definitions. VerbNet (VN) groups
verbs into hierarchical classes, each class defining
a set of valid syntactic frames that define a direct
correspondence between thematic roles and syntac-
tic realizations, e.g. Agent REL Patient (e.g. John
broke the vase) or Patient REL (e.g. The vase broke)
for break-45.1 (Schuler, 2005).

Recent PropBank (PB) semantic role labeling
models have largely eschewed explicit predicate
disambiguation in favor of direct prediction of se-
mantic roles in end-to-end trainable models (Zhou
and Xu, 2015; He et al., 2017; Shi and Lin, 2019).
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This is possible for several reasons: First, Prop-
Bank’s core roles and modifiers are shared across
all predicates, allowing a single classifier to be
trained over tokens or spans. Second, although
definitions of PB roles are specific to the different
senses of each predicate, efforts are made when
creating rolesets to ensure that A0 and A1 exhibit
properties of Dowty’s prototypical Agent and pro-
totypical Patient respectively (1991). Finally, PB
rolesets are defined based on VN class membership,
with predicates in the same classes thus being as-
signed relatively consistent role definitions (Bonial
et al., 2010).

Unlike PropBank, VerbNet’s thematic roles are
shared across predicates and classes with consis-
tent definitions. However, VN roles are more de-
pendent on the identity of the predicate (Zapirain
et al., 2008; Merlo and Van Der Plas, 2009). Ex-
amples of PropBank and VerbNet roles illustrating
this are given in Table 1. Consequently, VN role
labeling models may benefit more from predicate
features than PropBank. Furthermore, while it is
possible to identify PB or VN roles without classi-
fying predicate senses, linking the resulting roles
to their definitions or to the syntactic frames and
associated semantic primitives in VN does require
explicit predicate disambiguation (Brown et al.,
2019). Therefore, predicate disambiguation is of-
ten an essential step when applying SRL systems
to real-world problems.

In this work, we evaluate alternative approaches
for incorporating VerbNet classes in English Verb-
Net and PropBank role labeling. We propose a
joint model for SRL and VN predicate disambigua-
tion (VN classification), finding that joint training
leads to improvements in VN classification and
role labeling for out-of-domain predicates. We also
evaluate VN classes as predicate-specific features.
Using gold classes, we observe significant improve-
ments in both PB and VN SRL. We also observe
improvements in VN role labeling when using pre-
dicted classes and features that incorporate all valid
classes for each predicate1.

2 Background and Related Work

VerbNet VerbNet is a broad-coverage lexicon
that groups verbs into hierarchical classes based on
shared syntactic and semantic behavior (Schuler,
2005). Each VN class is assigned a set of thematic

1Our code is available at https://github.com/
jgung/verbnet-parsing-iwcs-2021.

roles that, unlike PB numbered arguments, main-
tain consistent meanings across different verbs and
classes. VN classes provide an enumeration of syn-
tactic frames applicable to each member verb, de-
scribing how the thematic roles of a VN class may
be realized in a sentence. Every syntactic frame en-
tails a set of low-level semantic representations
(primitives) that describe relations between the-
matic role arguments as well as changes throughout
the course of the event (Brown et al., 2018). The
close relationship between syntactic realizations
and semantic representations facilitates straightfor-
ward extraction of VN semantic predicates given
identification of a VN class and corresponding the-
matic roles. VN primitives have been applied to
problems such as machine comprehension (Clark
et al., 2018) and question generation (Dhole and
Manning, 2020).

Comparing VerbNet with PropBank Yi et al.
(2007) use VN role groupings to improve label
consistency across verbs by reducing the overload-
ing of PropBank’s numbered arguments like A2.
Comparing SRL models trained on PB and VN,
Zapirain et al. (2008) find that their VerbNet model
performs worse on infrequent predicates than their
PB model, and suggest that VN is more reliant on
the identity of the predicate than PB based on exper-
iments removing predicate-specific features from
their models. They suggest that the high consis-
tency of A0 and A1 enables PB to generalize better
without relying on predicate-specific information.

Merlo and Van Der Plas (2009) provide an
information-theoretic perspective on the compari-
son of PropBank and VerbNet, demonstrating how
the identity of the predicate is more important to
VN SRL than for PB by comparing the conditional
entropy of roles given verbs as well as the mutual
information of roles and verbs. In multilingual
BERT probing studies comparing several SRL for-
malisms, Kuznetsov and Gurevych (2020) find that
layer utilization for predicates differs between PB
and VN. PB emphasizes the same layers used for
syntactic tasks, while VN uses layers associated
with tasks used more prevalently in lexical tasks.
These findings reinforce the importance of predi-
cate representations to VerbNet.

SRL and Predicate Disambiguation Previous
work has investigated the interplay between pred-
icate sense disambiguation and SRL. Dang and
Palmer (2005) improve verb sense disambiguation
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(VSD) using features based on semantic role labels.
Moreda and Palomar (2006) find that explicit verb
senses improve PB SRL for verb-specific roles like
A2 and A3, but hurt on adjuncts. Yi (2007) find
that using gold standard PB roleset IDs as features
in an SRL model improves performance only on
highly polysemous verbs. Dahlmeier et al. (2009)
propose a joint probabilistic model for preposition
disambiguation and SRL, finding an improvement
over independent models.

Predicate disambiguation plays a critical role
in FrameNet (Baker et al., 1998) parsing, in part
because FrameNet’s role inventory is more than
an order of magnitude larger than that of PB and
VN. This richer, more granular role inventory lends
advantages to approaches that constrain role iden-
tification to the set of valid roles for the predicted
frame (Das et al., 2014; Hermann et al., 2014),
or that jointly encode argument and role represen-
tations given identified frames (FitzGerald et al.,
2015).

LM Pre-training and SRL Language model
(LM) pre-training has become ubiquitous in nat-
ural language processing tasks, with LM encoders
like ELMo propelling forward the state of the art
in SRL (Peters et al., 2018). We are interested
in whether a strong baseline model using a LM
encoder such as BERT can be further improved
by incorporating external knowledge from lexical
resources like VN.

BERT (Devlin et al., 2019) is a Transformer en-
coder (Vaswani et al., 2017) jointly trained using
two objectives: a masked language modeling ob-
jective to predict the identity of randomly-masked
tokens in the input, as well as a next sentence pre-
diction task (NSP) intended to encourage the model
to encode the relationship between sentence pairs
(henceforth referred to as Sent. A and Sent. B). Sen-
tences are tokenized using WordPiece (Wu et al.,
2016). As a Transformer encoder, BERT applies
multiple layers of a multi-headed self-attention
mechanism to progressively build contextual token-
level representations. In our experiments, we use
encodings from the final layer.

3 Semantic Role Labeling with BERT

Our baseline SRL model closely follows Shi and
Lin (2019). We thus approach SRL as a sequence
tagging task, predicting per-word, IOB-encoded
(In, Out, Begin) role labels independently for each
predicate in a sentence. A predicate-aware encod-

ing of a sentence is produced using the target pred-
icate as the Sent. B input to BERT. For example,
the sentence I tried opening it is processed as:

CLS I tried opening it SEP opening SEP

for the verb open. This enables BERT to incorpo-
rate the identity of the predicate in the encoding of
each word while clearly delineating it from tokens
in the original sentence.

To simplify notation, we’ll treat LM(a,b) ∈
RTa×DLM as shorthand for the final layer BERT en-
coding for a pair of sentences a = w1, ..., wTa and
b = w1, ..., wTb

with Ta and Tb words respectively,
where DLM gives BERT’s hidden size. This is pro-
duced by applying WordPiece tokenization (WP)
to each word in each sentence and concatenating
the resulting sequences of token IDs with standard
BERT-specific IDs:

w =
[

CLS,WP(a), SEP,WP(b), SEP
]

The resulting sequence of tokens w is encoded
using BERT. We use the final layer outputs, taking
vectors only for the first WordPiece token for each
original word in Sent. A (a), filtering out vectors
corresponding to Sent. B (b), SEP or CLS. The
resulting matrix consists of a vector per word in
Sent. A, avoiding any discrepancies between IOB-
encoded word-level output labels and WordPiece
tokens used as inputs.

Following previous work (Zhou and Xu, 2015;
He et al., 2017), we use a marker feature as an
indicator for the specific location of the predicate
within the sentence. For a sentence, w1, ..., wT ,
with a predicate given by index p ∈ 1...T , we com-
pute a predicate-aware, contextualized embedding
xpt of each word as

xpt =
[
LM(w1...T , wp)(t);W

(mark)
(t=p)

]
(1)

with W(mark) ∈ R2×Dmark and xpt ∈
RDLM+Dmark , where Dmark provides the size of
the predicate marker embedding.

The predicate’s positional information from
the marker is integrated using a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997), con-
catenating the hidden states for the forward and
backward LSTMs at each timestep (omitting the p
from xpt for brevity):

h
(fw)
t = LSTM(fw)(x1...T )(t)

h
(bw)
t = LSTM(bw)(xT...1)(T−t)

h
(fb)
t =

[
h
(fw)
t ;h

(bw)
t

] (2)
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The BiLSTM output at each timestep t is con-
catenated with that of the predicate’s timestep and
passed through a sequentially-applied linear trans-
formation followed by a leaky ReLu (α = 0.1):

x
(mlp)
pt = σ

(
W(mlp)

[
h
(fb)
t ;h(fb)

p

]
+ b(mlp)

)

(3)

We apply a final linear projection from x
(mlp)
pt to

IOB-encoded role labels:

s
(srl)
pt = W(srl)x

(mlp)
pt + b(srl) (4)

where s
(srl)
pt ∈ RK provides the unnormalized

scores for each of K possible role labels, with the
probability of predicting a label for a given token t
and predicate p given by:

P (y
(srl)
pt |w1...T , wp) = softmax(s

(srl)
pt ) (5)

Like He et al. (2017), we apply constrained Viterbi
decoding to restrict inferred label sequences to pro-
duce valid IOB sequences.

4 VerbNet Classes as Predicate Features

Verbs belonging to the same VN class share syn-
tactic and semantic properties and the same set of
thematic roles and syntactic frames. Replacing a
predicate in a sentence with a different verb from
the same class typically produces a syntactically
coherent sentence and does not impact the propo-
sition’s thematic role labels. VN classes may thus
provide an effective level of abstraction for predi-
cates in SRL.

We hypothesize that using VN classes as
predicate-specific features may help reduce spar-
sity issues for low-frequency and out-of-vocabulary
(OOV) verbs. Intuitively, training examples for
each member verb within a class contribute to the
estimation of parameters associated with all other
members of the same class, enabling the fine-tuning
of predicate-level features even for OOV predicates.
For example, a verb like traipse may rarely or never
occur during training, but may belong to a class
which appears hundreds of times in the form of
more common verbs like run or rush. We investi-
gate whether by sharing parameter updates across
VN members, we can further improve generaliza-
tion on infrequent verbs.

Methodology Intuitively, BERT’s NSP pre-
training task encourages some level of focus on
Sent. B tokens from attention heads when pro-
cessing tokens in Sent. A. The predicate feature
presented by Shi and Lin (2019) and applied in our
baseline model uses the predicate token as the Sent.
B input to BERT and thus allows the encodings of
tokens in a sentence to be conditioned directly on
the predicate.

We propose to include tokens corresponding to
the predicate’s VN class as additional features as
part of Sent. B. To realize this, we concatenate
the corresponding VN class ID to Sent. B along
with the predicate, updating the inputs given in
Equation 1:

LM(w1...T , wpws) (6)

where ws is a token corresponding to the VN class
of the predicate wp

2.

VerbNet Classification VN classes can be pre-
dicted automatically using a word sense disam-
biguation system. We propose a simple model
for VerbNet classification: fine tune a pre-trained
BERT encoder by applying a feedforward multi-
layer perceptron (MLP) classifier over all VN
classes to the BERT encoding associated with the
first WordPiece of the target predicate.

We again condition BERT on the target predicate
by including it as a feature (wp) in Sent. B:

xp = LM(w1...T , wp)(p)

x(mlp)
p = σ

(
W(mlp)xp + b(mlp)

)

s(vncls)p = W(vncls)x(mlp)
p + b(vncls)

(7)

where W(vncls) ∈ RDmlp×V projects over all V
VN classes for all predicates. The probability for
predicting a VN class y(vncls)p for a given predicate
and sentence is given by:

P (y(vncls)p |w1...T , wp) = softmax(s(vncls)p ) (8)

This single classifier formulation is possible for
lexicons like VN and FrameNet in which predi-
cates share senses from a global sense inventory.
While individual predicates have a specific set of
valid senses, their senses are shared from the global
lexicon. Kawahara and Palmer (2014) demonstrate

2In preliminary experiments, we found that directly modi-
fying Sent. A drastically reduces the performance of the model
and slows convergence.
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that a single classifier approach to VN classifica-
tion achieves competitive performance when using
shared semantic features. Intuitively, by training
the classifier across multiple verbs, the model pa-
rameters specific to each sense receive more up-
dates, with infrequent verb-class pairs also ben-
efiting from the examples of other verbs within
the same class. At inference time, we constrain
sense predictions to predicate-sense combinations
observed in the training data, selecting the highest-
scoring valid sense given the predicate. We evalu-
ate models using both predicted and gold (ground
truth) classes for ws as PREDICTED CLASS and
GOLD CLASS respectively.

VerbNet Classes without Disambiguation
Like SRL, VerbNet classification accuracy declines
in the long tail of low frequency senses and
predicates. For this reason, incorrect sense
predictions may negate the benefits of VN class
features on precisely the instances for which they
might be expected to be beneficial: OOV or rare
predicates.

To avoid this problem while still retaining the
benefits of parameter sharing for low frequency
predicates with higher-frequency predicates belong-
ing to the same VN class, we propose including the
set of all possible classes for a given predicate as
Sent. B features. To incorporate multiple senses,
we simply concatenate them sequentially to Sent.
B:

LM(w1...T , wpws1...k) (9)

This allows the BERT encoder to attend over all
possible VerbNet classes for a given predicate and
sentence, without making a discrete decision about
which class is correct. The extent and way in which
the model incorporates the Sent. B tokens associ-
ated with the available classes is learned during
training. The inputs to this model, later referred
to as ALL CLASSES are identical to PREDICTED

CLASS and GOLD CLASS models for monosemous
predicates.

5 Joint VerbNet Classification and SRL

Features that are useful for SRL may also be useful
in predicting the sense of a predicate. For example,
surface-level syntactic awareness that the argument
of a predicate is a clause instead of a noun phrase
may change the expected sense of a verb (bring-
11.3 vs. characterize-29.2):

Bob took Mary to the doctor.
John took Mary to be a doctor.

The semantic classes of arguments are also often
important in determining the sense of a given pred-
icate (dub-29.3.2 vs. get-13.5.1):

John called Mary a name.
John called Mary a car.

This dependency between SRL and predicate sense
disambiguation together with the prevalence of
shared features between the two tasks makes them
a good candidate for multi-task learning (Caruana,
1998).

Multi-task Model Much of recent work in multi-
task learning for SRL has focused on syntactic
tasks such as syntactic parsing as auxiliary objec-
tives (Strubell et al., 2018; Swayamdipta et al.,
2018; Xia et al., 2019; Zhou et al., 2020). We first
investigate an MTL approach that predicts seman-
tic role labels and predicate senses independently
given a shared BERT encoder. We extend our base-
line SRL model, adding an additional head that is
trained to predict the target predicate’s sense, as de-
scribed in Equation 8. The negative log likelihood
of a single training instance with predicate p and
token sequence x = w1...T with T tokens is then
given by:

−
T∑

t=1

[
logP (y

(srl)
pt |x, p)

]

+ λvncls logP (y
(vncls)
p |x, p)

(10)

with λvncls weighting the contribution of VerbNet
class prediction to the overall objective. For brevity,
we henceforth refer to this model as SRL + VSD.

We also investigate conditioning role labeling di-
rectly on predicted predicate senses. We implement
this by concatenating a weighted label embedding
of the target predicate’s predicted class to each of
the SRL head’s input vectors, x(srl)

pt . To compute
the weighted label embedding of a given VN class
y
(vncls)
p we follow Hashimoto et al. (2017):

y(vncls)
p =

K∑

k=1

P (y(vncls)p = k|x, p)W(vncls)
(k)

(11)

with W(vncls) ∈ RK×Dvncls and y
(srl)
p ∈ RDvncls .

The input to the SRL head is then given by:

x
(srl)
pt =

[
LM(w1...T , wp)(t);

W
(mark)
(t=p) ;y(vncls)

p

] (12)
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VerbNet class embeddings are initialized using
the average of word embeddings corresponding to
members of each class. During training, we use
embeddings of predicted labels to avoid a discrep-
ancy between the inputs to the SRL head between
training and inference, when the gold labels are
no longer available. In preliminary experiments,
we used gold labels, similar to teacher forcing as
described in Williams and Zipser (1989), but found
that performance degraded when applied to pre-
dicted labels. We refer to the model described in
this section as SRL | VSD.

6 Experiments

All models are implemented using Tensorflow
1.13 (Abadi et al., 2016) and are trained on a single
NVIDIA GTX 1080 Ti GPU. We use the 110M
parameter cased BERT-Base model available in
Tensorflow Hub3, with DLM = 768. To align with
Shi and Lin (2019), Dmark is set to 10, and LSTM
and MLP hidden state sizes are set to 768 and 300
respectively. Dropout rates of 0.1 are applied to
BERT outputs as well as after ReLu transforms in
MLPs. Recurrent dropout (Gal and Ghahramani,
2016) with a rate of 0.1 is applied in LSTMs on hid-
den states and outputs. To initialize VerbNet class
embeddings, we use 100-dimensional GloVe em-
beddings (Pennington et al., 2014) averaged over
member verbs (Dvncls = 100). λvncls is set to 0.5
after a preliminary search over {0.1, 0.5, 1.0}.

We follow the fine-tuning methodology
described in Devlin et al. (2019), using
Adam (Kingma and Ba, 2014) with a batch
size of 16. The learning rate is warmed up linearly
from 0 to 5e-5 for 10% of training, then decayed
linearly to 0 for the rest of training. Models are
trained for up to 8 epochs. The best-performing
checkpoint on the development set, evaluated at
every half epoch, is selected for evaluation.

Unless otherwise mentioned, we train and evalu-
ate all models with at least 7 independent random
initializations, and present mean scores in our com-
parisons. To establish statistical significance, we
apply a test for Almost Stochastic Dominance (Dror
et al., 2019) between test score distributions, using
α = 0.05. Numbers in bold indicate highest aver-
age performance within a given evaluative setting,
with a single star indicating statistical significance
of almost stochastic dominance over our baseline

3https://tfhub.dev/google/bert_cased_
L-12_H-768_A-12/1

CoNLL-2005 CoNLL-2012
System WSJ Brown Test

Peters et al. (2018) 84.6
He et al. (2018) 87.4 80.4 85.5
Ouchi et al. (2018) 87.6 78.7 86.2
Li et al. (2019) 87.7 80.5 86.0
Shi and Lin (2019) 88.1 80.9 86.2
Our Baseline 87.5±0.2 81.2±0.4 86.2±0.1

Table 2: Comparison of baseline SRL system on
CoNLL-2005 and CoNLL-2012 against models apply-
ing pre-trained encoders of comparable size (F1).

models for each experiment, and two stars indicat-
ing stochastic dominance (ε = 0). For example,
a value in a table of 88.2??±0.2 indicates that a
model has a mean test score (e.g. F1 or accuracy)
of 88.2, with a standard deviation of 0.2, and is
stochastically dominant over the baseline.

Datasets We use English PropBank datasets
from CoNLL-2005 (Carreras and Màrquez, 2005)
and the CoNLL-2012 split (Pradhan et al., 2013)
for OntoNotes (Hovy et al., 2006) in order to sit-
uate our baseline mode among recent work in PB
SRL. We compare against models of similar size
(120M parameters) with pre-identified predicates.

The SemLink corpus (Palmer, 2009) is currently
the only dataset that contains explicit VerbNet the-
matic role annotations with VN sense annotations.
SemLink contains mappings between VN, PB and
FrameNet, with annotations performed over a sub-
set of the CoNLL-2005 PB WSJ annotations and
Brown corpus out-of-domain test set (Carreras and
Màrquez, 2005). Using SemLink thus allows us
to evaluate performance for both PB and VN roles
on the same source text. Following Zapirain et al.
(2008), we restrict evaluation to propositions with
PB core arguments fully mapped to VN thematic
roles. This accounts for 56% of the original corpus.
We include PB modifier roles in addition to VN
thematic roles.

Baseline Comparisons Our baseline SRL model
achieves comparable performance to Shi and Lin
(2019) on both CoNLL-2012 and CoNLL-2005
and thus has performance similar to state-of-the-art
models of the same size.

To compare our VerbNet classification models
against prior work, we train and evaluate a publicly
available state-of-the-art VN classification system
directly on the SemLink corpus. We use Clear-
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WSD4, which is a sense disambiguation library tai-
lored for verb sense disambiguation based on linear
models over features constructed from an ensem-
ble of word representations applied over syntactic
relations (Palmer et al., 2017).

VerbNet Models The results of our experiments
are shown in Table 3. First, we find that incorporat-
ing gold VerbNet classes (GOLD CLASS) signifi-
cantly improves VerbNet SRL, providing a 15% rel-
ative error reduction on out-of-domain data (80.1 to
83.0), and 6% reduction on in-domain data (87.4 to
88.2). In PB SRL, gold classes are also beneficial,
but to a lesser degree. ALL CLASSES and PRE-
DICTED CLASS models improve both in-domain
and out-of-domain VN SRL.

Predicting both VN classes and semantic roles
from a single encoder reduces the total computa-
tional resources required to make predictions from
separate models, providing a practical benefit. Ad-
ditionally, we are interested in determining whether
our multi-task models lead to improvements in
generalization. Our multi-task model SRL + VSD,
which does not condition thematic role prediction
on predicted senses, does not have a significant ef-
fect on VN SRL performance. However, we do find
that conditioning SRL on VN class predictions in a
multi-task model (SRL | VSD) leads to a significant
improvement in performance on the out-of-domain
Brown test set for VN SRL. No significant change
is observed on the in-domain WSJ test set, or when
the model is applied to PB SRL.

We also evaluate the impact of multi-task learn-
ing on predicate disambiguation (VN classifica-
tion). First, we find that even our baseline model is
competitive with the highly-specialized approach
for verb sense disambiguation provided in Clear-
WSD (Table 4). Comparing our joint VN SRL
models with a single task baseline for VN classi-
fication, we observe a significant improvement on
WSJ test data when incorporating multi-task su-
pervision from SRL. This approach is related to
earlier use of SRL features for verb sense disam-
biguation reported in Dang and Palmer (2005), and
the positive result is consistent with their findings.

7 Analysis

Monosemous vs. Polysemous Predicates To
understand the impact of VerbNet class features,
we break down our evaluation by polysemous and

4https://github.com/clearwsd/clearwsd

monosemous verbs in Table 5. First, we observe
that incorporating VN classes improves F1 scores
for monosemous verbs in both models. This is ex-
pected, as monosemous verbs are typically lower
frequency, with low-frequency and OOV verbs ben-
efiting the most from parameter sharing with other
verbs belonging to the same VN classes. We also
observe a significant improvement on polysemous
verbs in the WSJ (in-domain) test set when includ-
ing VN features. However, polysemous verbs in the
Brown (out-of-domain) test set only benefit from
using explicitly predicted classes, but not when
using all valid classes for each predicate.

Why does ALL CLASSES improve performance
on out-of-domain data for monosemous verbs, but
not polysemous verbs? Intuitively, the per-verb
distributions of VerbNet classes may change con-
siderably between two domains. Using a correctly-
predicted class may help mitigate errors on verbs
for which one class was dominant during training,
but a different class or set of classes are observed
during testing in the new domain. This benefit
would not be observed with ALL CLASSES as for
a given verb, the same classes used as model inputs
during training would be used as inputs on out-of-
domain data. However, VN classes receive fewer
updates during training when using only predicted
classes. Thus, verbs appearing in classes that never
or rarely appeared during training will not benefit
from PREDICTED CLASS features. ALL CLASSES

may mitigate this issue, since even if a specific
class does not appear in the training data, it still
can receive updates from examples of polysemous
member verbs that belong to other classes (and im-
proved performance over PREDICTED CLASS on
monosemous verbs on the out-of-domain Brown
test set supports this). As future work, a promising
direction may therefore be to combine PREDICTED

CLASS and ALL CLASSES features.

Out-of-Vocabulary Predicates How well do
models incorporating VerbNet features generalize
on out-of-vocabulary and rare predicates? We split
an evaluation on the WSJ development set into 5
bins by training set predicate frequency (shown
in Figure 1). Comparing development F1 scores
for ALL CLASSES and PREDICTED CLASS mod-
els against our baseline model, we note that VN
classes improve SRL performance most for pred-
icates appearing 0-50 times in the training data,
which account for 24.4% of instances in the devel-
opment set.
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PropBank VerbNet
System WSJ Brown WSJ Brown

Zapirain et al. (2008) 78.9±0.9 77.0±0.9 62.9±1.0

Baseline 88.5±0.1 82.4±0.5 87.4±0.2 80.1±0.4

SRL + VSD 88.2±0.2 82.8?±0.6 87.3±0.1 80.0±0.7

SRL | VSD 88.3±0.2 82.2±0.4 87.4±0.2 80.6??±0.4

PREDICTED CLASS 88.3±0.1 81.2±0.6 87.6??±0.1 80.9??±0.6

ALL CLASSES 88.6?±0.3 82.3±0.5 87.6??±0.2 81.1??±0.6

GOLD CLASS 88.7??±0.0 82.8?±0.2 88.2??±0.2 83.0??±0.9

Table 3: F1 scores of models incorporating different predicate representations and sense distinctions on VerbNet
and PropBank SRL on SemLink. SRL + VSD and SRL | VSD are multitask models for SRL and VerbNet clas-
sification, with the latter using predicted classes as features for SRL. ALL CLASSES, PREDICTED CLASS, and
GOLD CLASS are SRL models using VerbNet class features (the list of all VerbNet classes the predicate belongs
to, predicted VerbNet classes, and gold VerbNet classes respectively).

System WSJ Brown

ClearWSD 97.0±0 89.3±0

Baseline 97.3±0.1 90.7±0

SRL + VSD 97.7??±0.1 91.3±0.4

SRL | VSD 97.6??±0.1 91.3±0

Table 4: VerbNet classification (sense disambiguation)
accuracy on SemLink.

Focusing on low-frequency predicates, we fur-
ther divide our evaluation of predicates occurring
fewer than 50 times in the training data into 6 bins,
one of which is reserved for OOV predicates (Fig-
ure 2). From this analysis, we find that VN classes
are most impactful on predicates appearing fewer
than 10 times in the training data, with a large im-
provement over the baseline on OOV predicates
when applying predicted classes.

8 Conclusions and Future Work

We investigate VerbNet classes as an effective level
of abstraction for predicates when performing se-
mantic role labeling. We find that incorporating
features based on gold VerbNet classes improves
both VerbNet and PropBank SRL, but when pre-
dicted classes are used, this effect is only observed
for VerbNet. An improvement is also observed
without explicit prediction of classes by including
a list of all VerbNet classes the target predicate
belongs to as features. Breaking down our evalua-
tion into polysemous and monosemous predicates,
we find that predicted classes help more on out-
of-domain polysemous predicates, while using all
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Figure 1: Evaluation by training set predicate fre-
quency on the SemLink development data comparing
the impact of VerbNet features.

valid VerbNet classes helps more on out-of-domain
low-frequency predicates. In multi-task learning
experiments motivated by the interdependence of
VN classification and SRL, we find that joint train-
ing improves both tasks when conditioning role
labeling on predicted predicates, facilitating VN se-
mantic parsing. In future work, we will investigate
alternative approaches incorporating the structure
of VerbNet into the parsing of VerbNet semantic
representations. Finally, we hope to expand our
evaluations to larger, more diverse datasets to fur-
ther investigate domain transfer.
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Polysemous Monosemous
System WSJ Brown WSJ Brown

Baseline (+0.0) 88.2±0.3 (+0.0) 81.8±0.8 (+0.0) 85.9±0.3 (+0.0) 77.7±1.3

ALL CLASSES (+0.4) 88.6??±0.2 (−0.2) 81.6±0.8 (+0.2) 86.1?±0.4 (+2.6) 80.3??±0.8

PREDICTED CLASS (+0.3) 88.5??±0.2 (+0.5) 82.3?±0.8 (+0.2) 86.1??±0.2 (+0.9) 78.6?±1.3

Table 5: Evaluation of contribution of VerbNet features on polysemous vs. monosemous predicates for VerbNet
SRL averaged over all models. Average change over the baseline performance is given in parentheses.

0 1-10 11-20 21-30 31-40 41-50
50

60

70

80

90

Predicate Frequency in Training Data

D
ev

Se
tF

1

Predicted Class
All Classes

Baseline

Figure 2: Evaluation by training set predicate fre-
quency similar to Figure 1, but focused on low-
frequency predicates. Most improvements are for predi-
cates appearing fewer than 10 times in the training data.
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Beñat Zapirain, Eneko Agirre, and Lluı́s Màrquez.
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Abstract

This paper takes a first step towards a critical
thinking curriculum for neural auto-regressive
language models. We introduce a synthetic
corpus of deductively valid arguments, and
generate artificial argumentative texts to train
CRiPT: a critical thinking intermediarily pre-
trained transformer based on GPT-2. Signifi-
cant transfer learning effects can be observed:
Trained on three simple core schemes, CRiPT
accurately completes conclusions of different,
and more complex types of arguments, too.
CRiPT generalizes the core argument schemes
in a correct way. Moreover, we obtain con-
sistent and promising results for NLU bench-
marks. In particular, CRiPT’s zero-shot accu-
racy on the GLUE diagnostics exceeds GPT-
2’s performance by 15 percentage points. The
findings suggest that intermediary pre-training
on texts that exemplify basic reasoning abili-
ties (such as typically covered in critical think-
ing textbooks) might help language models to
acquire a broad range of reasoning skills. The
synthetic argumentative texts presented in this
paper are a promising starting point for build-
ing such a “critical thinking curriculum for lan-
guage models.”

1 Introduction

Pre-trained autoregressive language models (LM)
such as GPT-2 and GPT-3 achieve, remarkably, com-
petitive results in a variety of language modeling
benchmarks without task-specific fine-tuning (Rad-
ford et al., 2019; Brown et al., 2020). Yet, it is also
widely acknowledged that these models struggle
with reasoning tasks, such as natural language in-
ference (NLI) or textual entailment (Askell, 2020).
Actually, that doesn’t come as a surprise, given the
tendency of humans to commit errors in reason-
ing (Kahneman, 2011; Sunstein and Hastie, 2015),
their limited critical thinking skills (Paglieri, 2017),
and the resulting omnipresence of fallacies and bi-
ases in texts and the frequently low argumentative

quality of online debates (Hansson, 2004; Guiaşu
and Tindale, 2018; Cheng et al., 2017): Neural lan-
guage models are known to pick up and reproduce
normative biases (e.g., regarding gender or race)
present in the dataset they are trained on (Gilburt
and Claydon, 2019; Blodgett et al., 2020; Nadeem
et al., 2020), as well as other annotation artifacts
(Gururangan et al., 2018); no wonder this happens
with argumentative biases and reasoning flaws, too
(Kassner and Schütze, 2020; Talmor et al., 2020).
This diagnosis suggests that there is an obvious
remedy for LMs’ poor reasoning capability: make
sure that the training corpus contains a sufficient
amount of exemplary episodes of sound reasoning.

In this paper, we take a first step towards the cre-
ation of a “critical thinking curriculum” for neural
language models. Critical thinking can be loosely
defined as “reasonable reflective thinking that is
focused on deciding what to believe or do.” (Norris
and Ennis, 1989) Generally speaking, our study
exploits an analogy between teaching critical think-
ing to students and training language models so
as to improve their reasoning skill. More specifi-
cally, we build on three key assumptions that are
typically made in critical thinking courses and text-
books: First, there exist fundamental reasoning
skills that are required for, or highly conducive to,
a large variety of more specific and advanced criti-
cal thinking skills (e.g., Fisher, 2001, p. 7). Second,
drawing deductive inferences is one such basic abil-
ity (e.g., Fisher, 2001, pp. 7–8). Third, reasoning
skills are not (just) acquired by learning a theory of
correct reasoning, but by studying lots of examples
and doing “lots of good-quality exercises” (Lau
and Chan, 2020), typically moving from simple to
more difficult problems (e.g., Bowell and Kemp,
2014).

These insights from teaching critical thinking
translate, with respect to our study, as follows (see
Fig. 1). First of all, we design and build ‘lots of
good-quality exercises’: a synthetic corpus of de-
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Figure 1: Training and testing of CRiPT language mod-
els (critical thinking intermediarily pre-trained trans-
former) with synthetic argumentative texts.

ductively valid arguments which instantiate a vari-
ety of (syllogistic) argument schemes, and which
are rendered as text paragraphs (Section 3). Next,
we use our synthetic argument text corpus to train
and to evaluate GPT-2 (Section 4). The training,
which maximizes a causal language modeling ob-
jective, can be conceived of as a generic, intermedi-
ary pre-training in the spirit of STILTS (Phang
et al., 2018) and yields models we term CRiPT
(critical thinking intermediarily pre-trained trans-
former).

Evaluating CRiPT’s ability to correctly complete
conclusions of arguments, we observe strong trans-
fer learning effects/generalization (Section 5): Just
training CRiPT on a few central core schemes (gen-
eralized modus ponens, contraposition and chain
rule) allows it to accurately complete conclusions
of different types of arguments, too (e.g., complex
argumentative forms that involve dilemma and de
Morgan). The language models appear to connect
and generalize the core argument schemes in a cor-
rect way. In addition, CRiPT is equally able to apply
learned argument patterns beyond the training cor-
pus’ domain.

Moreover, we test CRiPT on different reasoning
benchmarks. Because we are particularly inter-
ested in transfer learning effects, we do so in a
zero-shot set-up (i.e., evaluating our argumentation
models on entirely unrelated NLU tasks, which fol-
lows recent work by Mitra et al. (2019); Shwartz
et al. (2020); Ma et al. (2020)). We obtain consis-
tent and promising results for the GLUE diagnos-
tics (Wang et al., 2018) and SNLI (Bowman et al.,
2015) benchmarks (Section 5), finding that training
on core schemes clearly improves the NLU skills
of pre-trained models.

All these transfer learning effects observed
strengthen the analogy between teaching critical
thinking and training language models: A variety
of reasoning skills are improved by generic, inter-

mediary pre-training on high-quality texts that ex-
emplify a basic reasoning skill, namely simple de-
ductive argumentation. Obviously, drawing correct
inferences is just one of the elementary skills typ-
ically covered in critical thinking courses (Fisher,
2001). Critical thinking involves more than deduc-
tion. And it would hence, by analogy, be unreason-
able to expect that intermediary pre-training on the
synthetic argument corpus suffices to turn language
models into accomplished reasoners. However, we
have shown that argumentative texts (with valid
syllogistic arguments) are certainly a good starting
point when building a more comprehensive dataset
for initial or intermediary pre-training that might
help language models to acquire a broad range of
reasoning skills. Or, to put it differently, the syn-
thetic argumentative texts might belong to the core
of a “critical thinking curriculum for language mod-
els.” In the final section, we advance some ideas
for complementing the artificial argument corpus
so as to further improve the performance of LMs
with regard to different reasoning benchmarks.

2 Related Work

To our knowledge, this paper is, together with Gon-
tier et al. (2020), among the first to show that au-
toregressive language models like GPT-2 can learn
to reason by training on a text corpus of correct
natural language arguments. By contrast, previ-
ous work in this field, described below, has typ-
ically modeled natural language reasoning prob-
lems as classification tasks and trained neural sys-
tems to accomplish them. For example, Schick
and Schütze (2021); Schick and Schütze (2020)
find that a masked language model with classifica-
tion head achieves remarkable NLU performance
by pre-structuring the training data. This paper
explores the opposite route: We start with highly
structured (synthetic) data, render it as unstruc-
tured, plain text and train a uni-directional lan-
guage model on the synthetic text corpus.

Over and above the methodological novelty of
our approach, we discuss, in the following, related
reasoning benchmarks and explain what sets our
synthetic argument corpus apart from this work.

Rule reasoning in natural language Various
datasets have been developed for (deductive) rule
reasoning in natural language. One-step rule appli-
cation (cf. Weston et al., 2016; Richardson et al.,
2020; Tafjord et al., 2019; Lin et al., 2019) closely
resembles the conclusion completion task for gen-
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eralized modus ponens and generalized modus tol-
lens schemes described below. However, we go
beyond previous work in investigating the ability of
LMs to infer conclusions that have a more complex
logico-semantic structure (e.g., existential or uni-
versal statements). RuleTaker, arguably the most
general system for rule reasoning in natural lan-
guage so far, is a transformer model for multi-hop
inference (Clark et al., 2020). PRover (Saha et al.,
2020) extends RuleTaker by a component for proof
generation and is able to construct valid proofs and
outperforms RuleTaker in terms answer accuracy
in a zero-shot setting.

Benchmarks for enthymematic reasoning An
‘enthymeme’ is an argument whose premises are
not explicitly stated, e.g.: “Jerry is a mouse.
Therefore, Jerry is afraid of cats.” The following
studies involve such reasoning with implicit as-
sumptions, whereas our synthetic argument corpus
doesn’t: all premises are transparent and explicitly
given. COMET generates and extends common-
sense knowledge graphs (Bosselut et al., 2019).
Trained on seed data, the model is able to mean-
ingfully relate subject phrases to object phrases
(by doing the type of completion tasks we intro-
duce in Section 4). The Argument Reasoning Com-
prehension (ARC) dataset (Habernal et al., 2018)
comprises simple informal arguments. The task
consists in identifying which of two alternative
statements is the missing premise in the argument
(see also Niven and Kao, 2019). CLUTRR is a
task generator for relational reasoning on kinship
graphs (Sinha et al., 2019). CLUTTR takes a set of
(conceptual) rules about family relations as given
and constructs set-theoretic possible worlds (rep-
resented as graphs) which instantiate these rules.
The task consists in inferring the target fact from
the base facts alone – the conceptual rules remain
implicit. Gontier et al. (2020) show that Transform-
ers do not only learn to draw the correct conclusion
(given a CLUTTR task), but also seems to acquire
the ability to generate valid proof chains. Finally,
training on synthetic knowledge-graph data from
scratch, Kassner et al. (2020) find that BERT (De-
vlin et al., 2019) is able to correctly infer novel
facts implicit in the training data.

Critical thinking tasks LogiQA (Liu et al.,
2020) is a collection of publicly available critical
thinking questions, used by the National Civil Ser-
vants Examination of China to assess candidates’

critical thinking and problem solving skills. Its
scope is much broader than our highly specific and
carefully designed argument corpus.

3 An Artificial Argument Corpus

This section describes the construction of a syn-
thetic corpus of natural language arguments used
for training and evaluating CRiPT.1

The corpus is built around eight simple, deduc-
tively valid syllogistic argument schemes (top row
in Fig. 2). These eight base schemes have been
chosen because of their logical simplicity as well
as their relevance in critical thinking and argument
analysis (Feldman, 2014; Bowell and Kemp, 2014;
Brun and Betz, 2016). Each of these eight base
schemes is manually varied in specific ways to
create further deductively correct variants, which
are verified for correctness using an off-the-shelf
theorem prover.

Negation variants of base schemes are created by
substituting a sub-formula with its negation (e.g.,
Fx  ¬F1x) and/or by applying duplex negatio
affirmat. Complex predicates variants build on base
schemes or their respective negation variants and
are obtained by substituting atomic predicates with
compound disjunctive or conjunctive ones (e.g.,
Fx  F1x ∨ F2x). De Morgan variants of base
schemes are finally derived by applying de Mor-
gan’s law to the respective variants created before
(a de Morgan variant of modus ponens is, for in-
stance: ∀x : ¬(Fx ∨ Gx) → Hx;¬Fa;¬Ga ⇒
Ha).

With 2-3 different versions for each of these vari-
ations of a base scheme (parameter n in Fig. 2), we
obtain, in total, 71 distinct handcrafted argument
schemes. In view of their simplicity and promi-
nence in natural language argumentation, three of
the eight base schemes are marked as core schemes:
generalized modus ponens, generalized contraposi-
tion, hypothetical syllogism 1.

Natural language instances of the argument
schemes can be created by means of a first-order-
logic domain (with names and predicates) and nat-
ural language templates for the formal schemes.
In order to obtain a large variety of realistic nat-
ural language arguments, we have devised (i) a

1The corpus as well as the source code used to generate
it are available at https://github.com/debatelab/
aacorpus. Selected example texts which illustrate, in partic-
ular, the multiple domains covered by the corpus are presented
in Appendix A.
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Figure 2: Syllogistic argument schemes used to create an artificial argument corpus with eight base schemes (upper
row), three of which are core schemes (left). Parameter n indicates the number of different schemes belonging to
one and the same base scheme group (column) and variant (row).

multi-stage templating process with (ii) alternative
templates at each stage and (iii) multiple domains.

This process can be split into five consecutive
steps.

In step 1, the argument scheme, which serves as
formal template for the natural language argument,
is chosen at random.

In step 2, each sentence in the formal scheme
(premises and conclusion) is individually replaced
by a natural language pattern in accordance with a
randomly chosen template. For example, the for-
mula “∀xFx→ Gx” might be replaced by any of
the following natural language sentence schemes:
“Every F is a G”, “Whoever is a F is also a G”,
“Being a G is necessary for being a F”, “If someone
is a F, then they are a G”. Some of these patterns
(e.g., the fourth one in the above list) are reserved
for generating an out-of-domain test dataset, and
are not used for training.

In step 3, the entity- and property-placeholders
in the resulting argument scheme are replaced
argument-wise with names and predicates from
a domain. We hence obtain an instance of the for-
mal argument scheme as premise-conclusion list.
Each domain provides hundreds of entity-names,
which can be paired with different binary predi-

cates to create thousands of different unary predi-
cates. For example, the text in Fig. 1 is obtained
by substituting predicates from the domain female
relatives, which includes predicates like being a
“sister of Anna”, “granddaughter of Elsa”, “cousin
of Sarah”, . . . Once more, some domains are used
for testing only, and not for training (see below and
Section 4.2).

In step 4, the premises of the natural language
argument are randomly re-ordered.

In step 5, the premise-conclusion list is packed
into a text paragraph by adding an argument intro,
framing the premises, and adding an inference in-
dicator. Again, multiple templates are available for
doing so, which yields a large variety of textual
renderings of an argument.

Following this pipeline, we generate natural lan-
guage instances of each formal argument scheme,
thus creating:

1. a training set of argumentative texts, based on
the default domains and templates (TRAIN);

2. an evaluation set of argumentative texts, based
on the default domains and templates, which
are used for development (DEV);

3. a test set of argumentative texts, based on the
default domains and templates and used for
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final tests (TEST_OUT-OF-SAMPLE);
4. a test set of argumentative texts, based on the

domains and templates reserved for testing
(TEST_OUT-OF-DOMAIN).

This represents the artificial argument text cor-
pus we use to train and evaluate CRiPT.

4 Experiments with CRiPT

Our basis for training and evaluating CRiPT are
three compact versions of GPT-2 with 117M, 345M
and 762M parameters, as implemented by Wolf
et al. (2019). We note that all of these models fall
short of the full-scale model with 1542M parame-
ters.2

4.1 Training
From the training items in the Artificial Argu-
ment Corpus (TRAIN) we sample three types of
differently-sized training sets TRAIN01 ⊂ TRAIN02
⊂ TRAIN03 as follows (see also the color pattern in
Fig. 2):

• TRAIN01: all training items which are in-
stances of a core scheme, i.e. generalized
modus ponens, generalized contraposition, hy-
pothetical syllogism 1 (N=4.5K, 9K, 18K,
36K)

• TRAIN02: all training items which are in-
stances of a base scheme (N=4.5K, 9K, 18K,
36K)

• TRAIN03: all training items in the corpus
(N=4.5K, 9K, 18K, 36K)

In an attempt to avoid over-fitting, we blend
the training arguments with snippets from Reuters
news stories (Lewis et al., 2004) and the stan-
dardized Project Gutenberg Corpus (Gerlach and
Font-Clos, 2018), trying a mixing ratio of 1:1 and
thus doubling training size to N=9K, 18K, 36K,
72K.3 Training the BASE model (pre-trained GPT-2)
on TRAIN01–TRAIN03 yields three corresponding
CRiPT models (see Appendix B). For purpose of
comparison, we have similarly trained three ran-
domly initialized Transformer models (structurally
identical with GPT-2) – none of these random mod-
els gains any performance through training on our
critical thinking corpus.

2The fine-tuned models are released through https://
huggingface.co/debatelab.

3We find that fine-tuning on the accordingly enhanced
argument corpus still increases the model’s perplexity on the
Wiki103 dataset by a factor of 1.5 (see Appendix D), which
suggests to mix a higher proportion of common texts into the
training data in future work.

4.2 Testing
Conclusion Completion on Artificial Argument
Corpus To test whether language models can rea-
son correctly, we assess their ability to accurately
complete conclusions of arguments in the artifi-
cial argument corpus. Here, we make use of the
fact that, by construction, the conclusion of every
argument in the corpus ends with a predicate (a
property-term such as “sister of Chloe” or “sup-
porter of Tottenham Hotspurs”), which is poten-
tially preceded by a negator. First of all, as shown
in Table 1, we test whether the model is able to
correctly fill in the final predicate (task split). The
second, more difficult task consists in completing
the final predicate plus, if present, the preceding
negator (task extended). With a third, adverserial
task we check how frequently the model wrongly
adjoins the complement of the correct completion
of the extended task (task inverted).

Task Conclusion with
cloze-style prompt

Completion

split Every F is a G G

Some F is not a G G
a is a F or not a G G

extended Every F is a G a G

Some F is not a G not a G
a is a F or not a G not a G

inverted Every F is a G not a G

Some F is not a G not a G
a is a F or not a G not a G

Table 1: Three conclusion completion tasks

Clearly, the higher the accuracy in the split and
extended tasks, and the lower the accuracy in the
inverted task, the stronger the model’s reasoning
performance.

Based on the artificial argument corpus (see Sec-
tion 3), we generate and distinguish three different
test datasets, each of which comprises the three
tasks described above, as follows:

• out of sample (oos): contains items from
TEST_OUT-OF-SAMPLE, which share domain
and natural language templates with the train-
ing data;

• paraphrased (para): a sample of 100 items,
randomly drawn from TEST_OUT-OF-SAMPLE,
which have been manually reformulated so as
to alter the premises’ grammatical structure
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imposed by the natural language templates;
• out of domain (ood): contains items from

TEST_OUT-OF-DOMAIN, which belong to dif-
ferent domains and instantiate grammatical
patterns other than the training data.

Technically, conclusion completions, in all tasks
and tests, are generated by the language model with
nucleus sampling and top-p = 0.9 (Holtzman et al.,
2019).

Classification for NLU Benchmarks To inves-
tigate transfer learning effects, we evaluate the
trained models on standard NLU benchmarks, such
as GLUE AX and SNLI. These benchmark tasks
are classification problems. In the following, we de-
scribe how we use the generative language models
to perform such classification.

Using simple templates, we translate each bench-
mark entry into alternative prompts (e.g., context
and question) and/or alternative completions (e.g.,
answers). Consider for example a GLUE-style
problem given by two sentences “The girl is eat-
ing a pizza.” and “The girl is eating food” and
the question whether one entails, contradicts, or is
independent of the other. We can construct three
prompts, corresponding to the three possible an-
swers (entail / contradict / independent):

Prompt1: The girl is eating a pizza.
Therefore,
Prompt2: The girl is eating a pizza. This
rules out that
Prompt3: The girl is eating a pizza. This
neither entails nor rules out that
Completion: the girl is eating food.

In this case, the correct match is obviously
Prompt1–Completion. The ability of a language
model to discern that “The girl is eating pizza” en-
tails (and does not contradict) “The girl is eating
food” will be reflected in a comparatively low con-
ditional perplexity of Completion given Prompt1
and a correspondingly high conditional perplexity
of Completion given Prompt2 or Prompt3.

Generally put, we classify a given input X by
constructing N alternative prompts p1, . . . pN and
a completion c, such that each pair (pi, c) corre-
sponds to a class i ∈ {1 . . . N} of the classification
problem. The conditional perplexity of the comple-
tion c given prompt pi according to the language
model serves as prediction score for our classifier
(as for instance in Shwartz et al., 2020).

5 Results

Conclusion Completion on Artificial Argument
Corpus Does CRiPT correctly complete conclu-
sions of natural language arguments? Fig. 3 dis-
plays the evaluation results in an aggregated way.
Each subplot visualizes the accuracy of the models
in the three completion tasks for a different test
dataset (see Section 4.2).
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Figure 3: Accuracy of CRiPT in three conclusion com-
pletion tasks and on different test datasets (out of sam-
ple, paraphrased, out of domain).

We may observe, first of all, that pre-training
on the argument corpus effectively improves
conclusion-completion-skill. In all three test
datasets, the accuracy in the split and extended
tasks increases as models are trained on more and
more argument schemes, far exceeding the base
model’s performance. Once CRiPT has seen all
schemes (TRAIN03), accuracy levels reach 100%
for in-domain and 70%-90% for out-of-domain
tests. However, the TRAIN01 and TRAIN02 models
do also generate more incorrect completions than
the BASE model (inverted task). But the frequency
of such incorrect completions increases much less
than the frequency of correct ones (the gap between
blue and gray curve widens), and it actually falls
back to almost zero with the TRAIN03 model. Out-
of-domain performance of CRiPT (right-hand plot)
is qualitatively similar and only slightly less strong
than in-domain performance (left-hand and mid-
dle plot). CRiPT models trained on a given domain
are able to effectively exercise the acquired skill in
other domains, and have hence gained topic-neutral,
universal reasoning ability.

The strong performance of TRAIN01 models
(Fig. 3) indicates that training on a few argument
schemes positively affects performance on other
schemes, too. To further investigate transfer learn-
ing, Table 2 contrasts (a) CRiPT’s accuracy on
schemes it has not been trained on – averaged over
TRAIN01 and TRAIN02 models – with (b) its accu-
racy on schemes present in the respective train-
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BASE (A) UNSEEN SCH. (B) SEEN SCH.

Task oos para ood oos para ood

split 21.4 85.4 82.0 69.4 99.9 99.2 89.0
ext. 10.7 60.3 59.3 45.8 99.9 99.2 76.2
inv. 1.5 16.9 18.0 22.1 0.0 0.0 3.2

Table 2: Accuracy of CRiPT models in three conclusion
completion tasks and on different test datasets (out of
sample: oos, paraphrased: para, out of domain: ood).
Columns report, separately, the performance (A) on
schemes the model has not been trained on (TR01–02),
and (B) on schemes that are covered by the model’s
training data (TR01–03). For comparison, column BASE
reports the performance of pre-trained GPT-2, averaged
over all schemes.

ing corpus – averaged over TRAIN01, TRAIN02, and
TRAIN03 models. The upshot is that CRiPT performs
much more strongly than the base model not only
on argument schemes it has been trained on, but
also on those schemes not seen yet. We take this to
be a promising result as it strengthens the analogy
between teaching critical thinking and training lan-
guage models: intermediary pre-training on high-
quality texts that exemplify a specific, basic reason-
ing skill – namely, simple deductive argumentation
– improves other, more complex reasoning skills.

Moreover, a closer look at the scheme-specific
performance suggests important variations in
CRiPT’s ability to generalize, for it seems to strug-
gle with unseen schemes which involve negations
(e.g., CRiPT-TRAIN02 generates more incorrect than
correct completions of the negation_variants of
generalized modus ponens, see Appendix C). This
is consistent with the finding that some NLMs
seemingly fail to understand simple negation (Kass-
ner and Schütze, 2020; Talmor et al., 2020).

To further understand transfer learning effects,
we next examine CRiPT’s zero-shot performance
in other NLP reasoning tasks (i.e., without task-
specific fine-tuning).

GLUE AX The GLUE datasets (Wang et al.,
2018) represent standard benchmarks for natural
language understanding (NLU). We evaluate our
models’ NLU skill in terms of accuracy on the
curated GLUE diagnostics dataset (Fig. 4).

Training on the artificial argument corpus sub-
stantially boosts accuracy on the GLUE diagnostics.
Accuracy increases by at least 5 and up to 17 per-
centage points, depending on model size. Remark-
ably, training on the core scheme alone suffices to
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Figure 4: Gains in accuracy due to fine-tuning on the
AAC (accuracy TRAIN model – accuracy BASE model)
for differently sized models and different NLP bench-
mark tasks: the GLUE diagnostics data, and the SNLI
dataset.

bring about these improvements.
This is a major finding and our clearest evidence

so far that critical thinking pre-training involves
substantial transfer learning effects.

SNLI Our assessment of CRiPT with respect to
SNLI data (Bowman et al., 2015) proceeds in close
analogy to the GLUE benchmark. The results
(Fig. 4) are consistent with, albeit less definite
than our previous findings for the GLUE bench-
mark: First and foremost, training on all schemes
(TRAIN03) improves the performance by up to 8
percentage points. Training on fewer schemes is
slightly less effective. However, only small and
medium sized CRiPT profit from pre-training on the
AAC; while the performance of the 762M model
drops. This might be due to a coincidentally strong
performance of the corresponding BASE model (see
Appendix D), or suggest that large GPT-2 has al-
ready learned during general pre-training whatever
is of relevance for SNLI in argumentative texts.
(Further experiments, preferably involving more
model versions, are required to clarify this.)

Besides GLUE AX and SNLI, we have assessed
CRiPT on the semantically more demanding Argu-
ment Reasoning Comprehension task (Habernal
et al., 2018) or the critical thinking assessment com-
piled in LogiQA (Liu et al., 2020), but found no
performance increase compared to the base model.

6 Conclusion

This paper has taken a first step towards the cre-
ation of a critical thinking curriculum for neural
language models. It presents a corpus of deduc-
tively valid, artificial arguments, and uses this arti-
ficial argument corpus to train and evaluate CRiPT
– a Transformer language model based on GPT-2.
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As our main finding, we observe strong transfer
learning effects/generalization: Training CRiPT on
a few central core schemes allows it to accurately
complete conclusions of different types of argu-
ments, too. The language models seem to connect
and to generalize the core argument schemes in a
correct way. Moreover, CRiPT is equally able to
apply learned argument patterns beyond the do-
main it has been trained on, and there is evidence
that generic language modeling skill facilitates the
successful generalization of learned argument pat-
terns as randomly initialized models fail to acquire
any inference skill by critical thinking pre-training.
(Accordingly, we expect our approach to scale to
even larger versions of GPT-2.) These findings are
consistent with previous work on rule reasoning
(Clark et al., 2020). Moreover, CRiPT has been
tested on different reasoning benchmarks. We ob-
tain clear and promising results for the GLUE AX
and SNLI benchmarks. All this suggests that there
exist (learning-wise) fundamental reasoning skills
in the sense that generic intermediary pre-training
on texts which exemplify these skills leads to spill-
over effects and can improve performance on a
broad variety of reasoning tasks. The synthetic ar-
gumentative texts might be a good starting point
for building such a “critical thinking curriculum for
language models.”

There are different directions for advancing the
approach adopted in this paper and further improv-
ing the general reasoning skill of neural language
models:

• The syllogistic argument text corpus might be
complemented with corpora of arguments that
instantiate different kinds of correct schemes,
e.g., propositional inference schemes, modal
schemes, argument schemes for practical rea-
soning, complex argument schemes with in-
termediary conclusions or assumptions for the
sake of the argument, etc. (Technically, we
provide the infrastructure for doing so, as all
this might be achieved through adjusting the
argument corpus configuration file.)

• To succeed in NLI tasks, it doesn’t suffice
to understand ‘what follows.’ In addition, a
system needs to be able to explicitly discern
contradictions and non sequiturs (relations of
logical independence). This suggests that the
artificial argument corpus might be fruitfully
supplemented with corpora of correctly identi-
fied aporetic clusters (Rescher, 1987) as well

as corpora containing correctly diagnosed fal-
lacies.

• In addition, the idea of curriculum learning
for ML (Bengio et al., 2009) might be given
a try. Accordingly, a critical thinking curricu-
lum with basic exemplars of good reasoning
would not only be used to fine-tune a pre-
trained model, but would be employed as start-
ing point for training a language model from
scratch.

In conclusion, designing a critical thinking cur-
riculum for pre-training neural language models
seems to be a promising and worthwhile research
program to pursue.
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Radu Cornel Guiaşu and Christopher W Tindale. 2018.
Logical fallacies and invasion biology. Biology &
philosophy, 33(5-6):34.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel Bowman, and Noah A
Smith. 2018. Annotation artifacts in natural lan-
guage inference data. In Proceedings of the 2018

Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 107–112.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018. The argument reasoning
comprehension task: Identification and reconstruc-
tion of implicit warrants. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2018, New
Orleans, Louisiana, USA, June 1-6, 2018, Volume
1 (Long Papers), pages 1930–1940. Association for
Computational Linguistics.

Sven Ove Hansson. 2004. Fallacies of risk. Journal of
Risk Research, 7(3):353–360.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text de-
generation. In International Conference on Learn-
ing Representations.

Daniel Kahneman. 2011. Thinking, fast and slow, 1st
edition. Farrar, Straus and Giroux, New York.

Nora Kassner, Benno Krojer, and Hinrich Schütze.
2020. Are pretrained language models symbolic
reasoners over knowledge? In Proceedings of
the 24th Conference on Computational Natural Lan-
guage Learning, pages 552–564, Online. Associa-
tion for Computational Linguistics.

Nora Kassner and Hinrich Schütze. 2020. Negated and
misprimed probes for pretrained language models:
Birds can talk, but cannot fly. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7811–7818, Online. As-
sociation for Computational Linguistics.

Joe Lau and Jonathan Chan. 2020. Critical thinking
web. https://philosophy.hku.hk/think.

D. D. Lewis, Y. Yang, T. Rose, and F. Li. 2004. Rcv1:
A new benchmark collection for text categorization
research. Journal of Machine Learning Research,
5:361–397.

Kevin Lin, Oyvind Tafjord, Peter Clark, and Matt Gard-
ner. 2019. Reasoning over paragraph effects in situ-
ations. Proc. MRQA Workshop (EMNLP’19).

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020. Logiqa: A
challenge dataset for machine reading comprehen-
sion with logical reasoning. In Proceedings of the
Twenty-Ninth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2020, pages 3622–3628.
ijcai.org.

Kaixin Ma, Filip Ilievski, Jonathan Francis, Yonatan
Bisk, Eric Nyberg, and Alessandro Oltramari.
2020. Knowledge-driven self-supervision for zero-
shot commonsense question answering. CoRR,
abs/2011.03863.

71



Arindam Mitra, Pratyay Banerjee, Kuntal Kumar Pal,
Swaroop Mishra, and Chitta Baral. 2019. Explor-
ing ways to incorporate additional knowledge to im-
prove natural language commonsense question an-
swering. CoRR, abs/1909.08855.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2020.
Stereoset: Measuring stereotypical bias in pre-
trained language models. CoRR, abs/2004.09456.

Timothy Niven and Hung-Yu Kao. 2019. Probing neu-
ral network comprehension of natural language ar-
guments. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 4658–4664, Florence, Italy. Association
for Computational Linguistics.

SP Norris and RH Ennis. 1989. What is critical think-
ing. The practitioner’s guide to teaching thinking
series: Evaluating critical thinking, pages 1–26.

Fabio Paglieri. 2017. A plea for ecological argument
technologies. Philosophy & Technology, 30(2):209–
238.

Jason Phang, Thibault Févry, and Samuel R. Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. CoRR,
abs/1811.01088.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Lan-
guage models are unsupervised multitask learners.
Preprint.

Nicholas Rescher. 1987. Aporetic method in philoso-
phy. The Review of metaphysics, 41(2):283–297.

Kyle Richardson, Hai Hu, Lawrence S. Moss, and
Ashish Sabharwal. 2020. Probing natural language
inference models through semantic fragments. In
The Thirty-Fourth AAAI Conference on Artificial In-
telligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Confer-
ence, IAAI 2020, The Tenth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020,
pages 8713–8721. AAAI Press.

Swarnadeep Saha, Sayan Ghosh, Shashank Srivastava,
and Mohit Bansal. 2020. Prover: Proof generation
for interpretable reasoning over rules. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2020, On-
line, November 16-20, 2020, pages 122–136. Asso-
ciation for Computational Linguistics.

Timo Schick and Hinrich Schütze. 2021. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Main Vol-
ume, EACL 2021, Online, April 19 - 23, 2021, pages
255–269. Association for Computational Linguis-
tics.

Timo Schick and Hinrich Schütze. 2020. It’s not just
size that matters: Small language models are also
few-shot learners.

Vered Shwartz, Peter West, Ronan Le Bras, Chandra
Bhagavatula, and Yejin Choi. 2020. Unsupervised
commonsense question answering with self-talk. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 4615–
4629. Association for Computational Linguistics.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle
Pineau, and William L. Hamilton. 2019. CLUTRR:
A diagnostic benchmark for inductive reasoning
from text. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Nat-
ural Language Processing, EMNLP-IJCNLP 2019,
Hong Kong, China, November 3-7, 2019, pages
4505–4514. Association for Computational Linguis-
tics.

Cass R Sunstein and Reid Hastie. 2015. Wiser: getting
beyond groupthink to make groups smarter. Harvard
Business Review Press, Boston.

Oyvind Tafjord, Matt Gardner, Kevin Lin, and Peter
Clark. 2019. Quartz: An open-domain dataset of
qualitative relationship questions. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019, pages 5940–5945. Association
for Computational Linguistics.

Alon Talmor, Yanai Elazar, Yoav Goldberg, and
Jonathan Berant. 2020. olmpics - on what language
model pre-training captures. Trans. Assoc. Comput.
Linguistics, 8:743–758.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 353–355.

J. Weston, A. Bordes, S. Chopra, and T. Mikolov. 2016.
Towards ai-complete question answering: A set of
prerequisite toy tasks. ICLR.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, et al. 2019. Huggingface’s transformers: State-
of-the-art natural language processing. ArXiv, pages
arXiv–1910.

A Appendix: Illustrative Examples of
Synthetic Argumentative Texts

The following items are drawn from the artifi-
cial argument corpus and illustrate the synthetic
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texts used to train and test CRiPT – specifically
the various domains covered in the corpus. Links
to the entire dataset and source code for gener-
ating synthetic arguments are released at https:
//github.com/debatelab/aacorpus.

Domain: female_relatives. Base scheme group:
Generalized modus tollens. Scheme variant: base
scheme. Text: It is not always easy to see who is re-
lated to whom – and in which ways. The following
argument pertains to this question: To start with,
Daisy is not a sister of Melissia. Now, being an
ancestor of Kerstin is sufficient for being a sister of
Melissia. Hence, it is false that Daisy is an ancestor
of Kerstin.

Domain: male_relatives. Base scheme group:
Hypothetical Syllogism 1. Scheme variant: nega-
tion_variant. Text: Is Fred a cousin of Robert? Is
Joe related to Bob? In large families, it is some-
times difficult to keep track of all one’s relatives.
The following argument seeks to clarify some such
relations: First of all, no schoolmate of Erik is a
classmate of Andy. Next, whoever is not a class-
mate of Andy is a schoolmate of Marvin. We may
conclude that every schoolmate of Erik is a school-
mate of Marvin.

Domain: consumers_personalcare. Base
scheme group: Disjunctive Syllogism. Scheme
variant: negation_variant. Text: Consumer re-
search aims at understanding whether users of some
products also tend to consume other ones, or not.
The following argument seeks to clarify some such
relations: Everyone who is an occasional purchaser
of Bio Ionic shampoo is a rare consumer of The
Body Shop soap, too. Every occasional purchaser
of Bio Ionic shampoo is not a rare consumer of
The Body Shop soap or a frequent consumer of
Shiseido shampoo. It follows that everyone who is
an occasional purchaser of Bio Ionic shampoo is a
frequent consumer of Shiseido shampoo, too.

Domain: chemical_ingredients. Base scheme
group: Generalized Contraposition. Scheme vari-
ant: complex_predicates. Text: Here comes a per-
fectly valid argument: No ingredient of Eyeshadow
Quad is an ingredient of Midnight Black or an in-
gredient of Bubble Gum Laquer. We may conclude
that no ingredient of Bubble Gum Laquer and no
ingredient of Midnight Black is an ingredient of
Eyeshadow Quad.

Domain: football_fans. Base scheme group:
Generalized Dilemma. Scheme variant: base
scheme. Text: Is Fred a fan of Liverpool? Are

supporters of Real Madrid devotees of PSG? In
European football, it is sometimes difficult to keep
track of the mutual admiration and dislike. The
following argument seeks to clarify some such re-
lations: Every friend of FC Olexandriya is either
a backer of The New Saints FC or an ex-fan of
Olympique Lyonnais, or both. Everyone who is
an ex-fan of Olympique Lyonnais is a devotee of
RC Celta de Vigo, too. Everyone who is a backer
of The New Saints FC is a devotee of RC Celta de
Vigo, too. In consequence, being a devotee of RC
Celta de Vigo is necessary for being a friend of FC
Olexandriya.

Domain: dinos. Base scheme group: Modus bar-
bara. Scheme variant: base scheme. Text: Consider
the following argument: If someone is a predator
of Iguanodon, then they are a prey of Stegosaurus.
Parasaurolophus is a predator of Iguanodon. Thus,
Parasaurolophus is a prey of Stegosaurus.

Domain: philosophers. Base scheme group:
Hypothetical Syllogism 3 Scheme variant: nega-
tion_variant Text: Here comes a perfectly valid
argument: If someone is not a teacher of Diodorus
of Adramyttium, then they are a teacher of Dexip-
pus. Moreover, someone is a student of Alexicrates
and not a teacher of Dexippus. Thus, someone is a
student of Alexicrates and a teacher of Diodorus of
Adramyttium.

B Appendix: Training Parameters

We train differently sized versions of GPT-2 with
causal language modeling objective (using default
training scripts by Wolf et al. (2019)) on each of the
12 enhanced, differently sized training sets. This
gives us 36 fine-tuned CRiPT models plus the three
BASE models to evaluate. Unless explicitly stated
otherwise, the main article reports results of the
762M parameter model trained on 72K items. We
train the models on 8 GPUs for 2 epochs with batch
size = 2, learning rate = 5×10−5, gradient accumu-
lation steps = 2, and default parameters of the Hug-
gingFace implementation otherwise (Wolf et al.,
2019).

C Appendix: Performance Metrics on
Different Argument Schemes

Fig. 5 displays CRiPT’s accuracy on conclusion
completion tasks on specific argument schemes.
Its subplots are arranged in a grid that mirrors the
organisation of argument schemes as presented in
the main article. Each subplot visualizes the abil-
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ity of CRiPT to correctly complete arguments of
the corresponding scheme (given the out-of-sample
test dataset). Reported accuracy values that fall
within gray background areas are attained by mod-
els which have seen the corresponding scheme dur-
ing training. Vice versa, thick lines on white back-
ground visualize model performance on unknown
schemes. Fig. 5 reveals, first of all, that even the
BASE models (only pre-training, no fine-tuning)
display a significant ability to correctly complete
conclusions of some kinds of arguments. For ex-
ample, GPT-2-762M achieves 50% accuracy (split
task) in completing contrapositions, 30% accuracy
in completing generalized modus ponens, and still
20% accuracy in completing disjunctive syllogism
and dilemma arguments. These findings further
corroborate the hypothesis that NLMs learn (ba-
sic) linguistic and reasoning skills “on the fly” by
training on a large generic corpus (Radford et al.,
2019).

D Appendix: Performance Metrics for
Differently Sized Training Sets

Fig. 6 displays accuracy values on conclusion com-
pletion tasks for models trained on differently sized
datasets.

Fig. 7 reports perplexity and NLU accuracy met-
rics for models trained on differently sized datasets.
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Figure 5: Accuracy of CRiPT in three conclusion completion tasks and on different test datasets (out of sample,
paraphrased, out of domain) by argument scheme.

Figure 6: Accuracy on three conclusion completion tasks as a function of training corpus size.
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Abstract

An emerging line of research in Explainable
NLP is the creation of datasets enriched with
human-annotated explanations and rationales,
used to build and evaluate models with step-
wise inference and explanation generation ca-
pabilities. While human-annotated explana-
tions are used as ground-truth for the infer-
ence, there is a lack of systematic assessment
of their consistency and rigour. In an attempt
to provide a critical quality assessment of Ex-
planation Gold Standards (XGSs) for NLI,
we propose a systematic annotation method-
ology, named Explanation Entailment Verifica-
tion (EEV ), to quantify the logical validity of
human-annotated explanations.

The application of EEV on three mainstream
datasets reveals the surprising conclusion that
a majority of the explanations, while appear-
ing coherent on the surface, represent logi-
cally invalid arguments, ranging from being in-
complete to containing clearly identifiable log-
ical errors. This conclusion confirms that the
inferential properties of explanations are still
poorly formalised and understood, and that ad-
ditional work on this line of research is nec-
essary to improve the way Explanation Gold
Standards are constructed.

1 Introduction

Explanation Gold Standards (XGSs) are emerging
as a fundamental enabling tool for step-wise and
explainable Natural Language Inference (NLI). Re-
sources such as WorldTree (Xie et al., 2020; Jansen
et al., 2018), QASC (Khot et al., 2020), among oth-
ers (Wiegreffe and Marasović, 2021; Thayaparan
et al., 2020b; Bhagavatula et al., 2020; Camburu
et al., 2018) provide a corpus of linguistic evidence
on how humans construct explanations that are per-
ceived as plausible, coherent and complete.

Designed for tasks such as Textual Entailment
(TE) and Question Answering (QA), these refer-

e-SNLI

Premise: A man in an orange vest leans over a pickup truck.
Hypothesis: A man is touching a truck.
Label: entailment

Explanation: 
Man leans over a pickup truck implies that he is touching it.

Worldtree

Question: Which of the following characteristics would
best help a tree survive the heat of a forest fire?
[A] large leaves [B] shallow roots 
[*C] thick bark [D] thin trunks

Explanation: 
Protecting something means preventing harm.
Fire causes harm to trees, forests, and other living things.
Thickness is a measure of how thick an object is.
A tree is a kind of living thing.

QASC

Question: Differential heating of air can be harnessed for
what?
[*A] electricity production [B] erosion prevention 
[C] transfer of electrons [D] reduce acidity of food

Explanation:
Differential heating of air produces wind.
Wind is used for producing electricity.

Figure 1: Does the answer logically follow from the
explanation? While step-wise explanations are used
as ground-truth for the inference, there is a lack of as-
sessment of their consistency and rigour. We propose
EEV , a methodology to quantify the logical validity
of human-annotated explanations.

ence datasets are used to build and evaluate models
with step-wise inference and explanation genera-
tion capabilities (Valentino et al., 2021; Cartuyvels
et al., 2020; Kumar and Talukdar, 2020; Rajani
et al., 2019). While these explanations are used
as ground-truth for the inference, there is a lack
of systematic assessment of their consistency and
rigour, introducing inconsistency biases within the
models.

This paper aims to provide a critical quality as-
sessment of Eplanation Gold Standards for NLI
in terms of their logical inference properties. By
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systematically translating natural language explana-
tions into corresponding logical forms, we induce
a set of recurring logical violations which can then
be used as testing conditions for quantifying quality
and logical consistency in the annotated explana-
tions. More fundamentally, the paper reveals the
surprising conclusion that a majority of the explana-
tions present in explanation gold standards contain
one or more major logical fallacies, while appear-
ing to be coherent on the surface. This study reveals
that the inferential properties of explanations are
still poorly formalised and understood.

The main contributions of this paper can be sum-
marised as:

1. Proposal of a systematic methodology, named
Explanation Entailment Verification (EEV ),
for analysing the logical consistency of NLI
explanation gold-standards.

2. Validation of the quality assessment method-
ology for three contemporary and mainstream
reference XGSs.

3. The conclusion that most of the annotated
human-explanations in the analysed samples
represent logically invalid arguments, ranging
from being incomplete to containing clearly
identifiable logical errors.

2 Related Work

An emerging line of research in Explainable NLP
is focused on the creation of datasets enriched
with human-annotated explanations and rationales
(Wiegreffe and Marasović, 2021). These resources
are often adopted as Explanation Gold Standards
(XGSs), providing additional supervision for train-
ing and evaluating explainable models capable of
generating natural language explanations in support
of their predictions (Valentino et al., 2021, 2020;
Kumar and Talukdar, 2020; Cartuyvels et al., 2020;
Thayaparan et al., 2020a; Rajani et al., 2019).

XGSs are designed to support Natural Language
Inference, asking human-annotators to transcribe
the reasoning required for deriving the correct pre-
diction (Thayaparan et al., 2020b). Despite the pop-
ularity of these datasets, and their application for
measuring explainability on tasks such as Textual
Entailment (Camburu et al., 2018), Multiple-choice
Question Answering (Xie et al., 2020; Jhamtani
and Clark, 2020; Khot et al., 2020; Jansen et al.,
2018), and other inference tasks (Wang et al., 2020;

Ferreira and Freitas, 2020b,a; Bhagavatula et al.,
2020), little has been done to provide a clear un-
derstanding on the nature and the quality of the
reasoning encoded in the explanations.

Previous work on explainability evaluation has
mainly focused on methods for assessing the qual-
ity and faithfulness of explanations generated by
deep learning models (Camburu et al., 2020; Subra-
manian et al., 2020; Kumar and Talukdar, 2020;
Jain and Wallace, 2019; Wiegreffe and Pinter,
2019). Our work is related to this research, but fo-
cuses instead on the resources on which explainable
models are trained. In that sense, this paper is more
aligned to gold standard evaluation methods, which
aim to design systematic approaches to qualify the
content and the inference capabilities involved in
mainstream NLP benchmarks (Lewis et al., 2021;
Bowman and Dahl, 2021; Schlegel et al., 2020;
Ribeiro et al., 2020; Pavlick and Kwiatkowski,
2019; Min et al., 2019). However, to the best of
our knowledge, none of these methods have been
adopted to provide a critical assessment of human-
annotated explanations present in XGSs.

3 Explanation Gold Standards

Given a generic classification task T , an Explana-
tion Gold Standard (XGS) is a collection of dis-
tinct instances of T , XGS(T ) = {I1, I2, . . . , In},
where each element of the set, Ii = {Xi, si, Ei},
includes a problem formulation Xi, the expected
solution si for Xi, and a human-annotated explana-
tion Ei.

In general, the nature of the elements in a XGS
can vary greatly according to the task T under con-
sideration. In this work, we restrict our investiga-
tion to Natural Language Inference (NLI) tasks,
such as Textual Entailment and Question Answer-
ing, where problem formulation, expected solution,
and explanations are entirely expressed in natural
language.

For this class of problems, the explanation is
typically a composition of sentences, whose role is
to describe the reasoning required to arrive at the
final solution. As shown in the examples depicted
in Figure 1, the explanations are constructed by hu-
man annotators transcribing the commonsense and
world knowledge necessary for the correct answer
to hold. Given the nature of XGSs for NLI, we
hypothesise that a human-annotated explanation
represents a valid set of premises from which the
expected solution logically follows.
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Multiple-choice Question Answering

XGS

Question: Differential heating of air can
be harnessed for what?
[*A] electricity production 
[B] erosion prevention 
[C] transfer of electrons 
[D] reduce acidity of food

Explanation:
Differential heating of air produces wind.
Wind is used for producing electricity.

Differential heating of air
produces wind.
Wind is used for producing
electricity.

Differential heating of air can
be harnessed for electricity
production.

Premises (P)

Conclusion (c)

Φ

ψ

Formulas

Entailment?

Valid and non redundant

Valid, but redundant
premises

Missing plausible
premise

Logical error

No discernible argument

Textual Entailment

XGS

Premise: A man in an orange vest leans
over a pickup truck.
Hypothesis: A man is touching a truck.
Label: entailment

Explanation: 
Man leans over a pickup truck implies
that he is touching it.

A man in an orange vest leans
over a pickup truck.
Man leans over a pickup truck
implies that he is touching it.

A man is touching a truck.

Φ

ψ

Formulas

Entailment?

Valid and non redundant

Valid, but redundant
premises

Missing plausible
premise

Logical error

No discernible argument

(1) Problem definition, (2) formalisation, (3) verification.

(1)

(2)

(3)

(3)

(2)

(1)

Premises (P)

Conclusion (c)

Figure 2: Overview of the Explanation Entailment Verification (EEV ) applied to different NLI problems. EEV
takes the form of a multi-label classification problem where, for a given NLI problem, a human annotator has to
qualify the validity of the inference process described in the explanation through a pre-defined set of classes.

In order to validate or reject this hypothesis, we
design a methodology aimed at evaluating XGSs in
terms of logical entailment, quantifying the extent
to which human-annotated explanations actually
entail the final answer.

4 Explanation Entailment Verification

We present a methodology, named Explanation En-
tailment Verification (EEV ), aimed at quantifying
and assessing the quality of human-annotated ex-
planations in XGS for NLI tasks, in terms of their
logical inference properties.

To this end, we design an annotation frame-
work that takes the form of a multi-label classi-
fication problem defined on a XGS. Specifically,
the goal ofEEV is to label each element in a XGS,
Ii = {Xi, si, Ei}, using one of a predefined set of
classes qualifying the validity of the inference pro-
cess described in the explanation Ei.

Figure 2 shows a schematic representation of
the annotation pipeline. One of the challenges in-
volved in the design of a standardised methodol-
ogy for EEV is the formalisation of an annotation
task that is applicable to NLI problems with differ-
ent shapes, such as Textual Entailment (TE) and
Multiple-choice Question Answering (MCQA). To
minimise the ambiguity in the annotation and make
it independent of the specific NLI task, we define
a methodology composed of three major steps: (1)
problem definition; (2) formalisation; and (3) veri-
fication.

In the problem definition step, each example Ii in

the XGS is translated into an entailment form (P |=
c), identifying a set of sentences P representing the
premises for the entailment, and a single sentence c
representing its conclusion. As illustrated in Figure
2, this step defines an entailment problem with a
single surface form that allows abstracting from the
NLI task under investigation.

In the formalisation step, the sentences in P
and c are translated into a logical form (Φ |= ψ).
Specifically, the formalisation is performed using
event-based semantics, in which verbs correspond
to event-types, and their objects to semantic roles
(additional details on the formalism are provided
in section 4.3). This step aims to minimise the am-
biguity in the interpretation of the meaning of the
sentences, supporting the annotators in the identifi-
cation of logical errors and gaps in the explanations,
and maximise the inter-annotator agreement in the
downstream verification task.

The final step corresponds to the actual multi-
label classification problem. Specifically, the anno-
tators are asked to verify whether the formalised
set of premises Φ entails the conclusion ψ (Φ |= ψ)
and to classify the explanation in the correspond-
ing example Ii = {Xi, si, Ei} selecting one of the
following classes: (1) Valid and non redundant; (2)
Valid, but redundant premises; (3) Missing plausi-
ble premise; (4) Logical error; (5) No discernible
argument. The classes are mutually exclusive: each
example can be assigned to one and only one label.

After EEV is performed for each instance in
the dataset, the frequencies of the classification
labels can be adopted to estimate and evaluate the
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overall entailment properties of the explanations in
the XGS under consideration.

4.1 Problem definition
The problem definition step consists in the identi-
fication of the sentences in Ii = {Xi, si, Ei} that
will compose the set of premises P and the conclu-
sion c for the entailment problem P |= c.

Here, we describe the procedure adopted for
translating a specific NLI task into the entail-
ment problem of interest given its original sur-
face form. In particular, we employ two different
translation procedures for Textual Entailment (TE)
and Multiple-choice Question Answering (MCQA)
problems.

Textual Entailment (TE). For a TE task, the
problem formulation Xi is generally composed of
two sentences, p and h, representing a premise and
a hypothesis (see e-SNLI in figure 1). Each exam-
ple in a TE task can be classified using one of the
following labels: entailment, neutral, and contra-
diction (Bowman et al., 2015). In this work, we
focus on examples where the expected solution si is
entailment, implying that the hypothesis h is a con-
sequence of the premise p. Therefore, to define the
entailment verification problem, we simply include
the premise p in P and consider the hypothesis h as
a the conclusion c. For this class of problems, the
explanation Ei describes additional factual knowl-
edge necessary for the entailment p |= h to hold
(Camburu et al., 2018). Specifically, the sentences
in Ei can be interpreted as a further set of premises
for the entailment verification problem and are in-
cluded in P .

Multiple-choice Question Answering (MCQA).
In the case of MCQA, Xi is typically composed
of a question Qi = {c1, . . . , cn, q}, and a set
of mutually exclusive candidate answers Ai =
{a1, . . . , am} (see QASC and Worldtree in figure
1). In this case, the expected label si corresponds
to one of the candidate answers in Ai (Jansen et al.,
2018; Khot et al., 2020). Qi can include a set of in-
troductory sentences c1, . . . , cn acting as a context
for the question q. We consider each sentence ci in
the context as a premise for q and include it in P .
Similarly to TE, we interpret the explanationEi for
a MCQA example as a set of premises that entails
the correct answer si. Therefore, the sentences in
Ei are included in P . The question q takes the
form of an elliptical assertion, and the candidate
answers are possible substitutions for the ellipsis.

Therefore, to derive the conclusion c, we adopt the
correct answer si as a substitution for the ellipsis in
q. Details on the formalisation adopted for MCQA
problems are described in section 4.3.

4.2 Verification
In the verification step, the annotators adopt the
formalised set of premises Φ and conclusion ψ
to classify the entailment problem in one of the
following categories:

1. Valid and non-redundant: The argument is
formally valid, and all premises are required
for the derivation.

2. Valid, but redundant premises: The argu-
ment is formally valid, but some premises
are not required for the derivation. This in-
cludes the cases where more than one premise
is present, and the conclusion simply repeats
one of the premises.

3. Missing plausible premise: The argument
is formally invalid, but would become valid
on addition of a reasonable premise, such as,
for example, “If x affects y, then a change to x
affects y”, or “If x is the same height as y and
y is not as tall as z then x is not as tall as z”.

4. Logical error: The argument is formally in-
valid, apparently as a result of confusing “and”
and “or” or “some” and “all”, or of illicitly
changing the direction of an implication.

5. No discernible argument: The argument is
invalid, no obvious rescue exists in the form
of a missing premise, and no simple logical
error can be identified.

4.3 Formalisation
In this section, we describe an example of formal-
isation for a MCQA problem. A typical multiple-
choice problem is a triple consisting of a ques-
tion Q together with a set of candidate answers
A1, . . . , Am. It is understood that Q takes the form
of a elliptical assertion, and the candidate answers
are possible substitutions for the ellipsis. The task
is to determine which of the candidate answers
would result in an assertion entailed by some pu-
tative knowledge-base. The corpora investigated
feature a list of multiple-choice textual entailment
problems together, in each case, with a specifica-
tion of a correct answer and an explanation in the
form of a set of assertions Φ from the knowledge
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base providing a justification for the answer. For ex-
ample, the following problem together with its res-
olution is taken from the Worldtree corpus (Jansen
et al., 2018).

Question: A group of students are studying bean
plants. All of the following traits are affected by
changes in the environment except . . .

Candidate answers: [A] leaf color. [B] seed
type. [C] bean production. [D] plant height.

Correct answer: B

Explanation: (i) The type of seed of a plant is
an inherited characteristic; (ii) Inherited character-
istics are the opposite of learned characteristics;
acquired characteristics; (iii) An organism’s envi-
ronment affects that organism’s acquired character-
istics; (iv) A plant is a kind of organism; (v) A bean
plant is a kind of plant; (vi) Trait is synonymous
with characteristic.

In formalising such problems, we represent the
question as a sentence of first-order logic featuring
a schematic formula variable P (corresponding to
the ellipsis), and the candidate answers as first-
order formulas. In the above example, we assume
that the essential force of the question to find a
characteristic of plants not affected by those plants’
environments. That is, we are asked for a P making
the schematic formula

∀xyzwe(bnPlnt(x) ∧ env(y, x)∧
changeIn(z, y) ∧ trait(w, x) ∧ affct(e)∧

agnt(e, z) ∧ P → ¬ptnt(e, w)). (1)

into a true statement. We formalise the correct
answer (B) by the atomic formula sdTp(w, x) “w
is the seed type of x”, with the other candidate
answers formalised similarly. In choosing predi-
cates for formalisation, we typically render com-
mon noun-phrases using predicates, taking these
to be relational if the context demands (e.g. “envi-
ronment/seed type of a plant x”). In addition, we
typically render verbs as predicates whose argu-
ments range over eventualities (events, processes,
etc.), related to their participants via a standard
list of binary “semantic role” predicates (agent, pa-
tient, theme) etc. Thus, to say that “x affects y”
is to report the existence of an eventuality e of
type “affecting”, such that x is the agent of e and
y its patient. This approach, although somewhat
strained in many general contexts, aids standard-
ization and, more importantly, also makes it easier

to deal with adverbial phrases. Of course, many
choices in formalisation strategy inevitably remain.

The knowledge-base excerpt Φ is formalised
straightforwardly as a finite set of first-order formu-
las, following the same general rendering policies.
In the case of the above example, sentences (i), (ii)
and (iv)–(vi) in Φ might be formalised as:

∀xy(plnt(x)∧sdTp(y, x)→ char(y, x)∧inhtd(y))

∀xy(char(x, y) ∧ inhtd(x)→ ¬acqrd(x))

∀x(plnt(x)→ orgnsm(x))

∀x(bnPlnt(x)→ plnt(x))

∀xy(trait(x, y)↔ char(x, y)),

with the more complicated sentence (iii) formalised
as

∀xyw(orgnsm(x) ∧ env(y, x)∧
char(w, x) ∧ acqrd(w)→
∃e(affct(e) ∧ agnt(e, y) ∧ ptnt(e, w)))

(2)

Denoting by ψ the result of substituting sdTp(w, x)
for P in (1), we ask ourselves: Does Φ entail ψ?
A moment’s thought shows that it does not. At the
very least, statement (iii) in the explanation, whose
prima facie formalisation is (2), must instead be
read as asserting that an organism’s environment af-
fects only that organism’s acquired characteristics,
that is to say:

∀xyw(orgnsm(x) ∧ env(y, x) ∧ char(w, x)∧
∃e(affct(e) ∧ agnt(e, y) ∧ ptnt(e, w))→

acqrd(w)).

(3)

This is not unreasonable, of course. Generaliza-
tions in natural language are notoriously vague as
to the direction of implication; let Φ′ be the result
of substituting (3) for (2) in Φ. Does Φ′ entail ψ?
Again, no. The problem this time is that, model-
theoretically speaking, just because something is
affected by a change in its environment, that does
not mean to say it is affected by its environment.
An assertion to the effect that it is would have to
be postulated:

∀xyzw(env(y, x) ∧ changeIn(z, y)∧
∃e(affct(e) ∧ agnt(e, z) ∧ ptnt(e, w))→
∃e(affct(e) ∧ agnt(e, y) ∧ ptnt(e, w))).

Let Φ′′ be the result of augmenting Φ′ in this way.
Then Φ′′ does indeed entail ψ.

80



Feature Worldtree QASC e-SNLI

Task MCQA MCQA TE
Multi-hop yes yes no
Crowd-sourced no yes yes
Explanation type generated + composed composed generated
Avg. number of sentences 6 2 1

Table 1: Features of the datasets selected for the Explanation Entailment Verification (EEV ).

Applying a general principle of charity, it is rea-
sonable to take the interpretation of the explanation
to be given by Φ′. However, the additional premise
required to obtain Φ′′ seems to have been forgot-
ten. Although not a logical truth, it has the status
of a plausible general principle of the kind that is
frequently explicitly articulated in the Worldtree
database. Therefore, we classify this example as a
missing plausible premise.

5 Corpus Analysis

We employ EEV to analyse a set of contempo-
rary XGSs designed for Textual Entailment and
Multiple-choice Question Answering.

In the following sections, we describe the
methodology adopted for extracting a representa-
tive sample from the selected XGSs, and for imple-
menting the annotation pipeline efficiently. Finally,
we present the results of the annotation, reporting
the frequency of each entailment verification class
and presenting a list of qualitative examples to pro-
vide additional insights on the logical properties of
the analysed explanations.

5.1 Selected Datasets

We select three contemporary XGSs with different
and complementary characteristics. In particular,
we apply our methodology to two MCQA datasets
(Worldtree (Jansen et al., 2018), QASC(Khot et al.,
2020)) and one TE benchmark (e-SNLI (Camburu
et al., 2018)).

The main features of the selected XGSs are re-
ported in Table 1. Multi-hop indicates whether the
problem requires step-wise reasoning, combining
more than one sentence to compose the final ex-
planation. Crowd-sourced indicates whether the
resource is curated using standard crowd-sourcing
platforms. Explanation type represents the method-
ology adopted to construct the explanations. Gen-
erated means that the sentences in the explanations
are entirely created by human annotators. On the
other hand, composed means that the sentences are
retrieved from an external knowledge resource. Fi-

nally, the last row reports the average number of
sentences composing the explanations.

5.2 Annotation Task

The bottleneck of the annotation framework lies in
the formalisation phase, which is generally time
consuming and requires trained experts in the field.
In order to make the application of EEV efficient
in practice, we extract a sub-set of n = 100 ex-
amples from each XGS (Worldtree, QASC, and
e-SNLI). To maximise the representativeness of
the explanations in the subset, given a fixed size n,
we combine a set of sampling methodologies with
effect size analysis. The details of the sampling
methodology are described in section 5.3 while the
results are presented in section 5.4. Code and data
adopted for the experiments are available online 1.

The extracted examples are randomly assigned
to 2 annotators with an overlap of 20 instances to
compute the inter-annotator agreement. All the
annotators are active researchers in the field of Nat-
ural Language Processing and Computational Se-
mantics. Table 2 reports the inter-annotator agree-
ment achieved on each dataset separately. Over-
all, we observe an average of 72% accuracy in the
multi-label classification task, computed consider-
ing the percentage of overlaps between the final
entailment verification classes chosen by the anno-
tators.

5.3 Sampling Methodology

To maximise the representativeness of the expla-
nations for the subsequent annotation task, while
analysing a fixed number n of examples for each
dataset, we combine a set of sampling methodolo-
gies with effect size analysis. In this section, we
describe the sampling techniques adopted for each
dataset.

A stratified sampling methodology has been
adopted for the Worldtree corpus (Xie et al., 2020;
Jansen et al., 2018). The stratified sampling con-

1https://github.com/ai-systems/
explanation-entailment-verification/
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sists in partitioning the dataset using a set of classes
and performing random sampling from each class
independently. This strategy guarantees that the
same amount of examples is extracted from each
class. The stratified technique requires the classes
to be collectively exhaustive and mutually exclu-
sive – i.e, each example has to belong to one and
only one class. To apply stratified sampling on
Worldtree, we consider the high-level topics in-
troduced in (Xu et al., 2020), which are used to
classify each question in the dataset according to
one of the following categories: Life, Earth, Forces,
Materials, Energy, Scientific Inference, Celestial
Objects, Safety, Other. The same technique cannot
be applied to e-SNLI (Camburu et al., 2018) and
QASC (Khot et al., 2020) since the examples in
these datasets are not partitioned using any abstract
set of classes. In this case, therefore, we use ran-
dom sampling on the whole dataset to extract a
fixed number n of examples.

Once a fixed number of examples n is extracted
from each dataset, we consider the annotated expla-
nation sentences of each example to verify whether
the extracted set of explanations is representative
of the whole dataset. To perform this analysis, we
assume the predicates in the explanation sentences
to be the expression of the type of knowledge of
the whole explanation. Therefore, we consider
the extracted sample of explanations representative
if the distribution of predicates in the sample is
correlated with the same distribution in the whole
dataset. To this end, we compute the frequencies
of the verbs appearing in the explanation sentences
from the extracted sub-set and original dataset sep-
arately. Subsequently, we compare the frequencies
in the sub-sample with the frequencies in the whole
dataset computing a Pearson correlation coefficient.
In this case, a coefficient greater than .7 indicates
a strong correlation between the types of explana-
tions in the sample and the types of explanations in
the original dataset. After running the sampling for
t times independently, we select the subset of expla-
nations for each dataset with the highest Pearson
correlation coefficient. Table 3 reports the Pearson
correlation for the subsets adopted in our analysis
with fixed sample size n = 100.

5.4 Results

The quantitative analysis presented in this sec-
tion aims to empirically assess the hypothesis that
human-annotated explanations in XGSs constitute

Dataset Agreement Accuracy

Worldtree .70
QASC .70
e-SNLI .75

Table 2: Inter-annotator agreement computed in terms
of accuracy in the multi-label classification task consid-
ering the first annotator as a gold standard.

Dataset Correlation Coefficient

Worldtree .964
QASC .958
e-SNLI .987

Table 3: Effect size analysis of the samples extracted
from each XGS for the downstream EEV annotation.

valid and non-redundant logical arguments for the
expected answers. We report the quantitative re-
sults of the explanation entailment verification in
Table 4. Specifically, the table reports the percent-
age of the frequency of each verification class in
the analysed samples. The column AVG reports the
average for each class.

Overall, we observe that the results of the anno-
tation task tend to reject our research hypothesis,
with an average of only 20.42% of analysed expla-
nations being classified as valid and non redundant
arguments. When considering also valid, but redun-
dant explanations (21.91%), the average percent-
age of valid arguments reaches a total of 42.33%.
Therefore, we can conclude that the majority of the
explanations represent invalid arguments (57.66%).

We observed that the majority of invalid argu-
ments are classified as missing plausible premise.
This finding implies that a significant percentage of
annotated explanations are incomplete arguments
(26.00%), that can be made valid on addition of a
reasonable premise. We attribute this result to the
tendency of human explainers to take for granted
part of the world knowledge required in the expla-
nation (Walton, 2004).

A lower but significant percentage of explana-
tions contain identifiable logical errors (11.19%),
which result from confusing the set of quantifiers
and logical operators, or from illicitly changing the
direction of an implication. Similarly, 20.47% of
the explanations where labeled as no discernible
arguments, where no obvious premise can be added
to make the argument valid and no simple logical
error can be detected. This result can be attributed
partly to natural errors occurring in a gold standard
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Entailment Verification Class Worldtree QASC e-SNLI AVG

Valid and non-redundant 12.24 17.65 31.37 20.42
Valid, but redundant premises 26.53 7.84 31.37 21.91

Missing plausible premise 38.78 21.57 17.65 26.00
Logical error 6.12 17.65 9.80 11.19
No discernible argument 16.33 35.29 9.80 20.47

Valid argument 38.77 25.49 62.74 42.33
Invalid argument 61.23 74.51 37.25 57.66

Table 4: Results of the application of EEV for each entailment verification category.

creation process, partly to the effort required for
human-annotators to identify logical fallacies in
their explanations. In the remaining of this section,
we analyse the results obtained on each XGS.

Worldtree. The analysed sample contains the
highest percentage of incomplete arguments, with
a total of 38.78% explanations classified as missing
plausible premise. This result can be explained
by the fact that the questions in Worldtree require
complex forms of reasoning, facilitating the con-
struction of arguments containing implicit world
knowledge and missing premises. At the same time,
the dataset contains the smallest percentage of logi-
cal errors (6.12%). We attribute this outcome to the
fact that Worldtree is not crowd-sourced, implying
that the quality of the annotated explanations is
more easily controllable using internal verification
methods.

QASC. This XGS contains the highest rate of
invalid arguments (62.74%), with 35.29% of the
explanations classified as no discernible argu-
ment. One of the factors contributing to these
results might be related to the length of the con-
structed explanations, which is limited to 2 facts
extracted from a predefined corpus of sentences.
The high rate of no discernible arguments and miss-
ing premises (35.29% and 21.57% respectively)
suggests that the majority of the questions require
additional world knowledge and more detailed ex-
planations. This conclusion is also supported by
the percentage of valid, but redundant arguments,
which is the lowest among the analysed samples
(7.84%). Finally, the highest rate of logical errors
(17.65%) might be due to a combination of factors,
including the complexity of the question answering
task and the adopted crowd-sourcing mechanism,
which prevent a thorough quality assessment.

e-SNLI. The sample includes the highest percent-
age of valid arguments with a total of 31.37%.

However, we noticed that the complexity of the rea-
soning involved in e-SNLI is generally lower than
Worldtree and QASC, with most of the textual en-
tailment problems being an example of monotonic-
ity reasoning. This observation is supported by the
highest percentage of valid, but redundant cases
(31.37%), where the explanation simply repeats the
content of the conclusion. This occurrs quite often
for examples of lexical entailment, where the words
in the conclusion are a subset of the words in the
premise. The lexical entailment instances, in fact,
do not require any additional world knowledge,
making any attempt of constructing an explanation
redundant. Despite these characteristics, our evalu-
ation suggests that a significant percentage of argu-
ments are invalid (37.25%). Again, this percentage
might be the results of different factors, including
the errors produced by the crowd-sourcing process.

Table 5 reports a set of representative cases ex-
tracted from the evaluated samples. For each en-
tailment verification class, we report an example
extracted from the XGS with the highest percent-
age of instances in that class.

5.5 Contrastive Explanations
Previous studies highlight the fact that explanations
are contrastive in nature, that is, they describe why
an event P happened instead of some counterfactual
event Q (Miller, 2019; Lipton, 1990). Following
this definition, we perform an additional analysis
to verify whether the explanations contained in
MCQA datasets are contrastive with respect to the
wrong candidate answers – i.e., the explanation
supports the validity of the correct answer while
excluding the set of alternative choices. In order
to quantify this aspect, we asked the annotators to
label the questions with more than one plausible
answer, whose explanations do not mention any
discriminative commonsense or world knowledge
that explains why the gold answer is correct instead
of the alternative choices.
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Problem Formulation Explanation XGS

Valid and non-redundant (20.42%)

Premise: A smiling woman is playing the violin in front
of a turquoise background. Hypothesis: A woman is
playing an instrument.

A violin is an instrument. e-SNLI

Valid, but redundant premises (21.91%)

Premise: Four people are bandaging a head wound. Hy-
pothesis: People are bandaging an injured head.

People are bandaging an injured head wound. e-SNLI

Missing plausible premise (26.00%)

Question: A group of students are studying bean plants.
All of the following traits are affected by changes in the
environment except [A] Leaf color [*B] Seed type [C]
Bean production [D] Plant height

The type of seed of a plant is an inherited characteris-
tic. Inherited characteristics are the opposite of learned
characteristics; acquired characteristics. An organism’s
environment affects that organism’s acquired characteris-
tics. A plant is a kind of organism. Trait is synonymous
with characteristic.

Worldtree

Logical error (11.19%)

Question: What group of animals do chordates belong
to? [A] graptolites [B] more abundant [C] warm-blooded
[D] four limbs [E] epidermal [*F] Vertebrates [G] ani-
mals [H] insects

Chordates have a complete digestive system and a closed
circulatory system. Vertebrates have a closed circulatory
system.

QASC

No discernible argument (20.47%)

Question: What do plants require for reproduction? [A]
energy [B] nutrients [C] bloom time [*D] animals [E]
sunlight [F] Energy. [G] food [H] hormones

Plants require seed dispersal for reproduction. Seeds are
probably dispersed by animals.

QASC

Table 5: Examples of explanations classified with different entailment verification categories.

Dataset Non contrastive explanations

Worldtree 26.53
QASC 49.02

Table 6: Percentage of explanations in the MCQA sam-
ple labeled as non contrastive.

The results of this experiment are reported in
Table 6. Overall, we found that a significant per-
centage of explanations are labeled as non con-
trastive. This outcome is particularly evident for
QASC. We attribute these results to the presence of
multi-adversary answer choices in QASC, which
are generated automatically to make the dataset
more challenging for language models. However,
we found that this mechanism can produce ques-
tions with more than one plausible correct answer,
which can cause the explanation to loose its con-
trastive function (see QASC examples in Table 5).

6 Conclusion and Future Work

This paper proposed a systematic annotation
methodology to quantify the logical validity of
human-annotated explanations in Explanation Gold
Standards (XGSs). The application of the frame-
work on three mainstream datasets led us to the

conclusion that a majority of the explanations rep-
resent logically invalid arguments, ranging from
being incomplete to containing clearly identifiable
logical errors.

The main limitation of the framework lies in
the scalability of its current implementation, which
is generally time consuming and requires trained
semanticists. One way to improve its efficiency
is to explore the adoption of supporting tools for
the formalisation, such as semantic parsers and/or
automatic theorem provers.

Despite the current limitations, this study offers
some important pointers for future work. On the
one hand, the results suggest that logical errors can
be reduced by a careful design of the gold standard,
such as authoring explanations with internal ver-
ification strategies or reducing the complexity of
the reasoning task. On the other hand, the finding
that a large percentage of curated explanations still
represent incomplete arguments has a deeper impli-
cation on the nature of explanations and on what
annotators perceive as a valid and complete logical
argument. Therefore, we argue that future progress
on the design of XGSs will depend, among other
things, on a better formalisation and understanding
of the inferential properties of explanations.
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Abstract
Eye-tracking psycholinguistic studies have
suggested that context-word semantic coher-
ence and predictability influence language pro-
cessing during the reading activity.

In this study, we investigated the correlation
between the cosine similarities computed with
word embedding models (both static and con-
textualized) and eye-tracking data from two
naturalistic reading corpora. We also studied
the correlations of surprisal scores computed
with three state-of-the-art language models.

Our results show strong correlation for the
scores computed with BERT and GloVe, sug-
gesting that similarity can play an important
role in modeling reading times.

1 Introduction

Eye-tracking data recorded during reading provide
invaluable evidence about the factors influencing
language comprehension. Research in computa-
tional modeling has particularly focused on two
factors: i.) the semantic coherence of a word with
the rest of the sentence (Ehrlich and Rayner, 1981;
Pynte et al., 2008; Mitchell et al., 2010), measured
via semantic similarity metrics and ii.) its pre-
dictability from previous context, as measured by
surprisal (Hale, 2001; Levy, 2008). Intuitively,
words that have low semantic coherence and low
in-context predictability (i.e., high surprisal) induce
longer reading times.

In distributional semantics (Lenci, 2018), words
and their sentence contexts are represented with
dense vectors called embeddings and produced by
Distributional Semantic Models (DSM). In this pa-
per, we modeled semantic coherence with the co-
sine similarity between the embeddings of words
and their sentence contexts, and then we tested the
correlation of the metric with the eye-tracking mea-
sures annotated on the GECO and Provo corpora.
We analyzed the correlations for the similarity com-
puted with 10 different embedding models (both

static and contextualized), as well as for surprisal
scores computed with several state-of-the-art neu-
ral language models. Among all the features under
investigation, the similarity scores obtained with
BERT and GloVe obtained the best correlations
across features in both the benchmark corpora.

2 Related Work

Hollenstein et al. (2019) proposed a framework
to evaluate six state-of-the-art word embedding
models (GloVe, Word2Vec, WordNet2Vec, Fast-
Text, ELMo, BERT). The evaluation was based on
the model capability to reflect semantic represen-
tations in the human mind, using cognitive data in
different datasets for eye-tracking, EEG, and fMRI.
Word embedding models were used to train neural
networks on a regression task. While we aim at
creating a computational model of the relationship
between context processing and the integration of a
new word during naturalistic reading, Hollenstein
et al. (2019) evaluated embedding models on the
prediction of out-of-context word features. The
results of their analyses showed that BERT, ELMo,
and FastText have the best prediction performances.
On the other hand, approaches based on powerful
Transformers language models were outperformed
by a classifier using linguistic and psychometric
features (Bestgen, 2021) in the recent CMCL 2021
Shared Task on Eye-Tracking Data Prediction (Hol-
lenstein et al., 2021).

A series of contributions explored the role of
surprisal in modeling reading times in naturalistic
settings, coming to the general conclusion that the
predictive power is strongly related to the language
model quality, i.e. models with better perplex-
ity perform better (Smith and Levy, 2013; Good-
kind and Bicknell, 2018). Later work explored the
most recent neural models, including LSTM (van
Schijndel and Linzen, 2018), GRU (Aurnhammer
and Frank, 2019), Transformers (Merkx and Frank,
2020) and GPT-2 (Wilcox et al., 2020), basically
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confirming this relationship.1

Early studies had also found correlations be-
tween semantic distance, computed by word em-
beddings, and eye-tracking features in reading pro-
cesses (Pynte et al., 2008; Mitchell et al., 2010).
However, the more recent work by Frank (2017)
pointed out that, since word embeddings are based
on co-occurrences, semantic distance may actually
represent word predictability, rather than seman-
tic relatedness, and that those early findings were
actually due to a confound between these two con-
cepts. To test this hypothesis, the author used linear
regression models with and without surprisal, test-
ing 5 surprisal measures. The results show that
the effects of similarity on reading times disappear
when surprisal is factored out, thereby proving the
existence of a complex interplay between the two
factors. Frank’s experiments were carried out in
a naturalistic reading setting and, to our knowl-
edge, there have been no eye-tracking studies with
controlled stimuli investigating a possible separate
effect of the two components (for example, by com-
paring the fixation patterns of words that have low
predictability, but different degrees of coherence
with the sentence or with the discourse context).

3 Experimental Setting

3.1 Datasets

Traditional corpora annotated with eye-tracking
data consist of short isolated sentences (or even
single words) with particular structures or lexemes,
in order to investigate specific syntactic and se-
mantic phenomena. In the present work, we used
GECO (Cop et al., 2017) and Provo (Luke and
Christianson, 2018), two eye-tracking corpora con-
taining long, complete, and coherent texts. GECO
is a monolingual and bilingual (English and Dutch)
corpus composed of the entire Agatha Christie’s
novel The Mysterious Affair at Styles. The corpus
is freely downloadable with a related dataset con-
taining eye-tracking data of 33 subjects (19 of them
bilingual, 14 English monolingual) reading the full
novel text, presented paragraph-by-paragraph on
a screen. GECO is composed of 54, 364 tokens.
Provo contains 55 short English texts about var-
ious topics, with 2.5 sentences and 50 words on
average, for a total of 2, 689 tokens, and a vocabu-

1Notice however that doubts have been raised on the relia-
bility of perplexity as a metric for comparing large pretrained
models, since it does not allow to compare models with differ-
ent vocabularies (Hao et al., 2020).

lary of 1, 197 words. These texts were read by 85
subjects and their eye-tracking measures were col-
lected in an available on-line dataset. GECO and
Provo data are particularly interesting because they
are recorded during naturalistic reading, instead of
short selected stimuli.

For every word in the corpora, we extracted its
mean total reading time, mean first fixation dura-
tion, and mean number of fixations, by averaging
over the subjects. The choice of modeling mean
eye-tracking measures is justified by the high inter-
subject consistency of the recorded data. For in-
stance, Cop et al. (2017) report an overall inter-
subject correlation of 0.9 for the total reading times
in GECO.

3.2 Word Embeddings
Table 1 shows the embeddings types used in our
experiments, consisting of 6 non-contextualized,
static DSMs and 4 contextualized DSMs. The for-
mer include predict models (SGNS and FastText)
(Mikolov et al., 2013; Levy and Goldberg, 2014;
Bojanowski et al., 2017) and count models (SVD
and GloVe) (Bullinaria and Levy, 2012; Penning-
ton et al., 2014). 2 Four DSMs are window-based
and two are syntax-based (synt). Embeddings have
300 dimensions and were trained on a corpus of 3.9
billion tokens ca. (a concatenation of ukWaC and a
2018 dump of Wikipedia). Pre-trained contextual-
ized embeddings include the 512-dimensional vec-
tors produced by the three layers of the ELMo bidi-
rectional LSTM architecture (Peters et al., 2018),
the 1, 024-dimensional vectors produced by the
24-layers BERT-Large Transformer architecture
(BERT-Large, Cased) (Devlin et al., 2019), the
1, 600-dimensional vectors by GPT2-xl (Radford
et al.), and finally, the 200-dimensional vectors pro-
duced by the Neural Complexity model by van
Schijndel and Linzen (2018).

3.3 Method
Our main goals were to investigate the potential
contribution of cosine similarity in predicting eye-
tracking features, to compare different word em-
bedding models, and then to evaluate whether the
information represented by cosine similarity is sim-
ilar to the one represented by surprisal.

For each target word w in GECO and Provo, we
measured the cosine similarity between the em-
bedding of w and the embedding of the context

2For the distinction between count and predict DSM, we
refer to Baroni et al. (2014).
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Model Hyperparameters
Non-contextualized DSMs
SVD.w2 count DSM with 345K window-selected context words, window of width 2, reduced with SVD
SVD.synt count DSM with 345K syntactically typed context words reduced with SVD
GloVe count DSM with context window of width 2, reduced with log-bilinear regression
SGNS.w2 Skip-gram with negative sampling, context window of width 2, 15 negative examples
SGNS.synt Skip-gram with negative sampling, syntactically-typed context words, 15 negative examples
FastText Skip-gram with subword information, context window of width 2, 15 negative examples
Contextualized DSMs
ELMo Pretrained ELMo embeddings on the 1 Billion Word Benchmark
BERT Pretrained BERT-Large embeddings on the concatenation of the Books corpus and Wikipedia
GPT2-xl Pretrained GPT2-xl embeddings on WebText
Neural Complexity Pretrained Neural Complexity embeddings on Wikipedia

Table 1: List of the embedding models used for the study, together with their hyperparameter settings.

c formed by the previous words in the same sen-
tence. We then computed the Spearman correlation
between the cosine and the eye-tracking data for
w (total reading time, first fixation duration, and
number of fixations). To create context embedding,
we used an additive model: the context vector is
the sum of all its word embeddings.

Given the bidirectional nature of BERT, the input
to this model needed a special pre-processing: To
prevent that the vectors representing words within
the context were computed using the target word
itself, we passed to BERT a list of sub-sentences,
each of which were composed of context words
only. So given the sentence The dog chases the cat:
S[0] = [”The”]
S[1] = [”The dog”]
S[2] = [”The dog chases”]
S[3] = [”The dog chases the”]
S[4] = [”The dog chases the cat”]
Starting from the second sub-sentence, the cosine
similarity was computed between the last word
vector and the sum of words vectors belonging to
the previous sub-sentence (list element). So, to
compute the cosine similarity between cat and the
previous context, we selected cat from S[4] and
The+ dog + chases+ the from S[3].

For BERT we used as context also the embed-
ding produced by the model for the special token
CLS, which is created using a weighted additive
model. As for the simple additive model, BERT
was fed with sub-sentences, and for each target
word the CLS-context-vector was the one com-
puted at the previous list element. In the previous
example, given cat as target word, we used the CLS
vector representing all the S[3] elements.

Given the positive effect of semantic coherence
on language processing, we expected that the eye-
tracking data for w had a negative correlation with
its cosine similarity with c: The higher the cosine,

the lower the reading time of w measured by
eye-tracking.

We used BERT, GPT2-xl and Neural Complex-
ity to compute word-by-word surprisal. Like with
cosine similarity, the input sentences for BERT
were organized in sub-sentences, and the last token
(i.e., the target word), was replaced with the spe-
cial tag [MASK]. Finally, we computed the Spear-
man correlation between the surprisal of w, and
the eye-tracking data for the target word. Differ-
ently from the cosine, we expected the surprisal
to be positively correlated with the word reading
time: The less predictable a word is, the slower
its processing will be.

The analyses have been performed with the fol-
lowing models: 6 values of cosine similarity be-
tween non-contextualized vectors, 51 values of co-
sine similarity between contextualized vectors (48
from 24 layers of BERT in two different ways to
compute the context vector, and 3 from ELMo,
GPT2-xl and Neural Complexity), 3 values of sur-
prisal from BERT, GPT2-xl, Neural Complexity.

4 Results and Discussion

Looking at the correlations results, it is clear that
every model performed better on Provo. One pos-
sible explanation for this difference is that GECO
eye-tracking data are recorded on participants read-
ing a literary text, while Provo materials are online
news articles, science magazines and only partially
short text from works of fiction. The consequence
is a difference in the syntactic complexity of sen-
tence structure and in the frequency of words. This
gap implies that the modeling of GECO contexts
is less directly reducible to an additive fashion of
processing, and, most importantly, is more likely
to find Out Of Vocabulary words in GECO, rather
than in Provo.
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Corpus Model total reading time 1st fix. duration number fixations

GECO

BERT Additive (22)
BERT CLS (22)
ELMo (1)
FastText
GloVe
SGNS.w2
SGNS.synt
SVD.w2
SVD.synt
GPT2-xl
NC

-0.54
-0.57
-0.35
-0.39
-0.45
-0.40
-0.30
-0.07
-0.24
-0.05
-0.12

-0.53
-0.56
-0.34
-0.38
-0.44
-0.39
-0.29
-0.06
-0.23
-0.05
-0.11

-0.55
-0.58
-0.36
-0.40
-0.46
-0.40
-0.30
-0.07
-0.24
-0.05
-0.12

Provo

BERT Additive (22)
BERT CLS (22)
ELMo (1)
FastText
GloVe
SGNS.w2
SGNS.synt
SVD.w2
SVD.synt
GPT2-xl
NC

-0.65
-0.71
-0.36
-0.57
-0.65
-0.60
-0.42
-0.03
-0.32
-0.37
-0.16

-0.66
-0.72
-0.36
-0.56
-0.65
-0.60
-0.42
-0.02
-0.32
-0.38
-0.17

-0.66
-0.71
-0.37
-0.57
-0.66
-0.60
-0.43
-0.03
-0.32
-0.38
-0.17

Table 2: Spearman correlations between the target-context cosine and the eye-tracking measures. Numbers in
parenthesis indicate models’ layers.

Corpus Model total reading time 1st fixation duration number fixations

GECO
BERT
GPT2-xl
NC

0.28
0.41
0.31

0.26
0.39
0.30

0.28
0.41
0.32

Provo
BERT
GPT2-xl
NC

0.25
0.44
0.46

0.24
0.43
0.48

0.24
0.44
0.46

Table 3: Spearman correlations between surprisal and eye-tracking measures.

Another aspect that is quite evident are the simi-
lar correlation values among different eye-tracking
features. This aspect is not surprising: in the origi-
nal datasets of GECO and Provo, it can be noticed
that many words show the same value for the total
reading time and the first fixation duration. This
happens when i) the word is not read (0 ms for
both the features); ii) the word is read only once (to-
tal reading time and first fixation duration overlap).
Also regarding the similar values of the correlations
between similarity and number of fixations and be-
tween similarity and total reading times, taking into
account the original data gives us an explanation of
the results: since the total reading time is computed
summing the duration of all the multiple fixations,
the higher the number of fixation, the higher the to-
tal reading time, leading to a similar tendency in the
values of the two features. For these reasons, the
total reading time may be considered as a “bridge”
field, that holds close relations with both first fix-
ation duration and number of fixations, justifying
the similar correlation values in our results.

Comparing word embedding models, we may

notice that correlations can reach very high values,
up to −0.71 for the total reading time (by BERT
CLS layer 22), suggesting that semantic coherence
-modeled as cosine similarity between context and
target- can be a strong predictor of eye-tracking
measures of reading process. GloVe (mean correla-
tion over eye-tracking features on GECO: −0.45,
on Provo: −0.65) and BERT (mean correlation
over eye-tracking features on GECO: −0.57, on
Provo: −0.71) score the best results on both cor-
pora, and in the latter case the [CLS] context model
brings some advantage over the simple additive one.
The lower BERT layers show a steadily decreasing
performance (see Figure 1). This was expected
because, as it was pointed out in the layers analy-
sis by Tenney et al. (2019), the BERT architecture
reproduces the classical NLP pipeline: the lower
layers process mainly the syntactic information,
while the highest ones give a more precise repre-
sentation of semantic relations. We also notice
a strong variability among the embedding mod-
els, which is orthogonal to the contextualized vs.
non-contextualized dichotomy. The ELMo contex-
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tualized vectors perform much worse than BERT
ones, probably because they have a lower degree of
contextualization, and syntax-based count models
are not significantly worse than predict DSMs.

Figure 1: Spearman’s correlation of different layers of
BERT on GECO.

Regarding the correlations between the target
word surprisal computed with BERT, GPT2-xl and
Neural Complexity (NC) and the eye-tracking mea-
sures (see Table 3), the first striking fact is that the
absolute values are generally lower than the scores
obtained with the cosine (higher correlations are
reached by GPT2-xl con GECO, mean correlation
= 0.40, and by NC on Provo, mean correlation =
0.47). This might prompt us to conclude that sur-
prisal is a much weaker predictor than semantic
coherence. However, a significant negative corre-
lation between cosine similarity and surprisal (e.g.
with BERT it is −0.40 on GECO and −0.32 on
Provo) supports the hypothesis by Frank (2017)
that there is a strong overlap between semantic
coherence and surprisal. Factoring out the contri-
bution of these two factors on eye-tracking features
will be the next step of our research work.

5 Conclusions and ongoing work

In this paper, we have used contextualized and
non-contextualized DSMs to compute the cosine
between a target word and the previous sentence
context. Our results show that cosine similarity is
able to achieve very high correlations with the eye-
tracking metrics of GECO and Provo, especially
with the BERT and GloVe models, providing fur-
ther evidence that semantic coherence is potentially
very useful in modeling reading times. Further-
more, we computed word-by-word surprisal using
BERT, GPT2-xl, and Neural Complexity.

Among the language models, the best results
have been achieved by GPT2-xl, confirming the

previous findings that Transformers are very good
at modeling sentence processing metrics (Wilcox
et al., 2020; Hao et al., 2020; Merkx and Frank,
2021). However, the absolute value of correlation
is lower than the one obtained with cosine simi-
larity scores: for example, the mean correlation
achieved on Provo with the cosine similarity be-
tween vectors produced by BERT is −0.71, while
the correlation between eye tracking features and
the surprisal computed by the same model is 0.24.
The comparison between correlations reached by
cosine similarity and surprisal may lead us to the
conclusion that semantic coherence is a stronger
predictor of eye-tracking features than word pre-
dictability. However, given the significant degree of
correlation between cosine similarity and surprisal,
further investigations are needed to disentangle the
two factors.

Our next step will be to include Transformers-
based surprisal and vector-based cosine similar-
ity in a large-scale regression study to predict eye
tracking features, in order to ensure a close compar-
ison with the experimental setting of Frank (2017),
and to investigate if semantic similarity models
can actually play a distinct role from surprisal in
the prediction of reading times. Differently from
Frank (2017), we plan to test with several regres-
sion models, from a simple linear regression to
more advanced regression models (e.g. Gradient
Boosting, Multilayer Perceptron etc.), and with dif-
ferent word embedding models, in order to account
for the different types of semantic similarity com-
puted by static and contextualized embeddings.
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Abstract

We investigate frame semantics as a meaning
representation framework for team communi-
cation in a disaster response scenario. We fo-
cus on the automatic frame assignment and re-
train PAFIBERT, which is one of the state-of-
the-art frame classifiers, on English and Ger-
man disaster response team communication
data, obtaining accuracy around 90%. We ex-
amine the performance of both models and dis-
cuss their adjustments, such as sampling of ad-
ditional training instances from an unrelated
domain and adding extra lexical and discourse
features to input token representations. We
show that sampling has some positive effect on
the German frame classifier, discuss an unex-
pected impact of extra features on the models’
behaviour and perform a careful error analysis.

1 Introduction

In this paper we employ the theory of frame se-
mantics as a meaning representation framework
for dialogues from the domain of disaster response.
Our work is part of a larger research project devel-
oping methods to capture and interpret verbal team
communication in disaster response scenarios and
use the extracted run-time mission knowledge for
mission process assistance, as described in (Willms
et al., 2019). Team communication interpretation
encompasses several aspects, some of which have
been addressed in earlier publications of our team:
(Anikina and Kruijff-Korbayova, 2019) present di-
alogue act classification results; (Skachkova and
Kruijff-Korbayova, 2020) provide an analysis of
contextual reference phenomena. The present pa-
per complements this by results on semantic frame
assignment. To our knowledge, our work is the first
to use semantic frames in the domain of disaster re-
sponse, and one of the few attempts implementing
a frame classifier for dialogue.

Frame semantics is a paradigm defining the

meaning of words through the context they are used
in (Fillmore, 1976). This assumes that, depending
on context, a word (or an expression) is able to
evoke in our minds a certain event or situation to-
gether with a set of slots called frame elements
associated with it, even if some of these slots were
not explicitly filled in the sentence.

Using frame semantics as a meaning representa-
tion requires frame semantic parsing, namely iden-
tifying frame-evoking elements (targets) and the
corresponding frames, as well as recognizing cer-
tain spans as frame elements and classifying them.
In this paper we address the task of automatic se-
mantic frame assignment, given a target. The nov-
elty is that we work on English and German dia-
logues in robot-assisted disaster response teams.

We use the TRADR corpus (Kruijff-Korbayová
et al., 2015), which contains transcribed commu-
nication in teams of firefighters using robots for
incident site reconnaissance during a series of ex-
ercises that simulated situations after a disaster,
such as a fire, explosion, etc. Towards the aim of
creating structured representations of the events
and activities during a first response mission by
means of semantic frames, we experiment with
some existing models. We start with a simple se-
quence classification approach that assumes fine-
tuning of a pretrained BERT model (Devlin et al.,
2019) on the TRADR corpus. Next, we use one of
the existing state-of-the-art frame classifiers called
PAFIBERT (Tan and Na, 2019). We re-implement
and train it on the English FrameNet (Baker et al.,
1998) data, and evaluate the model on English
TRADR dialogues. We also experiment with re-
training PAFIBERT on the TRADR data, despite the
small corpus size. In addition, we investigate a pos-
sibility of training a frame classifier on mixed data
- FrameNet or SALSA (Burchardt et al., 2006) plus
TRADR - and consider three sampling approaches.
Finally, we examine whether enriching the input
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with lexical and discourse features has an effect
on the classifier performance. In contrast to many
papers that report standard accuracy or F-score to
measure the performance of a frame classifier, we
use the index of balanced accuracy metric (Garcı́a
et al., 2009) designed specifically for imbalanced
data.

In Section 2 we give a brief overview of the the-
ory of frame semantics. In Section 3 we introduce
the most notable frameworks designed to perform
automatic frame assignment or frame-semantic
parsing. In Section 4 we examine the distribution
of semantic frames and the role of ambiguous tar-
gets in the TRADR corpus, compare our data with
FrameNet and SALSA, and explain how we pre-
pared and split all the data into training, validation
and test sets. Section 5 describes the experiments
and their results. In Section 6 we make a conclu-
sion and indicate possible further steps.

2 Frame Semantics

According to Petruck (2019), frame semantics is
a research program in empirical semantics which
emphasizes the continuities between language and
experience, and provides a framework for present-
ing the results of that research.

The theory of frame semantics goes back to the
1970s. One of the pioneers in this area was Charles
J. Fillmore. He suggested that a language descrip-
tion should include not only lexicon and grammar,
but also a set of ‘frames’ that incorporate the se-
mantics of the language elements (Fillmore, 1976).
Fillmore (1982) uses the word ‘frame’ as a general
cover term for such concepts as ‘schema’, ‘script’,
‘scenario’, or ‘cognitive model’. He defines a frame
as a system of concepts which are related to each
other, and states that one cannot understand a con-
cept without understanding the whole structure it
is a part of. Frame semantics tries to describe and
formalize such structures.

The FrameNet project (Baker et al., 1998) is
considered one of the first practical realizations of
the theory of frame semantics for English. One
of its achievements was the creation of a lexical
database that covers more than 13,000 word senses,
is both human- and machine-readable and available
online. Besides, more than 200,000 sentences were
annotated with about 1,200 semantic frames, and
are now known as the FrameNet corpus.

Examples 2.1 and 2.2 present a definition of the
Inspecting frame and its frame elements (FEs), an-

notated with respect to the target inspected. Note
that FEs can be ‘core’ (i.e. essential to the mean-
ing of a frame) and ‘non-core’ (i.e. not uniquely
characterizing). Usually, core FEs are part of the
frame definition, like INSPECTOR and GROUND in
Example 2.2.

Example 2.1 ‘Inspecting’ Frame Definition
An INSPECTOR directs his/her perceptual attention
to a GROUND to ascertain whether the GROUND

is intact or whether an UNWANTED ENTITY is
present. Alternatively, the desired outcome of the
inspection may be presented as a PURPOSE.

Example 2.2 ‘Inspecting’ Frame’s FEs
[INSPECTOR He] moved toward the control panel
and [TARGET inspected] [GROUND it]
[LOCATION OF PROTAGONIST from a distance], [MEANS

without touching it].

Databases similar to FrameNet were also created
for other languages. In Section 4 we compare
the FrameNet corpus and its German counterpart
SALSA with the TRADR data.

3 Related Work

Frame semantics is not one of the most common
meaning representation frameworks. However, re-
search in the area of frame-semantic parsing has
increased since frame-semantic structure extraction
was included as a task in SemEval’07 (Baker et al.,
2007). Most of the existing works present models
trained on text data. Some of the projects deal only
with automatic frame assignment, others have a
bigger goal, namely, recognizing targets, frames
and frame elements. In what follows we will focus
on automatic frame assignment.

Most of the early frameworks are based on
the idea of learning the frame labels from frame-
evoking targets represented as rather elaborated
sets of features, which include the target’s lemma,
its part of speech, etc. Many features rely on depen-
dency syntax. For non-ambiguous targets a frame
can be retrieved using a simple mapping. If the
target is ambiguous, the correct label is learned us-
ing a Naive Bayes classifier, e.g., as shown by Erk
(2005), or an SVM classifier like in the framework
called LTH (Johansson and Nugues, 2007), or a dis-
criminative probabilistic (log-linear) model like in
SEMAFOR by Das et al. (2010).

The success of neural networks for many NLP

tasks resulted in a gradual switch from the feature-
based approaches to embeddings and a broader
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usage of neural networks for the task of automatic
frame assignment. One of the first semantic parsers
to use embeddings was developed by Hermann
et al. (2014). They represent targets as vectors,
certain parts of which are reserved for certain ar-
gument representations. All frame labels are also
vectors, and the classifier learns to minimize the
distance between the targets and the correct la-
bels. Other frameworks based on embeddings and
various types of neural networks include Simple-
FrameId (Hartmann et al., 2017) - a two-layer net-
work which also allows to perform frame filtering
using mappings of certain lexical units to certain
frames from the FrameNet database; a framework
by Yang and Mitchell (2017) that performs frame
identification using a simple multi-layer network;
TSABCNN (Zhao et al., 2018), which uses word2vec
embeddings and convolutional neural networks.

Recently, there appeared frameworks that rely
on BERT embeddings and pretrained models. E.g.,
PAFIBERT (Tan and Na, 2019) fine-tunes the pre-
trained BERT model using an attention mechanism
to give weights to words that make up the context
of the target. An interesting alternative approach
was presented by Kalyanpur et al. (2020). They
interpret frame-semantic parsing as a sequence-to-
sequence generation problem. Their approach is
based on the encoder-decoder architecture, namely
on the T5 model, which is available via the Hug-
gingFace library (Wolf et al., 2020).

Ribeiro et al. (2020) treat automatic frame as-
signment as a clustering problem. They focus on
verbal frame-evoking targets and represent them
using contextualized ELMo embeddings. The tar-
gets are treated as nodes in a graph, and clustered
using the Chinese Whispers algorithm (Biemann,
2006). A new instance is classified by determining
the closest cluster.

All the above frameworks were trained on text
data. We found only two frame-semantic parsers
designed specifically for dialogue. One of them
was created in the course of the LUNA project (Ray-
mond et al., 2008) and focuses mostly on frame
element classification (Coppola et al., 2008). The
other was presented by Trione et al. (2015). Its
main goal is actually to speed up the manual an-
notation process, not pure frame-semantic parsing.
Frames are detected with the help of a hand-crafted
set of lexical triggers, which includes 200 most
frequent words from 7 domains.

A comparison of the frameworks mentioned

above, as well as the results of their evaluation
on the test data can be found in Appendix D. We
do not place them here for space reasons.

For the experiments on the TRADR data pre-
sented in this paper we have chosen the PAFI-
BERT approach (Tan and Na, 2019). PAFIBERT

is one of the state-of-the-art frame classifiers, it
showed about 89% accuracy when evaluated on the
FrameNet test set, and it is easy to re-implement.

4 Data for experiments

The TRADR corpus consists of 15 files with dia-
logues, six files contain dialogues in English, and
nine - in German. Six German dialogues were
translated into English in order to get more English
training data. TRADR dialogues comprise the com-
munication in first responder teams using robots
for disaster site reconnaissance. Each team consists
of several operators (OP) who control ground and
airborne robots, a team leader (TL) and sometimes
also a mission commander (MC).

Table 1 shows the distribution of dialogue turns,
utterances and tokens between the mission partic-
ipants in both English and German TRADR dia-
logues. Also, average numbers of utterances per
turn and tokens per utterance are given. We see
that both English and German parts of the data con-
tain approximately the same number of dialogue
turns, however the turns in the English dialogues
are slightly longer, and as a result the English part
of the corpus is 1.5 times larger. The utterances are
usually rather short - 7-9 tokens on average, as the
team participants try to be brief and precise.

MC TL OP Total
German data

# Dialogue turns 60 984 1,020 2,064
# Utterances 61 997 1,027 2,085
# Tokens 526 6,165 7,875 14,566
Avg. # utt. per DT 1.02 1.01 1.01 1.01
Avg. # tokens per utt. 8.62 6.18 7.67 6.99

English data (including translations)
# Dialogue turns 60 1,013 1,021 2,094
# Utterances 61 1,306 1,186 2,553
# Tokens 820 9,983 11,353 22,156
Avg. # utt. per DT 1.02 1.29 1.16 1.23
Avg. # tokens per utt. 13.44 7.64 9.57 8.68

Table 1: TRADR corpus overview

We annotated the utterances in the English
TRADR dialogues with frame-evoking targets, cor-
responding lexical units (LUs), frames and parent
frames. Frame elements were not annotated. The
German TRADR data was annotated similarly, ex-
cept that we replaced targets and LUs with ‘tar-
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get related elements’, which represent the whole
phrase that the target is a part of. We assumed that
each utterance can potentially have several targets
or groups of frame related elements. As a result,
the number of frame instances in the TRADR cor-
pus is larger than the number of utterances given in
Table 1. While annotating our data with semantic
frames we tried to follow the FrameNet annotation
guidelines (Ruppenhofer et al., 2006). Due to the
specifics of our domain, many FrameNet frame def-
initions had to be adapted. Also, ten new frames
were introduced. The English and German parts of
the corpus were annotated by two different anno-
tators. To check the reliability of the annotation,
one dialogue in German (534 frame instances) was
also annotated by the person responsible for the an-
notation of the English dialogues. Inter-annotator
agreement measured using Cohen’s Kappa (Car-
letta, 1996) reached 0.73, which is considered re-
liable. A team communication example annotated
with semantic frames, as well as the definitions of
the new frames are available in Appendix C. We
are making the annotated data available online.1

In total, the English and German parts of the
TRADR corpus contain 4,191 and 3,519 frame
instances, respectively. These instances are dis-
tributed between 190 (English) and 152 (German)
different frame labels. The distribution of the frame
labels is not uniform.Thus, in English TRADR al-
most 60% of all the instances belong to the top ten
most frequent frames, and 137 out of 190 frames
have only ten or less samples, which all together
make up about 10% of the data. In German TRADR

the instances of the top ten most frequent frames
make up approximately 58%, and instances of 105
infrequent frames - almost 11% of the data. The
fact that the TRADR data is highly imbalanced mo-
tivates the choice of performance metrics for the
evaluation of the frame classifiers that will be dis-
cussed in the next section.

The English TRADR data counts 434 different
LUs. Their distribution is also not uniform: the top
ten most common LUs occur in about 40% of all the
utterances and at the same time make only slightly
more than 2% of the total of different LUs. All LUs
are distributed between seven different POS tags.
75% of the utterances contain verbal targets. The
second frequent POS tag is an interjection - almost
8% of all the targets.

1The TRADR data and the semantic frame annotations can
be obtained at http://talkingrobots.dfki.de/.

Only about 15% of all LUs in English TRADR are
ambiguous. However, they are realized in nearly
53% of utterances containing targets. Simple cal-
culations show that on average a single LU evokes
1.24 frames. So, while the ambiguous LUs are
not very frequent in comparison to non-ambiguous
ones, the frames that they evoke are frequent, and
this may become a problem for the frame classi-
fier, as it is not always possible to perform frame
disambiguation using the utterance context.

Besides TRADR we also use the FrameNet and
SALSA datasets for our experiments, so it is nec-
essary to compare them with our data. The dif-
ferences between the corpora are summarized in
Table 14, presented in Appendix. Note that for the
experiments all duplicate sentences/utterances (i.e.
equal strings with equal labels), as well as ellip-
tical utterances and communication fragments (in
TRADR) were removed. The numbers in Table 14
are based on the cleaned versions of the corpora.
The only exception is the average utterance length
in the TRADR corpus, that was calculated based on
the original data in Table 1.

The FrameNet and SALSA data are very different
from TRADR, cf. Table 14. First, they are much
larger and come from other domains (note that the
domains of FrameNet and SALSA are quite close
to each other). Both FrameNet and SALSA include
many more frames than TRADR, and despite the
fact that many frames are common for all the cor-
pora (e.g., about 93% of frame labels in English
TRADR also occur in FrameNet), the frame distri-
butions are very different. The fact that less than
65% of TRADR LUs are common with FrameNet
LUs, which are much more numerous, supports this.
Both FrameNet and SALSA are also imbalanced
and FrameNet contains ambiguous targets.

Data TRADR Frame-
Net # cls

Eng # cls Ger # cls

Training 1,955 81 1,902 72 143,509 931
Validation 489 81 476 72 35,877 931
Test 268 81 259 72 19,923 931
Test (subs.) 234 50 - - - -

Table 2: Training, validation & test data sizes

All the datasets were shuffled and randomly split
into training, validation and test data as shown in
Table 2. Note that the number of classes (frame
labels) is smaller than given in Table 14, as all the
frames that have less than five instances were re-
moved. This was necessary to perform 5-fold cross-

96



validation. Note that we have two English TRADR

test sets. The second one is a subset of the first one,
and contains the instances of 50 frames common to
both FrameNet and TRADR. It is needed to test the
PAFIBERT model trained on FrameNet.

5 Experiments and Discussion

In this section we will present semantic frame clas-
sifiers for both English and German TRADR dia-
logues. Our main focus is on the English data.
We introduce several models, split into basic and
adjusted, and discuss their performance.

As all our datasets have hundreds of classes and
are highly imbalanced, many typical performance
metrics, e.g., accuracy, precision, F-score, are not
reliable (Tharwat, 2020). Instead, we use the in-
dex of balanced accuracy (IBA) metric as our main
performance measure, calculated using the Python
imbalanced-learn package (Lemaı̂tre et al., 2017).
The package also outputs the scores of the com-
mon metrics, such as recall, precision and F-score,
and we show them for the sake of comparison, as
most papers on automatic frame assignment report
either accuracy, or these metrics. All the metrics
are calculated using macro-averaging.

5.1 Basic models

The first group includes four models. The first one
is a naive baseline, represented by the BertForSe-
quenceClassification model from the Transformers
library (Wolf et al., 2020) fine-tuned on English
TRADR. BertForSequenceClassification was cho-
sen as the most straightforward way to perform
sequence classification. It is a pretrained BERT

model with an additional linear layer on top of the
pooled output. The other three models reproduce
the architecture of PAFIBERT. The implementation
details can be found in the original paper by Tan
and Na (2019). One of the models was trained on
the FrameNet data, another - purely on English
TRADR data, the last one - on German TRADR data.

All four models were trained with 5-fold cross-
validation. As both English and German TRADR

datasets are small, different splits into training and
test parts may result in noticeable performance vari-
ance. We used cross-validation to get a more re-
liable estimation of the performance of the mod-
els, not for hyper-parameter search. All hyper-
parameters were taken from the original paper. Fol-
lowing Tan and Na (2019), training was performed
for 8 epochs per fold using an adaptive learning

rate that starts with 3e-5 and an AdamW optimizer.
In the course of cross-validation we always saved
the model with the best IBA validation score. Next,
the model was evaluated on the test data.

The performance of the basic models is summa-
rized in Table 3. We see that BertForSequence-
Classification demonstrates rather unsatisfactory
performance - IBA only 32% - 37%. The reason for
this is the fact that simple fine-tuning does not inte-
grate information about the frame-evoking targets
and their contexts, so that it is impossible for the
model to guess what tokens in the sequence it has
to focus on. It is obvious that in order to improve
the performance, we need to tell the model which
tokens in each utterance it should pay attention to,
and PAFIBERT provides a convenient way to do so.

Classifier Test set PRE REC F1 IBA

BertForSequence-
Classification (EN)

TR (EN) 0.33 0.39 0.35 0.37
TR (subs.) 0.30 0.35 0.31 0.32

PAFIBERT trained
on FrameNet (EN)

FN 0.92 0.92 0.92 0.91
TR (subs.) 0.71 0.53 0.58 0.51

Basic model (EN) TR (EN) 0.90 0.89 0.89 0.88
TR (subs.) 0.91 0.88 0.88 0.86

Basic model (DE) TR test (DE) 0.84 0.84 0.83 0.83

Table 3: Basic models: results; “TR” stands for TRADR
test set, “FN” for FrameNet test.

As Table 3 shows, PAFIBERT trained on the
FrameNet data has IBA of 91% when evaluated
on the test set coming from the same distribution.
This score is actually even slightly better than the
standard accuracy of 89% reported by Tan and Na
(2019). However, when tested on TRADR data, the
model shows much worse results, namely, only
51% IBA, despite the fact that the majority of the
50 frames from the given test set have enough in-
stances in the training set.

The main reasons why this classifier fails on the
TRADR data are as follows. First of all, due to
the fact that FrameNet is very fine-grained, many
TRADR instances got classified as belonging to very
specific frames which we did not use when annotat-
ing the TRADR data, like ‘Interior profile relation’
and ‘Non gradable proximity’ (we used their par-
ent frame ‘Locative relation’ instead). Another rea-
son is that TRADR instances of certain frames have
targets that, due to domain differences, are not typ-
ical for these frames in FrameNet. For instance, all
TRADR samples of ‘Create representation’ frame
were misclassified, because the model expected
‘draw’, ‘carve’ or ‘sketch’ as targets, but got
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‘take/make a picture’ and labeled the input utter-
ances as ‘Physical artwork’ instead. Finally, there
is also a problem of ambiguity. For example, the
target ‘change’ can evoke both ‘Replacing’ and

‘Cause change’ frames, and the target ‘lie’ - ‘Pos-
ture’ and ‘Being located’.

So, the error analysis shows that the PAFIBERT

model trained on FrameNet is domain-specific, it
does not generalize well, and we cannot simply re-
use it for TRADR data without special modifications
or further fine-tuning.

Now let us have a look at the performance of the
PAFIBERT models trained on English and German
TRADR. Despite the relatively small size of the
training data, the models manage to achieve IBA

scores of about 88% (English) and 83% (German).
The English model also demonstrates quite good
performance (86% IBA) on the subset of the main
English TRADR test set, used to evaluate PAFIB-
ERT trained on the FrameNet data. Notice that the
IBA metric is fairer than standard accuracy: de-
spite the fact that the subset of the TRADR test set
does not contain the instances of the most frequent
domain-specific ‘Communication by protocol’ and

‘Communication response message’ frames, which
are easier to recognize due to their shortness and
typical structure, the IBA score for this test set is
only 2% lower.

Classifier model Basic (EN) Basic (DE)

# errors 30/268 42/259
Target ambiguity 22/30 (73%) 26/42 (62%)
Silly mistakes 5/30 (17%) 14/42 (33%)
Incorrect parsing 2/30 (7%) 2/42 (5%)
Incorrect translations 1/30 (3%) -

Table 4: PAFIBERT trained on TRADR: error analysis

In order to understand why we have 5% differ-
ence in performance between the English and Ger-
man frame classifiers trained on TRADR, we per-
formed error analysis. The results are summarized
in Table 4. We see that the majority of errors hap-
pens because of ambiguous targets, and the propor-
tion of such errors is about 10% higher among the
errors made by the English frame classifier. At the
same time the German frame classifier makes much
more the so-called silly mistakes, which encompass
the cases when the assigned frame has nothing to
do with the given target. We attribute the worse
performance of the German classifier mostly to the
fact that instead of targets we used ‘frame related
elements’, which sometimes contain several tokens

and can be confusing for the classifier. Differences
between the languages (i.e. in morphology, syn-
tax, semantics) may also be important. E.g., verbs
with separable prefixes, like ‘zurückkehren’ or ‘vor-
beikommen’, as targets may lead to errors, as the
prefixes often get disregarded. Finally, because
of small test sizes, the role of chance (in)correct
assignments may get exaggerated.

5.2 Adjustments of PAFIBERT

Aiming at performance improvement, we experi-
mented with several adjustments of the PAFIBERT

model trained on TRADR. Below we discuss the
results and analyse the errors.

Sampling We performed a series of experiments
with sampling additional training examples from
the subsets of the FrameNet and SALSA corpora,
which contain only instances of those frames that
occur in TRADR. The FrameNet subset for sam-
pling has 21,492 instances (about 12% of the whole
FrameNet corpus), the SALSA subset - 2,486 (about
7% of the corpus). The experiments can be split
into two groups. The first group includes training
models with different portions of blindly sampled
data. The second part involves experiments with
informed sampling. Each model is trained on a
mixture of TRADR and sampled data, and validated
solely on TRADR data.

In the blind sampling scenario we train ten
models gradually increasing the amount of addi-
tional training examples randomly chosen from the
FrameNet or SALSA subsets.

# sampled inst. PRE REC F1 IBA0.1

2,149 inst. (10%) 0.92 0.90 0.90 0.89
4,298 inst. (20%) 0.91 0.87 0.88 0.86
6,447 inst. (30%) 0.91 0.89 0.89 0.88
8,596 inst. (40%) 0.92 0.90 0.90 0.89
10,746 inst. (50%) 0.92 0.89 0.89 0.88
12,895 inst. (60%) 0.91 0.89 0.89 0.88
15,044 inst. (70%) 0.92 0.89 0.89 0.88
17,193 inst. (80%) 0.91 0.88 0.88 0.87
19,342 inst. (90%) 0.92 0.88 0.89 0.87
21,492 inst. (100%) 0.91 0.90 0.90 0.89
Basic model (EN) 0.90 0.89 0.89 0.88

Table 5: Blind random sampling from FrameNet

The results for the English frame classifier are
in Table 5. We see that there is no clear correlation
between the sampled data size and performance.
Three models demonstrate an improvement by 1%
in comparison with the basic model, however, this
difference is insignificant according to the McNe-

98



mar’s test. A lack of positive influence of the blind
sampling can be caused by the fact that the subset
of the FrameNet data used for sampling only con-
tains a small amount of really useful instances. If
only a part of the subset is sampled, these instances
have high chances to be left out due the randomiza-
tion of the sampling procedure. In case the whole
subset is sampled, the additional instances may
dominate the original ones, as the FrameNet subset
for sampling is much larger than TRADR.

In contrast to this, the effect of the blind random
sampling on the German frame classifier is clearly
positive. As Table 6 shows, having more training
data leads to the IBA score increase by 4%.

# sampled inst. PRE REC F1 IBA0.1

248 inst. (10%) 0.86 0.85 0.85 0.84
497 inst. (20%) 0.88 0.88 0.87 0.87
745 inst. (30%) 0.87 0.87 0.86 0.86
994 inst. (40%) 0.87 0.85 0.85 0.84
1,243 inst. (50%) 0.89 0.88 0.88 0.87
1,491 inst. (60%) 0.89 0.88 0.87 0.87
1,740 inst. (70%) 0.89 0.88 0.87 0.87
1,988 inst. (80%) 0.89 0.88 0.88 0.87
2,237 inst. (90%) 0.89 0.88 0.87 0.87
2,486 inst. (100%) 0.90 0.88 0.88 0.87
Basic model (DE) 0.84 0.84 0.83 0.83

Table 6: Blind random sampling from SALSA

To get an explanation why blind sampling has
a different impact on the two classifiers, we plot
the learning curves that show how training and val-
idation losses depend on the proportion of sampled
data. As Figure 1 shows, adding training instances
from FrameNet and SALSA does not lead to valida-
tion loss decrease and better generalization ability
of the models. Notice that even without sampling
the gap between the two curves in each plot is large,
with training losses being close to zero, which is
usually interpreted as overfitting. This finding lead
us to check the learning curves of PAFIBERT trained
on the much larger FrameNet data. The overfitting
problem occurs in that case, too (see Appendix A).
To tackle the overfitting issue, we tried out sev-
eral experiments with increased dropout rate and
fewer training epochs, but they only led to the IBA

score decrease. We conclude that some fundamen-
tal changes in PAFIBERT’s architecture would be
needed to avoid overfitting.

In both plots in Figure 1 the validation loss grows
together with the number of sampled examples.
This means that even if the models continue mak-
ing correct predictions, their confidence sinks. In
case of the German frame classifier this growth is

not so rapid, which can probably be explained by
the fact that the SALSA subset for sampling is much
smaller than the corresponding FrameNet subset.
Knowing that IBA is actually improving, we hypoth-
esize that sampled data from an unrelated domain
can be helpful, but the right amount of these in-
stances and their quality criteria are rather difficult
to determine.

Figure 1: Learning curves of English and German
frame classifies with blind sampling

The main disadvantage of blind sampling is that
the instances are picked out regardless of their dis-
tribution in both original training data and data
held out for sampling, which may aggravate the
imbalance problem.

To overcome this, we tried two approaches using
informed sampling. One is balancing sampling. It
assumes sampling for each class no more than the
maximum number of instances of the most com-
mon frame in the TRADR training data. The ap-
proach is supposed to deal with the class imbalance
problem. However, this method also has a poten-
tial disadvantage. In case the number of original
TRADR utterances is small, and the number of sam-
pled instances is much larger, with their targets be-
ing different from those in the original utterances,
the model will be biased towards the dominating
training samples and thus prone to misclassifica-
tion of the TRADR test examples. To avoid this we
introduce equal sampling, which has an additional
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constraint that the number of sampled examples
cannot exceed the number of the original ones.

The scores in Table 7 show that the informed
sampling does not produce the expected positive
effect on the English frame classifier.

Sampling type PRE REC F1 IBA0.1

Balancing: 0.91 0.88 0.88 0.87
10,902 inst. (≈ 51%)

Equal: 0.92 0.89 0.89 0.88
1,622 inst. (≈ 7.5%)

Basic model (EN) 0.90 0.89 0.89 0.88

Table 7: Informed random sampling from FrameNet

However, as Table 8 demonstrates, in case of
the German frame classifier the informed sampling
clearly has a positive influence. Its significance was
confirmed by the corresponding McNemar’s tests.
Balancing sampling helps to reduce the number of
silly errors, as well as errors caused by ambiguous
target expressions. The latter reduction is mostly
due to a better recognition of ambiguous target
expressions represented by single tokens, reflex-
ive verbs and verbs with separable prefixes. The
difference in performance between the balancing
and equal sampling approaches was insignificant
according to McNemar’s test.

Sampling type PRE REC F1 IBA0.1

Balancing: 0.89 0.89 0.88 0.88
2,375 inst. (≈ 96%)

Equal: 0.91 0.91 0.90 0.90
611 inst. (≈ 25%)

Basic model (DE) 0.84 0.84 0.83 0.83

Table 8: Informed random sampling from SALSA

So, we see that sampling failed to produce any
positive effect on the English frame classifier, but
worked for the German one. We hypothesize that
this happens to a large extent because sampling
mostly helps to resolve simple mistakes, but is less
effective in cases where disambiguation is neces-
sary. More complex morphology of German may
also be a reason why additional training examples
proved to be more useful.

Extra features Our next goal is to check if ex-
tending BERT embeddings with extra features has
any positive impact on the performance of PAFIB-
ERT. We divide the features into two groups:
lexical features that include POS tags and sub-
word masks, and discourse features represented

by speaker tags and dialogue acts. Our modifica-
tions of the original architecture by Tan and Na
(2019) are given in Appendix, Figures 3 and 4.

The introduction of lexical features is motivated
by the following reasons. First, we have cases,
when the POS tag of a target may be important to
differentiate one frame from another. E.g., in the ut-
terance “Can you position yourself onto the track?”
the target ‘position’ is a verb and evokes the ‘Plac-
ing’ frame, while in the utterance “What’s your
current position?” ‘position’ is a noun that induces
the frame ‘Locale by collocation’. Second, BERT

tokenization splits the tokens that are not included
in the tokenizer vocabulary, and sometimes it hap-
pens that some parts of a token lie outside of the
target’s context window.

POS tagging was done with a tagger from the
Python SpaCy library (Honnibal and Montani,
2017). There are 19 coarse-grained tags that fol-
low the Universal Dependencies scheme. We add
two more tags to this set: SPECIAL to mark spe-
cial tokens used by BERT and separate them from
‘normal’ ones, and PAD for padded tokens. If a
token gets split by the tokenizer, each sub-token is
assigned the POS tag of the original word. Our sub-
word masks are bit vectors where all sub-tokens are
marked with ones, and intact tokens - with zeros.

Embeddings for lexical features are trained to-
gether with the model. They are concatenated with
the BERT model output, namely with (sub)token
vectors, and used as input for the position-based
attention layer of PAFIBERT. As (sub)token repre-
sentations get longer, we have to increase the size
of the first linear layer of PAFIBERT accordingly.

The second group of additional features includes
discourse features, namely the speaker tag and dia-
logue act type, which also can be useful for frame
disambiguation. E.g., given a short utterance “Try
it” with the target ‘try’, the classifier may have dif-
ficulties labeling it, because to assign the correct
frame it needs to know the perspective, i.e. the
speaker. If the speaker is the team leader, then the
correct frame is ‘Attempt suasion’, if it is an op-
erator, then it should be the ‘Attempt’ frame. The
information about the dialogue act type can be used
to strengthen the impact of the speaker tag, because
there exist a strong correlation between the speaker
and the dialogue act in the tradr dialogues (Anikina
and Kruijff-Korbayová, 2019).

Following Anikina and Kruijff-Korbayová
(2019), we use three labels to encode the speakers:
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MC for the mission commander, TL for the team
leader and OPERATOR for the rest of the team.

As for dialogue acts, we use 12 labels based on
the ISO-24617-2 guidelines Bunt (2019), with a
few modifications. Eight tags correspond to those
used in Anikina and Kruijff-Korbayová (2019): ‘Af-
firmative’, ‘Confirm’, ‘Contact’, ‘Disconfirm’, ‘In-
form’, ‘Negative’, ‘Question’ and ‘Request’. The
other four labels are ‘Communication Manage-
ment’, ‘Time Management’, ‘Discourse Structur-
ing’ and ‘Social Obligations’.

Embeddings for discourse features are trained
jointly with the model. Since they characterize the
whole utterance and not separate (sub)tokens, we
concatenate them with the output of the PAFIBERT

position-based attention layer. We increase the size
of the first linear layer in the model accordingly.

The performance of the English frame classifier
trained on the data enriched with lexical and di-
alogue features is given in Table 9. We test the
features separately and in combinations. We see
that taken separately, the features do not bring any
improvement, and sometimes the scores are actu-
ally slightly worse than the score achieved by the
basic classifier. The combination of POS tags and
subword masks seems to increase the performance
by 1%, but the difference is insignificant according
to the McNemar’s test.

Feature PRE REC F1 IBA0.1

POS tag 0.89 0.88 0.88 0.87
Subword mask 0.89 0.88 0.87 0.87
POS tag + Subw. mask 0.91 0.90 0.90 0.89
Speaker 0.89 0.88 0.88 0.88
Dialogue act 0.89 0.87 0.87 0.86
Speaker + Dialogue act 0.90 0.88 0.88 0.88
POS tag + Subw. mask + Sp. 0.88 0.88 0.87 0.87
Basic model (EN) 0.90 0.89 0.89 0.88

Table 9: Extra features: English frame classifier

As for the German frame classifier, we tested
only the impact of extra lexical features. Dialogue
features were not used, as the current data does
not include speaker and dialogue act annotations.
The results were similar to those demonstrated by
the English frame classifier with extra lexical fea-
tures. We do not include them here due to space
constraints. They are available in Appendix B.

It is difficult to say why neither lexical nor dis-
course features lead to performance improvement.
One of possible reason is that our learned feature
embeddings are rather short (2-4 neurons) in com-
parison with input embeddings (768 neurons) or

context-target embeddings (1536 neurons), so their
impact on the whole (sub)token/utterance repre-
sentations is actually negligible or even confusing.
We think that in order to get a better estimation of
the role of additional features, some further experi-
ments with more data are necessary.

6 Conclusion and Future Work

We investigated the potential of frame semantics
as a meaning representation framework for English
and German dialogues in the domain of robot-
assisted disaster response team communication.
We found semantic frames convenient for captur-
ing the meaning of an utterance depending on the
target - the approach is span-based and does not
require complex data annotation or pre-processing.

We reused the PAFIBERT model on the TRADR

data and achieved an IBA score of 88%–90% on
the test sets. Our results are comparable with those
reported by Tan and Na (2019), who trained their
models on the much larger FrameNet corpus. How-
ever, being a powerful model, PAFIBERT memo-
rized the small TRADR training data, leading to
overfitting and thus lack of generalization.

We also studied the impact of sampling addi-
tional training instances from an unrelated domain
on the classifier’s performance, and found that it
was useful only for the German frame classifier. Er-
ror analysis indicates that sampling is beneficial for
handling silly errors, but rather ineffective for cases
that require disambiguation. We did not perform
any experiments with over- and/or undersampling
which imply sampling from the original dataset and
are often used with imbalanced data. This can be a
subject for further research. Especially interesting
is an approach that assumes generating synthetic
training instances, e.g., embeddings incorporating
the targets with their contexts.

In contrast to our expectations, both lexical and
discourse features failed to demonstrate a positive
influence on the models’ performance.

Error analysis showed that the largest group of
errors is due to ambiguous targets, many of which
evoke semantically close frames. The problem of
disambiguation requires more research in order to
improve the performance of the models.
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A PAFIBERT: training and validation
losses

Figure 2 shows the changes of training and vali-
dation losses with each training epoch of our re-
implementation of the original PAFIBERT according
to Tan and Na (2019). One can see that the model
is powerful enough to memorize the training data
by the end of the training, but, judging by the gap
between the two curves, it has difficulties in gener-
alizing and making confident predictions. Starting
from the second epoch, the validation loss almost
does not change, and it is also larger than the valida-
tion loss of the frame classifiers trained on TRADR,
which can probably be attributed to the fact that
FrameNet has many more classes than TRADR.

Figure 2: Traning and validation losses of the original
PAFIBERT model

B German frame classifier with lexical
features

Table 10 shows the performance of the German
frame classifier with extra lexical features. Extend-
ing token embeddings with the corresponding POS

tag embeddings seems to have a small positive ef-
fect on the IBA score, however, it is not significant
according to the McNemar’s test. Adding subword
mask embeddings as well as using the combina-
tion of two extra features also does not seem to
influence the performance of the classifier. Finally,
we try extending token embeddings with POS tag
embeddings together with the equal sampling from
SALSA. However, the equal sampling, which ear-
lier helped us achieve the IBA score of 90%, fails
to provide the anticipated positive effect - the cur-
rent score is only 84%, and the McNemar’s test
interprets the improvement as insignificant. We
conclude that adding lexical features confuses the

frame classifier, so that sampling looses its positive
effect on the accuracy.

Model PRE REC F1 IBA0.1

POS tag 0.87 0.86 0.86 0.85
Subword mask 0.86 0.84 0.84 0.83

POS tag + subword mask 0.84 0.84 0.83 0.82
POS tag + equal sampling 0.87 0.85 0.85 0.84

Basic model (DE) 0.84 0.84 0.83 0.83

Table 10: Extra features: German frame classifier

C Team communication example

Table 11 shows one of the TRADR dialogues. The
first column presents the speakers, the second -
the utterances that sometimes also contain out-
put from the Transcriber tool (Barras et al., 1998)
(e.g., [ent=unk.skippable]), the third - the assigned
frames depending on the targets (given in bold).
According to our annotation approach, each utter-
ance may contain several targets and thus evoke
several frames. To make the dependencies between
the targets and the corresponding frames clear, we
annotated only one target-frame pair per row. This
resulted in creating copies of the utterances con-
taining several targets. They are given in italics.
Most of the targets in the example dialogue are
verbs which reflects our focus on various activities
performed as part of the rescue mission.

The team communication example also illus-
trates two out of ten frames that we had to in-
troduce during the annotation, as the FrameNet
database (FrameNet, 2021) is not exhaustive, and
it was not always possible to adapt the available
frames to new phenomena. These two frames
are ‘Communication by protocol’ and ‘Commu-
nication response message’. They are domain-
specific and are actually the most frequent in the
whole TRADR corpus. Other eight frames that were
introduced are rare. Table 12 contains the defini-
tions and examples of all the new frames that we
introduced. Frame elements are given in CAPITAL

letters. We have not worked out their definitions
yet. This is planned for future work.

The presented dialogue also has instances of the
FrameNet frames that we adapted. Assigning the
frame labels, sometimes it was impossible to fol-
low the frame definitions given in the FrameNet
database strictly. Considering that FrameNet is
not exhaustive and that we were cautious to intro-
duce too many new frames, we had to interpret
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certain frame definitions in a more relaxed way.
E.g., FrameNet defines the frame ‘Existence’ as

“An Entity is declared to exist, generally irrespec-
tive of its position or even the possibility of its
position being specified. 〈...〉 This frame is to be
contrasted with Presence, which describes the ex-
istence of an Entity in a particular (and salient)
spacio-temporal context, and which also entails
the presence of an observer who can detect the
existence of the Entity in that context.” We used Ex-
istence in a more straightforward way, namely with
a reference to some news, findings, updates, etc.
are present/available at a certain moment. Other
adapted frames present in the dialogue are Pres-
ence and Identity. We do not present a full list of
the adapted frames here, as there are quite many of
them.

Notice that some utterances in the dialogue do
not contain targets, as they are elliptical. In such
cases we usually try to infer the missing elements,
and assign the frame label that corresponds to the
‘restored’ utterance.

D Approaches to automatic frame
assignment: a summary

Table 13 summarizes the characteristics of most of
the frameworks mentioned in Section 3. The frame-
works are given in chronological order, which helps
illustrate the shift from the rule- and/or feature-
based approaches to the embeddings-based ones,
as well as the replacement of more ‘traditional’
classifiers with neural networks. The introduction
of embeddings allowed to avoid manual feature
engineering, and helped achieve better or compa-
rable results with much less effort. However, the
embeddings (even contextual ones, like ELMo or
BERT) are still not able to deal with sense ambigu-
ity effectively, which is one of the main problems
in automatic frame assignment task.

The last row shows the performance of the frame-
works. Those that have scores given were trained
on the FrameNet corpus (versions may differ) and
evaluated on one of the most commonly used Das
test set (Das and Smith, 2011), which represents
a part of FrameNet 1.5 data. Unfortunately, it is
not always possible to compare the frameworks di-
rectly, as some researchers report F-score as a per-
formance measure, others - accuracy. Five frame-
works were evaluated on different test data, and we
therefore omit their scores.
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TL Andreas, Andreas from Markus, come in. Communication by protocol
OP Yes, Andreas come in. Communication by protocol

〈...〉
OP Yes, for information, I am ready [EHM]. Activity ready state

Shall I go ahead with my search command, or begin? Desirable event
Shall I go ahead with my search command, or begin? Activity ongoing
Shall I go ahead with my search command, or begin? Activity start

TL Yes, begin immediately without possible – least possible time
delay, to [EHM] have a higher chance for person rescue.

Activity start

Yes, begin immediately without possible – least possible time
delay, to [EHM] have a higher chance for person rescue.

Likelihood

OP Yes, understood, I begin with the search. Communication response message
Yes, understood, I begin with the search. Activity start
〈...〉

TL Andreas from Markus, come in. [ent=unk.skippable] Communication by protocol
OP Yes, Andreas, come in. Communication by protocol
TL [ent=unk.skippable] Are there already any noteworthy find-

ings? [ent=unk.skippable]
Existence

OP Negative. No noteworthy findings. [ent=unk.skippable] Communication response message
Negative. No noteworthy findings. [ent=unk.skippable] Existence

TL Yes, understood. Communication response message
[ent=unk.skippable] Daniel, Daniel from Markus, come in. Communication by protocol
[ent=unk.skippable] Andreas from Markus, come in. Communication by protocol
〈...〉

OP Andreas, Markus from Andreas, come in. Communication by protocol
TL Andreas, come in. Communication by protocol
OP On first floor in the smoke found a barrel, green, labeled as

environmentally hazardous material.
Locating

TL Yeah, can you [unintelligible] whether anything is leaking? Capability
Yeah, can you [unintelligible] whether anything is leaking? Fluidic motion

OP Yeah. It is a 200 liter barrel, whether anything is leaking I
cannot currently tell.

Identity

Yeah. It is a 200 liter barrel, whether anything is leaking I
cannot currently tell.

Fluidic motion

Yeah. It is a 200 liter barrel, whether anything is leaking I
cannot currently tell.

Capability

Yeah. It is a 200 liter barrel, whether anything is leaking I
cannot currently tell.

Becoming aware

TL [EHM] Any thermal emission? Presence
OP No thermal emission. Presence
TL Okay. Priority on continuing person search. Activity ongoing

Andreas from Markus, priority on continuing person search. Activity ongoing

Table 11: English TRADR dialogue annotated with semantic frames
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Be piece of
Inherits from: Being included

Definition: A PART is considered to be a constituent of some entity described by the WHOLE. The relation is
seen from the point of view of the PART.

Examples: I can also see [PART fragments] that belong to [WHOLE the building] [PART lying around here].

Being reasonable
Inherits from: Gradable attributes

Definition: Certain BEHAVIOR of PROTAGONIST is seen as practical and sensible.

Examples: As I can’t see anything at the moment, it would definitely make sense if [PROTAGONIST you] [BEHAVIOR

let the UAV guide you to some other points as soon as they’ve started again].

Communication by protocol
Inherits from: Communication

Definition: A COMMUNICATOR speaks to an ADDRESSEE using the phrases of special form (protocol) to
establish/finish the conversation by radio.

Examples: [COMMUNICATOR Team leader] [ADDRESSEE for Tango].
[COMMUNICATOR Team leader], here is [ADDRESSEE Tango].
[COMMUNICATOR UAV] [ADDRESSEE to UGV-1] please answer.
[COMMUNICATOR UAV] speaking [ADDRESSEE IDI].

Communication fragment
Inherits from: None

Definition: An auxiliary frame which serves the purpose of marking conversational fillers and sequences with
unclear meaning. The frame is characterized by conflation of target and FRAGMENT itself.

Examples: [FRAGMENT Also... I’m with... erm...]
[FRAGMENT Eeh eeh my my my...]
[FRAGMENT Whether a person or its... below at the bottom edge there’s a...]

Communication response message
Inherits from: Statement

Definition: A COMMUNICATOR gives a short usually positive or negative reply to an ADDRESSEE’s question or
request. Sometimes a TOPIC is also mentioned.

Examples: Roger [TOPIC that], [ADDRESSEE team leader].
Okay.
Yes [COMMUNICATOR by ground operator 1].

Correction
Inherits from: Communication

Definition: A COMMUNICATOR informs an ADDRESSEE that what the PATIENT has communicated is not right,
true or suitable by providing the corrected version of the MESSAGE.

Examples: [COMMUNICATOR I] have to correct [PATIENT myself]: [MESSAGE UGV-1].

Face direction
Inherits from: State

Definition: An ENTITY faces a particular DIRECTION.

Examples: For your information: [ENTITY it]’s looking [DIRECTION towards south].

Lead
Inherits from: Cause to perceive

Definition: An ENTITY leads in a particular DIRECTION or to some GOAL.

Examples: [ENTITY The stairwell] leads [DIRECTION upwards].
There’s smoke development at [ENTITY the first stairs] that go [DIRECTION upwards].

Level of clarity
Inherits from: Gradable attributes

Definition: A DEGREE to which a REPRESENTATION is clear and detailed.

Examples: Yes, [REPRESENTATION the pictures] aren’t [DEGREE very] sharp.

Level of substance
Inherits from: Gradable attributes

Definition: A DEGREE of smoke in the air at some LOCATION.

Examples: It’s actually [DEGREE quite] smoky [LOCATION DNI].

Table 12: TRADR: new frames
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hand-crafted rules X X X X
hand-crafted features X X X X X

kernels X
parsing X X X X X X

embeddings X X X X X X X X
Naive Bayes classifier X

SVM X X
conditional log-linear model X X

neural network X X X X X X
CRF X X

clustering X
graph structure X

Frame assignment accuracy n/a n/a n/a 82.97∗ 88.41 87.63 70.9∗† 88.2 89.72 89.57 n/a n/a

Table 13: Comparison of various frame-semantic parsing frameworks; scores marked with ‘*’ stand for F-score
(the authors do not report accuracy); ‘n/a’ means that the authors used a test set different from Das and Smith
(2011); † stands for joint evaluation of frame assignment and argument identification

Corpus English TRADR German TRADR FrameNet SALSA

Domain team communication
in disaster response

team commumication
in disaster response

mostly business, newspaper
textspolitics, economics

related texts

# inst. 2,930 2,813 199,508 35,236

# tokens 31,211 33,625 4,751,140 838,307

# classes
190 (177 occur
in FrameNet)

152 (80 occur
in SALSA) 1,014 880

Avg. sent. len. 8.68 6.99 22.92 21.78

# LUs
434 (280 occur
in FrameNet) - 8,333 -

% ambig. LUs
wrt. # LUs 14.98 - 15.61 -

% ambig. LUs
wrt. all inst. 52.90 - 34.99 -

Table 14: Corpora comparison
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Figure 3: Adding lexical features (dashed borders)
to PAFIBERT

Figure 4: Adding lexical and discourse features
(dashed borders) to PAFIBERT
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Abstract

This paper addresses the question to which ex-
tent neural contextual language models such
as BERT implicitly represent complex seman-
tic properties. More concretely, the paper
shows that the neuron activations obtained
from processing an English sentence pro-
vide discriminative features for predicting the
(non-)causativity of the event denoted by the
verb in a simple linear classifier. A layer-wise
analysis reveals that the relevant properties are
mostly learned in the higher layers. Moreover,
further experiments show that appr. 10% of
the neuron activations are enough to already
predict causativity with a relatively high accu-
racy.1

1 Introduction and motivation

In natural language processing (NLP), machine
learning models based on artificial neural networks
have achieved impressive results in recent years,
due to large amounts of available training data
and powerful computing infrastructures. Contex-
tual language models (LMs) such as ELMO (Pe-
ters et al., 2018), BERT (Devlin et al., 2019), and
XLNet (Yang et al., 2019) have particularly con-
tributed to this. However, it is oftentimes not clear
which kinds of generalizations these models make,
i.e., what exactly they learn. In this respect, neural
networks suffer from a lack of transparency and in-
terpretability. Recent research has started to inves-
tigate these questions. Since the successful use of
neural word embeddings and LMs (e.g., Word2Vec,
Mikolov et al. 2013; ELMO, Peters et al. 2018;
BERT, Devlin et al. 2019) for a range of NLP/NLU
tasks, it is clear that LMs capture meaning to a
certain degree, in particular lexical meaning. Con-
cerning syntactic information, work on different

1Our datasets are available at
https://github.com/eseyffarth/
predicting-causativity-iwcs-2021

types of language models, in particular RNNs and
transformer-based contextual language models, has
shown that these models learn morphology (Liu
et al., 2019a), syntactic structure and syntactic pref-
erences to a certain degree (see Futrell and Levy,
2019; Lin et al., 2019; Hewitt and Manning, 2019;
McCoy et al., 2020; Wilcox et al., 2019; Hu et al.,
2020; Warstadt et al., 2020).

In this paper, we expand the question of what
linguistic properties these models learn towards
whether pretrained contextualized models capture
more abstract semantic properties, in particular
properties that contribute to the structure of the se-
mantic representation underlying a given sentence.
More concretely, we investigate whether an LM
such as BERT represents whether a sentence de-
notes a causative event or not. If this was the case,
we would expect a systematic difference between
for instance BERT’s neuron activations for (1-a)
and for (1-b).

(1) a. Kim broke the window.
b. Kim ate an apple.

Note that the two sentences share almost no lexical
elements, so the neuron activations are expected
to be mostly different. Our research question is
focused on whether there are systematic activation
patterns that can be observed that are common to all
instances of causative sentences, and others that are
common to all instances of noncausative sentences,
independent of sentence content.

One of the common approaches to probe neu-
ral network models is to use a probing classifier.
Given a linguistic property of interest, the idea
is to extract contextualized activations of units
(words/phrases/sentences) relevant to the property.
A classifier is then trained to learn the property by
using the extracted activations as features. The per-
formance of the classifier is taken to approximate
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the degree to which the language model learned
the linguistic property. We also use probing classi-
fiers and probe the model as a whole, its individual
layers and its neurons with respect to causativity.
We use the NeuroX toolkit (Dalvi et al., 2019b) to
conduct the probing experiments.

We experiment using two 12-layer pretrained
models, BERT (Devlin et al., 2019) and XLNet
(Yang et al., 2019), as well as a distilled version
of BERT, DistilBERT (Sanh et al., 2019). Our
findings and contributions are as follows: We cre-
ate a novel dataset of sentences with verbs that
are labeled for causativity/non-causativity. Using
this dataset for probing, we show that this abstract
semantic property is learned by the pretrained mod-
els. It is better represented in the higher layers of
the model and, furthermore, there is a subset of
appr. 10% of the neurons that encodes the property
in question.

2 Related work

A number of interpretation studies have analyzed
representations of pre-trained models and showed
that they learn linguistic information such as part
of speech tagging, semantic tagging and CCG tag-
ging (Conneau et al., 2018; Liu et al., 2019a; Ten-
ney et al., 2019a,b; Voita et al., 2019). A typical
procedure to analyze representation is a post-hoc
analysis using a probing classifier. It has been
shown that word-level concepts are learned at lower
layers while sentence-level concepts are learned
at higher layers (Liu et al., 2019b). Dalvi et al.
(2019a) extended the layer-level analysis towards
individual neurons of the network. They proposed
linguistic correlation analysis (LCA) to identify
neurons with respect to a linguistic property. Dur-
rani et al. (2020); Dalvi et al. (2020) later used
LCA to analyze pre-trained models in the context
of linguistic learning and redundancy in the net-
work respectively.

In this work, we also aim to analyze pre-trained
models at model-, layer- and neuron-level using
post-hoc analysis methods. Different from others,
we concentrate on an abstract, structure-building se-
mantic property, namely causativity of events. Our
focus is on lexical causatives, that is, verbs whose
lexical meaning has a causative aspect (Dowty,
1979). In Dowty’s aspect calculus, such verbs
are analyzed as [φ CAUSE ψ], where φ and ψ are
sentences and causation is a “two-place sentential
connective”, notably even for sentences that only

contain a single verb phrase. Thus, John killed Bill
is decomposed as in (2) (Dowty, 1979, p. 91).

(2) [[John does something] CAUSE
[BECOME¬[Bill is alive]]]

The “semantically bipartite” nature of causative
verbs means that sentences with such verbs actu-
ally express not one event, but two subevents, one
being the causing event and the other one being
the caused event, or result, of the first. This event
structure is a challenge to model with NLP systems
when no superficial indicators for causativity are
available. While there are verbs that are lexically
causative (such as refresh) and verbs that are lexi-
cally noncausative (such as prefer), there are also
verbs that vary in their causativity depending on the
context in which they appear (such as open). Our
goal is to determine to what extent the causativity
or noncausativity of these types of verbs is implic-
itly learned by large language models.

3 Method

Over the last years, there has been an increasing
interest in assessing linguistic properties encoded
in neural representations. A common method to
reveal these linguistic representations employs di-
agnostic classifiers or probes (Hupkes et al., 2018).
A common diagnostic classifier is a linear classifier
trained for the underlying linguistic task, using the
activations generated from the trained neural net-
work model as features. The performance of the
classifier is used as a proxy to measure the amount
of linguistic information present in the activations.
We also use a linear classifier for probing.

Consider a pre-trained neural network model M
with L layers: {l1, l2, . . . , lL}, where each layer li
is of size H . Given a dataset D = {s1, s2, ..., sT }
consisting of T sentences, the contextualized em-
bedding of sentence sj at layer li is zij = li(sj).
In pretrained models like BERT, a special token
[CLS] is appended with every training instance
during training. The token is later optimized for
sentence embedding during transfer learning (De-
vlin et al., 2019). We consider the representations
of [CLS] for sentence embedding in this study. The
[CLS] representation extracted from various layers
is used as input features to the probing classifier.

Model-level probing: To assess to what extent
a linguistic property is learned in the model, we
first take the sentence representations of all layers
as features for linear classification, i.e., all zij for
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1 ≤ i ≤ L and 1 ≤ j ≤ H . The classifier is
trained by minimizing the following loss function:

L(θ) = −
∑

j

logPθ(tsj |sj) (1)

where tsj is the predicted label for sentence sj . In
this work, binary labels are used to encode whether
the property is present in a sentence or not.

Layer-level probing: Here, we question how
much individual layers of a model represent our
property of interest. We train a linear classifier on
the activations of each individual layer. The perfor-
mance of each layer serves as a proxy to how much
information it encodes with respect to our property.

Neuron-level probing: While the layer-level
probing tells about how much linguistic informa-
tion is learned in a layer, it does not tell about the
learning of individual neurons in the network. It
is possible that while a particular layer performs
best in the layer-level probing, the best neurons
learning about the linguistic property are spread
across many layers. In neuron-level probing, we
aim to identify the most salient neurons across the
network that learn the linguistic property at hand.

We follow the linguistic correlation analysis
method (LCA) of Dalvi et al. (2019a) to conduct
this analysis. Given representations of the model
as in the model-level probing, LCA trains an Elas-
ticNet (Zou and Hastie, 2005) classifier, and pro-
vides a salient list of neurons with respect to the
linguistic property. ElasticNet provides a balance
between selecting very focused localized features
and distributed features (here: neurons). Equation
(2) gives the loss function:

L(θ) = −∑
j logPθ(tsj |sj)

+λ1‖θ‖1 + λ2‖θ‖22
(2)

where λ1 and λ2 are parameters, for which we
use the suggested value of 0.00001 (Dalvi et al.,
2019a).

4 Data

To prepare our datasets, we create different sets
of verbs that are labeled for (non)causativity, and
then use them as seeds to collect sentences from a
corpus to be used as input to the classifier.

4.1 Verb set selection

Causative and noncausative verbs We collect a
set of English verbs that are either always causative

or never causative when appearing in basic transi-
tive sentences (NP V NP). This property is derived
from VerbNet 3.3 (Kipper et al., 2000) according to
the event-semantic description of each basic tran-
sitive syntactic frame in each verb class. We only
consider members of VerbNet classes where either
all basic transitive frames or none of them are asso-
ciated with causativity. Two trained linguists man-
ually prune the lists of causative and noncausative
verbs to remove ambiguous verbs and other edge
cases. This results in a list of 2157 causative and
617 noncausative verbs.

Alternating verbs We also create a set of verbs
whose causativity property depends on whether
they appear in transitive or intransitive sentences.
This is the case for verbs in VerbNet that are
marked with the “Causative” property in basic tran-
sitive syntactic frames, and with the “Inchoative”
property in basic intransitive frames. These verbs
participate in the causative-inchoative alternation.
They represent a special case for our experiments
because the classifier needs to distinguish between
causative and noncausative uses of identical verbs,
whereas the sets of causative and noncausative
verbs are completely distinct. In this setting, the
classifier cannot rely purely on the verb lemma (be-
cause alternating verbs can appear in both classes),
and it also cannot rely purely on the (in)transitivity
of sentences (because verbs outside the alternation
can be causative in intransitive sentences). Since
this makes the task more difficult, we expect the
classification accuracy to be lower in this setting
than in settings with non-alternating verbs.

4.2 Sentence selection

We collect three datasets for our experiments.2 All
sentences are extracted from ENCOW (Schäfer and
Bildhauer, 2012; Schäfer, 2015), an English web
corpus (9.6 billion tokens) annotated with depen-
dencies created with MaltParser. Each dataset con-
tains 40,000 sentences in the train portion, 5,000
sentences in dev and 5,000 sentences in the test
portion. Each portion contains an equal number of
causative and noncausative instances. Each test set
contains sentences that were not previously seen
in the train set, but not all verbs in the test set are
unseen.

2All datasets are available at
https://github.com/eseyffarth/
predicting-causativity-iwcs-2021
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Transitive sentences, same sentence length
The first dataset (Dtr 5) is based on the sets of
causative and noncausative verbs and contains only
transitive sentences of length 5 (including punctu-
ation). This yields a dataset where all sentences
have the same basic syntactic pattern. Examples
are given in (3) (root verbs in bold).

(3) a. The answer surprised me . (caus)
b. It contains no surprises . (noncaus)

Transitive sentences, varying sentence length
The second dataset (Dtr) is based on the same verb
sets, but contains sentences of varying lengths be-
tween 5 and 20 tokens. Examples are given in (4).

(4) a. This affects the calculation . (caus)
b. I envy you in that respect ! (noncaus)

Intransitive and transitive sentences, varying
length The third set (Dall) is based on the verb
set that includes verbs in the causative-inchoative
alternation. Sentences in Dall are either transitive
or intransitive and have a length between 5 and
20 tokens. Again, each portion contains an equal
number of causative and noncausative instances,
consisting of verbs of all three types (alternating,
always causative, always noncausative). Examples
are given in (5); note that (5-e) and (5-f) share the
same alternating root verb.

(5) a. I bring a book ! (caus)
b. Everything about them intimidates . (caus)
c. Each layer had its own opacity . (noncaus)
d. A total of 24 people attended . (noncaus)
e. He opened the pack . (caus)
f. The main console opens . (noncaus)

5 Evaluation

5.1 Experimental Settings

Pre-trained models We conduct experiments us-
ing three transformer-based pre-trained language
models: BERT (Devlin et al., 2019), DistilBERT
(Sanh et al., 2019), and XLNet (Yang et al., 2019).
The BERT model is an auto-encoder trained with
two unsupervised objectives: masked word predic-
tion and next sentence prediction. It is pre-trained
on Wikipedia text and BooksCorpus (Zhu et al.,
2015), and comes with hundreds of millions of
parameters. It contains an encoder with 12 Trans-
former blocks, hidden size of 768, and 12 self-
attention heads. DistilBERT is an approximate

Data BERT DistilBERT XLNet

Dtr 5 95.24 93.34 90.92
Dtr 89.48 87.28 88.84
Dall 85.28 83.96 86.00

Table 1: Model-level results (accuracy) using all neu-
rons for classification

distilled version of BERT. It is comprised of 6 en-
coder layers while retaining 97% of BERT perfor-
mance. We also employ XLNet-base in all our
experiments. Although it is trained with the same
parameter configurations as BERT-base, it uses im-
proved training methodology based on a permuta-
tion auto-regressive objective function.

Since we are interested in analyzing sentence
representations, we use the representation of the
[CLS] token. However, the representation of [CLS]
is not optimized for sentence embedding in the pre-
trained models. In order to tune it for sentence
representation, we fine-tune the pre-trained model
on a sentence classification task, the Stanford senti-
ment treebank (Socher et al., 2013). We understand
that by fine-tuning the pre-trained model, the rep-
resentations of the network are tuned for the task.
An alternate strategy is to use average activations
of words in a sentence as sentence representation.
We did not explore it in this paper.

Probing Classifier We train a linear classifier
using a categorical cross-entropy loss, optimized
using Adam. For neuron-level analysis, we used
elastic-net regularization. We used the recom-
mended values of elastic-net parameters, i.e., λ1
and λ2 each equal to 0.0001.

5.2 Results
Model-level Results Table 1 presents the results
of using all neuron activations of the model as fea-
tures for classification. The general high classi-
fication results show that the model has learned
causitivity. However, as the dataset becomes hard
in terms of varying sentence length and including
more challenging instances with alternating verbs,
the performance drops to as low as 83.96% for
DistilBERT, which is still substantially better than
random performance (50%).

Layer-level Results Here we want to see which
layers of pretrained models learn causativity. We
train our probing classifier on individual layers.
Figure 1 summarizes the results. As a general trend,
causitivity is best represented at the higher layers
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BERT DistilBERT XLNet

Neua 9984 5372 9984

Dtr 5 Neut 1000/10% 540/10% 300/3%
Acct 95.06 92.6 92.02

Dtr Neut 1000/10% 540/10% 1000/10%
Acct 88.70 86.06 89.24

Dall Neut 1000/10% 540/10% 1000/10%
Acct 86.48 82.66 86.8

Table 2: Selecting minimal number of neurons. Neua
= Total number of neurons, Neut = Top selected neu-
rons, Acct = Accuracy after retraining the classifier us-
ing only selected neurons.

of the models, which is in line with previous find-
ings that sentence-level properties such as syntax
are better learned at higher layers (Durrani et al.,
2020). For all models, we see a slight drop in
the performance for the last layer, which is due
to the fact that the last layer is optimized for the
objective function (Kovaleva et al., 2019). Com-
pared to BERT and DistilBERT, the middle layer
of XLNet consistently showed a small drop in the
performance for all datasets. This trend is more
prevalent in the neuron-level results. We discuss it
later in this section.

Neuron-level Results We use LCA to determine
a minimal set of neurons that still achieve a classi-
fication performance (Acct) within 2% of the per-
formance using all the neurons of the network for
classification. We additionally evaluate the effec-
tiveness of the LCA method by comparing the clas-
sification performance using the top selected neu-
rons with the randomly selected neurons. We found
the salient neurons of LCA to perform substantially
better than random neurons.

Table 2 presents the numbers of salient neurons
selected for each model and for each dataset to-
gether with the resulting classification accuracy.
Note that in the case of BERT and the dataset
Dall and also for XLNet on all datasets, the ac-
curacy increased due to the elimination of non-
discriminative features.

Given salient neurons with respect to our task,
we observe their distribution across the model. Fig-
ure 2 summarizes the results. Across all models
and datasets, the LCA method never selected any
neurons from the embedding layer. This is in line
with the layer-wise results where the performance
using embedding layer representation is similar to
random classification, i.e., no causativity informa-

verb type BERT DistilBERT XLNet

Dtr 5 caus 95.24 93.04 98.84
noncaus 96.44 94.92 84.12

Dtr caus 90.44 89.60 90.44
noncaus 88.88 84.76 86.12

Dall all alternating 81.52 75.43 83.05
alt. caus 89.73 84.35 94.87
alt. noncaus 52.59 43.97 41.38
nonalt. caus 91.25 84.60 93.93
nonalt. noncaus 85.36 86.03 79.28

Table 3: Accuracy per verb type and data set in all set-
tings. Dtr 5, Dtr and Dall each contain an equal num-
ber of caus(ative) and noncaus(ative) instances.

tion is present.
For BERT and DistilBERT, the distribution of

salient neurons is skewed towards higher layers
(excluding top layer), i.e., causativity information
is more represented at the higher layers. XL-
Net presents a slightly different picture where the
salient neurons selected from the middle layers are
substantially lower than most of the other layers.
As the task becomes harder, the contribution of
lower middle layers (3-4) substantially increases
while the last layer contribution drops.

The number of neurons selected from middle
layers (5-6 in the case of 12 layer models and 3 in
the case of 6 layer models) are substantially lower
than the neighbouring layers across all models and
data sets. We hypothesize that learning causitivity
requires word-level and sentence-level information
which is dominating at the lower and higher layers.

6 Discussion

As shown in Table 1, all classifiers performed best
on Dtr 5. With little syntactic variation between
instances in Dtr 5, this is the least challenging
setting for the task: The verbs and arguments in
each sentence are the main indicators for the clas-
sifiers to identify causativity. In Dtr, all models
achieve slightly lower accuracy. Longer sentences
are more likely to contain conjunctions or subor-
dinate clauses, which may distract the classifiers
from the sentence’s (non)causative root verb and
its arguments. As expected, the lowest accuracy
scores are observed in Dall, which includes both
transitive and intransitive sentences, as well as al-
ternating verbs whose causativity property changes
in these different environments. Table 3 shows that
all three models mislabel alternating verbs more
often than nonalternating verbs. BERT and XLNet
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(a) Dtr 5– BERT (b) Dtr– BERT (c) Dall– BERT

(d) Dtr 5– XLNet (e) Dtr– XLNet (f) Dall– XLNet

(g) Dtr 5– DistilBERT (h) Dtr– DistilBERT (i) Dall– DistilBERT

Figure 1: Layer-wise results: X-axis = Layer number, Y-axis = Classification accuracy

achieved the best accuracy for causative verbs in
almost all experiments, while DistilBERT often
performed better on noncausative verbs.

Our datasets are randomly collected from a
larger corpus with no regard for verb frequency.
This results in datasets where some verbs occur
only once or twice, some are never seen in the train-
ing data, and some are more common. Our goal
is to determine whether the classifiers successfully
learn to predict (non)causativity, independently of
specific verb lemmas. The results reported so far
are all averaged over all verbs in a dataset, illustrat-
ing that some models are more successful on the
classification task than others (e.g. BERT achieving
higher accuracy scores than the other models on
the first two datasets). Additionally, it is also worth
exploring the accuracy of the classifiers for indi-
vidual verbs, particularly those that are most likely
to be mislabeled by any of the classifiers. Table 4
reports the two most-mislabeled verbs of each type
per dataset (across all models). Notably, the XLnet
classifier consistently makes more mistakes with
noncausative instances than with causative ones, as
is also apparent from Table 3.

Broadly, the frequently mislabeled verbs fall in
three categories: 1. presumed errors due to parsing
mistakes and subsequent errors in the gold data; 2.
errors due to incorrect labels of ambiguous verbs
in the gold data; 3. errors due to an ambiguity
between full verb, light verb, and auxiliary verb.

Presumed errors due to parsing mistakes and
subsequent errors in the gold data Most of the
frequently-mislabeled verbs in Dtr 5 fall into this
category. These verbs occur only a few times each,
indicating that they do not represent a deeper struc-
tural issue with the classifiers; for instance, sen-
tences with the root verb mark occasionally appear
incomplete in ENCOW, as exemplified in (6).

(6) the symptoms marked gr . (ENCOW-02-
23709973)

The verb sound is labeled as a causative verb
in our gold data (e.g., “to sound the bells”), but
appears often in another word sense, as exemplified
in (7-a). In these sentences, the verb does not have
a direct object as expected; the reason for their
inclusion in our datasets is an incorrect dependency
parse in ENCOW. In other words, the causative
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(a) Dtr 5BERT (b) DtrBERT (c) DallBERT

(d) Dtr 5XLNet (e) DtrXLNet (f) DallXLNET

(g) Dtr 5DistilBERT (h) DtrDistilBERT (i) DallDistilBERT

Figure 2: How top neurons spread across different layers for each causativity dataset. X-axis = Layer number,
Y-axis = Number of neurons selected from that layer

gold label is assigned by mistake. A similar case is
mean; as with sound, many instances do not involve
a direct object at all, as exemplified in (7-b), but
are included because of an incorrect parse.

(7) a. that sounds so scary !!! (ENCOW-05-
11095175)

b. you mean screw justice ? (ENCOW-14-
01839826)

Dall also contains incorrect gold labels that are
to a large extent due to parsing errors, for instance
bring. All sentences included in (8) were parsed as
having bring as their root verb. That the classifiers
tended to assign a noncausative label to these sen-
tences suggests that they instead assigned labels for
take for granted, love, or be, respectively (which is
actually correct).

(8) a. people take for granted what tax money
brings . (ENCOW-11-16881058)

b. knowledge is power , and what americans
really love is the power knowledge brings .
(ENCOW-13-11898010)

c. sugar is a barrow boy with all that epithet
brings . (ENCOW-10-21805613)

In future work, we will improve our datasets to
minimize the number of this type of errors, using a
more recent dependency parser and some manual
checking.

Errors due to incorrect gold labels of ambigu-
ous verbs In Dtr, face is the most mislabeled
causative verb. The presumed causative label for
this verb comes from the VN class confront-98,
which contains verbs such as target or combat.
However, the mislabeled examples from the dataset
seem to evoke a weaker, more passive sense of face,
as in (9-a), where human annotators might not as-
sign a causative label. In these cases, the label
assigned by the classifier is actually correct, while
the gold label is not. The mislabeled instances of
cover in Dall are, similarly to face, an artefact of
verb polysemy and should in fact not be regarded
as causative sentences, as exemplified in (9-b).

(9) a. older mums face similar risks . (ENCOW-
05-25724129)
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BERT DistilBERT XLNet

causative verbs in Dtr 5

mark 6 (60.00%) 6 (60.00%) 2 (20.00%)
sound 1 (2.00%) 9 (18.00%) 4 (8.00%)

noncausative verbs in Dtr 5

leave 4 (10.00%) 7 (17.50%) 15 (37.50%)
mean 1 (1.37%) 2 (2.74%) 15 (20.55%)

causative verbs in Dtr

face 11 (25.00%) 11 (25.00%) 17 (38.64%)
express 12 (33.33%) 8 (22.22%) 10 (27.78%)

noncausative verbs in Dtr

leave 7 (17.07%) 19 (46.34%) 17 (41.46%)
represent 8 (8.42%) 17 (17.89%) 15 (15.79%)

alternating causative verbs in Dall

set 3 (8.82%) 10 (29.41%) 1 (2.94%)
open 3 (12.00%) 4 (16.00%) 3 (12.00%)

alternating noncausative verbs in Dall

close 4 (57.14%) 5 (71.43%) 6 (85.71%)
open 4 (66.67%) 2 (33.33%) 5 (83.33%)

nonalternating causative verbs in Dall

cover 9 (6.52%) 32 (23.19%) 10 (7.25%)
bring 9 (9.47%) 10 (10.53%) 9 (9.47%)

nonalternating noncausative verbs in Dall

have 25 (4.64%) 19 (3.53%) 43 (7.98%)
be 20 (10.81%) 25 (13.51%) 36 (19.46%)

Table 4: Most mislabeled verbs in all settings. Each
cell states the number of instances with the given verb
with an incorrect label, giving the absolute number fol-
lowed by the percentage of all instances with this verb.

b. the manual that comes with the game covers
everything you need to know , including the
mission editor . (ENCOW-08-06019647)

Sentences with the verb represent are frequently
labeled as causative by one or more of the classi-
fiers. When the verb is used in a legal or political
sense, as in (10), this may in fact be appropriate.
Since our verb sets are labeled on the lemma level
and we do not perform any word sense disambigua-
tion, these differences are not explicitly marked
in our datasets, so these sentences are counted as
mislabeled instances.

(10) they represent the voice of over 80,000 stu-
dents and 62,000 members in 155 countries .
(ENCOW-09-01862399)

InDtr, all classifiers occasionally label instances
of noncausative leave as causative, particularly XL-
Net. leave is a member of the VN classes become-
109.1-1-1, escape-51.1-1-1, fulfilling-13.4.1, fu-
ture having-13.3, keep-15.2, and others. While
not all of these classes license basic intransitive

sentences of the type included in our datasets, this
illustrates the polysemy of leave, which might be
an explanation for the relatively high number of
mislabeled instances in our experiments.

Generally, in Dall, noncausative alternating
verbs are among the most mislabeled verbs. Since
the dataset contains different numbers of verbs of
each type, this may be a sparsity effect more than
an effect of these verbs being more difficult to label.
This question will be approached with new datasets
in future work.

The reason for most errors of this type is that
our datasets were created automatically with the
help of a lexical resource. In order to avoid such
polysemy issues, a version of the datasets with
human annotations would be necessary.

Errors due to an ambiguity between full verb,
light verb, and auxiliary verb Finally, the verbs
have and be are the most mislabeled nonalternating
noncausative verbs in Dall. These verbs appear in
light verb constructions, as auxiliary verbs, and in
a range of word senses that can be causative or non-
causative. The examples in (11) illustrate why the
classifiers are struggling to label such sentences as
noncausative. Note that in all cases, the MaltParser
annotations provided alongside ENCOW mark a
form of have as the root verb.

(11) a. hi we have just moved house and the house
has no tv aerial . (ENCOW-11-17855426)

b. we had a small cup made up not long ago
with a very simple design . (ENCOW-06-
00570494)

c. local people have the power to stop this by
not buying counterfeit products . (ENCOW-
08-19775040)

ENCOW was parsed between 2015 and 2018
using the standard engmalt model available on the
MaltParser website (Roland Schäfer, p.c.) This
type of error would be minimized if a more recent
dependency parser was used.

To summarize, many of the “errors” of the clas-
sifiers are actually not errors but incorrect labels in
the gold data. This means that the classifiers might
be better in predicting causativity than assessed by
our evaluation.

7 Conclusion

We set up a series of classification experiments
with a range of datasets to determine whether large
language models learn implicit representations of
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causativity, a linguistic property that is not neces-
sarily represented syntactically or morphologically
in English. We compare classifiers based on BERT,
DistilBERT, and XLNet, and find that all learn to
predict causativity to a large extent. Differences in
classification accuracy are observed across differ-
ent datasets (see Table 1). As expected, all models
achieve the highest accuracy on Dtr 5 and the low-
est accuracy on Dall. The latter set, in addition to
verbs that are lexically causative or lexically non-
causative, also includes verbs that participate in the
causative-inchoative alternation, which presents an
additional challenge to the classifiers.

We also show that causativity is represented
rather in the higher layers of the models and, fur-
thermore, that reducing each model to only the
10% of its neurons that are most correlated with the
causativity property only leads to small differences
in accuracy, sometimes an increase in accuracy due
to the elimination of non-discriminative features.

Our error analysis suggests that many of the clas-
sification errors are actually labeling errors in the
data, due either to a wrong parse of the sentence
in our source corpus ENCOW or to the polysemy
of verbs that can be causative in certain readings
but are not causative in some of the readings misla-
beled in the dataset. Put differently, the classifiers
were probably better in identifying causativity than
their accuracy scores suggest. While our datasets
were created with little manual effort and already
led to good results, we are planning on pursuing
possible improvements in the future in order to
avoid these labeling errors as far as possible.
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Abstract

Dependency parsing is a tool widely used in
the field of Natural Language Processing and
computational linguistics. However, there is
hardly any work that connects dependency
parsing to monotonicity, which is an essential
part of logic and linguistic semantics. In this
paper, we present a system that automatically
annotates monotonicity information based on
Universal Dependency parse trees. Our system
utilizes surface-level monotonicity facts about
quantifiers, lexical items, and token-level po-
larity information. We compared our system’s
performance with existing systems in the liter-
ature, including NatLog and ccg2mono, on a
small evaluation dataset. Results show that our
system outperforms NatLog and ccg2mono.

1 Introduction

The number of computational approaches for Natu-
ral Language Inference (NLI) has rapidly grown in
recent years. Most of the approaches can be cate-
gorized as (1) Systems that translate sentences into
first-order logic expressions and then apply theo-
rem proving (Blackburn and Bos, 2005). (2) Sys-
tems that use blackbox neural network approaches
to learn the inference (Devlin et al., 2019; Liu et al.,
2019). (3) Systems that apply natural logic as a
tool to make inferences (MacCartney and Man-
ning, 2009; Hu et al., 2020; Angeli et al., 2016;
Abzianidze, 2017). Compared to neural network
approaches, systems that apply natural logic are
more robust, formally more precise, and more ex-
plainable. Several systems contributed to the third
category (MacCartney and Manning, 2009; Hu
et al., 2020; Angeli et al., 2016) to solve the NLI
task using monotonicity reasoning, a type of log-
ical inference that is based on word replacement.
Below is an example of monotonicity reasoning:

1. (a) All students↓ carry a MacBook↑.

(b) All students carry a laptop.

(c) All new students carry a MacBook.

2. (a) Not all new students↑ carry a laptop.

(b) Not all students carry a laptop.

As the example shows, the word replacement is
based on the polarity mark (arrow) on each word.
A monotone polarity (↑) allows an inference from
(1a) to (1b), where a more general concept laptop
replaces the more specific concept MacBook. An
antitone polarity (↓) allows an inference from (1a)
to (1c), where a more specific concept new stu-
dents replaces the more general concept students.
The direction of the polarity marks can be reversed
by adding a downward entailment operator like
Not which allows an inference from (2a) to (2b).
Thus, successful word placement relies on accurate
polarity marks. To obtain the polarity mark for
each word, an automatic polarity marking system
is required to annotate a sentence by placing po-
larity mark on each word. This is formally called
the polarization process. Polarity markings sup-
port monotonicity reasoning, and thus are used by
systems for Natural Language Inference and data
augmentations for language models. (MacCartney
and Manning, 2009; Hu et al., 2020; Angeli et al.,
2016).

In this paper, we introduce a novel automatic po-
larity marking system that annotates monotonicity
information by applying a polarity algorithm on
a universal dependency parse tree. Our system is
inspired by ccg2mono, an automatic polarity mark-
ing system (Hu and Moss, 2018) used by Hu et al.
(2020). In contrast to ccg2mono, which derives
monotonicity information from CCG (Lewis and
Steedman, 2014) parse trees, our system’s polariza-
tion algorithm derives monotonicity information
using Universal Dependency (Nivre et al., 2016)
parse trees. There are several advantages of us-
ing UD parsing for polarity marking rather than
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CCG parsing. First, UD parsing is more accurate
since the amount of training data for UD parsing
is larger than those of CCG parsing. The high
accuracy of UD parsing should lead to more ac-
curate polarity annotation. Second, UD parsing
works for more types of text. Overall, our system
opens up a new framework for performing infer-
ence, semantics, and automated reasoning over UD
representations. We will introduce the polariza-
tion algorithm’s general steps, a set of rules we
used to mark polarity on dependency parse trees,
and comparisons between our system and some
existing polarity marking tools, including NatLog
(MacCartney and Manning, 2009; Angeli et al.,
2016) and ccg2mono. Our evaluation focuses on a
small dataset used to evaluate ccg2mono (Hu and
Moss, 2020). Our system outperforms NatLog and
ccg2mono. In particular, our system achieves the
highest annotation accuracy on both the token level
and the sentence level.

2 Related Work

Universal Dependencies (UD) (Nivre et al., 2016)
was first designed to handle language tasks for
many different languages. The syntactic annota-
tion in UD mostly relies on dependency relations.
Words enter into dependency relations, and that is
what UD tries to capture. There are 40 grammati-
cal dependency relations between words, such as
nominal subject (nsubj), relative clause modifier
(acl:relcl), and determiner (det). A dependency
relation connects a headword to a modifier. For
example, in the dependency parse tree for All dogs
eat food (figure 1), the dependency relation nsubj
connects the modifier dogs and the headword eat.
The system presented in this paper utilizes Univer-
sal Dependencies to obtain a dependency parse tree
from a sentence. We will explain the details of the
parsing process in the implementation section.

There are two relevant systems of prior work:
(1) The NatLog (MacCartney and Manning, 2009;
Angeli et al., 2016) system included in the Stan-
ford CoreNLP library (Manning et al., 2014); (2)
The ccg2mono system (Hu and Moss, 2018). The
NatLog system is a natural language inference sys-
tem, a part of the Stanford CoreNLP Library. Nat-
Log marks polarity to each sentence by applying
a pattern-based polarization algorithm to the de-
pendency parse tree generated by the Stanford de-
pendency parser. A list of downward-monotone
and non-monotone expressions are defined along

Figure 1: A dependency parse tree for "All dogs eat
food."

with an arity and a Tregex pattern for the system to
identify if an expression occurred.

The ccg2mono system is a polarity marking
tool that annotates a sentence by polarizing a
CCG parse tree. The polarization algorithm of
ccg2mono is based on van Benthem (1986)’s work
and Moss (2012)’s continuation on the soundness
of internalized polarity marking. The system uses
a marked/order-enriched lexicon and can handle
application rules, type-raising, and composition in
CCG. The main polarization contains two steps:
mark and polarize. For the mark step, the sys-
tem puts markings on each node in the parse tree
from leaf to root. For the polarize step, the system
generates polarities to each node from root to leaf.
Compared to NatLog, an advantage of ccg2mono
is that it polarizes on both the word-level and the
constituent level.

3 Universal Dependency to Polarity

3.1 Overview
Our system’s polarization algorithm contains three
steps: (1) Universal Dependency Parsing, which
transforms a sentence to a UD parse tree, (2) Bina-
rization, which converts a UD parse tree to a binary
UD parse tree, and (3) Polarization, which places
polarity marks on each node in a binary UD parse
tree.

3.2 Binarization
To preprocess the dependency parse graph, we de-
signed a binarization algorithm that can map each
dependency tree to an s-expression (Reddy et al.,
2016). Formally, an s-expression has the form
(exp1 exp2 exp3), where exp1 is a dependency
label, and both exp2 and exp3 are either (1) a word
such as eat; or (2) an s-expression such as (det
all dogs). The process of mapping a dependency
tree to an s-expression is called binarization. Our
system represents an s-expression as a binary tree.
A binary tree has a root node, a left child node, and
a right child node. In representing an s-expression,
the root node can either be a single word or a de-
pendency label. Both the left and the right child
nodes can either be a sub-binary-tree, or null. The
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Figure 2: A binarized dependency parse tree for "All
dogs eat apples."

system always puts the modifiers on the left and the
headwords on the right. For example, the sentence
All dogs eat apples has an s-expression

(nsubj (det All dogs) (obj eat apples))

and can be shown as a binary tree in figure 2. In
the left sub-tree (All dogs), the dependency label
det will be the root node, the modifier all will be
the left child, and the headword dogs will be the
right child.

Our binarization algorithm employs a depen-
dency relation hierarchy to impose a strict traversal
order from the root relation to each leaf word. The
hierarchy allows for an ordering on the different
modifier words. For example, in the binary depen-
dency parse tree (nsubj (det All dogs) (obj eat

relation level-id relation level-id
conj-sent 0 obl:tmod 50
advcl-sent 1 obl:npmod 50

advmod-sent 2 cop 50
case 10 det 55
mark 10 det:predet 55
expl 10 acl 60

discourse 10 acl:relcl 60
nsubj 20 appos 60
csubj 20 conj 60

nsubj:pass 20 conj-np 60
conj-vp 25 conj-adj 60
ccomp 30 obj 60
advcl 30 iobj 60

advmod 30 cc 70
nmod 30 amod 75

nmod:tmod 30 nummod 75
nmod:npmod 30 compound 80

nmod:poss 30 compound:prt 80
xcomp 40 fixed 80

aux 40 conj-n 90
aux:pass 40 conj-vb 90

obl 50 flat 100

Table 1: Universal Dependency relation hierarchy. The
smaller a relation’s level-id is, the higher that relation
is in the hierarchy.

apples)), the nominal subject (nsubj) goes above
the determiner (det) in the tree because det is lower
than nsubj in the hierarchy. We originally used the
binarization hierarchy from Reddy et al. (2016)’s
work, and later extended it with additional depen-
dency relations such as oblique nominal (obl) and
expletive (expl). Table 1 shows the complete hier-
archy where the level-id indicates a relation’s level
in the hierarchy. The smaller a relation’s level-id
is, the higher that relation is in the hierarchy.

Algorithm 1 Binarization
1: root← GET_ROOT_NODE(G)
2: T ← COMPOSE(root)
3: return T
4:
5: function COMPOSE(node):
6: C ← GET_CHILDREN(node)
7: Cs ← SORT_BY_PRIORITY(C)
8: if | Cs | == 0 then
9: B ← BINARYDEPENDENCYTREE()

10: B.val = node
11: return B
12: else
13: top← C.pop()
14: B ← BINARYDEPENDENCYTREE()
15: B.val = RELATE(top, node)
16: B.left = COMPOSE(top)
17: B.right = COMPOSE(node)
18: return B
19: end if
20: end function

3.3 Polarization
The polarization algorithm places polarities on each
node of a UD parse tree based on a lexicon of polar-
ization rules for each dependency relation and some
special words. Our polarization algorithm is simi-
lar to the algorithms surveyed by Lavalle-Martínez
et al. (2018). Like the algorithm of Sanchez (1991),
our algorithm computes polarity from leaves to
root. One difference our algorithm has is that often,
the algorithm computes polarity following a left-to-
right inorder traversal (left−→root−→right) or a
right-to-left inorder traversal (right−→root−→left)
in additional to the top-down traversal. In our al-
gorithm, each node’s polarity depends both on its
parent node and its sibling node (left side or right
side), which is different from algorithms in Lavalle-
Martínez et al. (2018)’s paper. Our algorithm is
deterministic, and thus never fails.

The polarization algorithm takes in a binarized
UD parse tree T and a set of polarization rules,
both dependency-relation-level (L) and word-level
(W). The algorithm outputs a polarized UD parse
tree T ∗ such that (1) each node is marked with
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Figure 3: Visualization of a polarized binary depen-
dency parse tree for a triple negation sentence No stu-
dent refused to dance without shoes.

a polarity of either monotone (↑), antitone (↓), or
no monotonicity information (=), (2) both T and
T ∗ have the same universal dependency structure
except the polarity marks. Figure 3 shows a visu-
alization of the binary dependency parse tree after
polarization completes. The general steps of the
polarization start from the root node of the binary
parse tree. The system will get the correspond-
ing polarization rule from the lexicon according to
the root node’s dependency relation. In each po-
larization rule, the system applies the polarization
rule and then continues the above steps recursively
down the left sub-tree and the right sub-tree. Each
polarization rule is composed from a set of basic
building blocks include rules for negation, equal-
ization, and monotonicity generation. When the re-
cursion reaches a leaf node, which is an individual
word in a sentence, a set of word-based polariza-
tion rules will be retrieved from the lexicon, and
the system polarizes the nodes according to the rule
corresponding to a particular word. More details
about word-based polarization rules will be covered
in section 3.4.2, Polarity Generation. An overview
of the polarization algorithm and a general scheme
of the implementation for dependency-level polar-
ization rules are shown in Algorithm 2.

3.4 Polarization Rules

Our polarization algorithm contains a lexicon of po-
larization rules corresponding to each dependency
relation. Each polarization rule is composed from a
set of building blocks divided into three categories:
negation rules, equalization rules, and monotonic-
ity generation rules. The generation rules will gen-
erate three types of monotonicity: monotone (↑),
antitone (↓), and no monotonicity information (=)
either by initialization or based on the words.

Algorithm 2 Polarization
Input: T : binary dependency tree

L: dependency-level polarization rules
W: word-level polarization rules

Output: T ∗: polarized binary dependency tree

1: if T .is_tree then
2: relation← T .val
3: POLARIZATION_RULE(.) ← L[relation]
4: POLARIZATION_RULE(T )
5: end if
6:
7: . General scheme of a polarization rule’s implementation

for a dependency relation
8: function POLARIZATION_RULE(T )
9: . Initialize or inherit polarities

10: if T .mark 6= NULL then
11: T .right.mark = T .mark
12: T .left.mark = T .mark
13: else
14: T .right.mark = ↑
15: T .left.mark = ↑
16: end if
17:
18: . Polarize sub-trees
19: POLARIZATION(T .left)
20: POLARIZATION(T .right)
21: . Or, for relations like nsubj:
22: . POLARIZATION(T .right)
23: . POLARIZATION(T .left)
24:
25: . Apply negation and equalization rules
26: if NEGATE is applicable then
27: NEGATE(T )
28: end if
29: if EQUALIZE is applicable then
30: EQUALIZE(T )
31: end if
32:
33: . Apply word-level rules
34: if not T .is_tree and T .val ∈ W .keys then
35: WORD_RULE(.) ←W[T .val]
36: WORD_RULE(T )
37: end if
38: end function

3.4.1 Building Blocks

Negation and Equalization The negation rule
and the equalization rule are used by several core
dependency relations such as nmod, obj, and
acl:recl. Both negation and equalization have two
ways of application: backward or top-down. A
backward negation rule is triggered by a downward
polarity (↓) on the right node of the tree (marked be-
low as R), flipping every node’s polarity under the
left node (marked below as L). Similarly, a back-
ward equalization rule is triggered by a no mono-
tonicity information polarity (=) on the tree’s right
node, and it marks every node under the left node
as =. Examples for trees before and after applying
a backward and forward negation and equalization
are shown as follows:
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• Backward Negation:

obj↑

¬(L↑) R↓

obj↑

L↓ R↓

• Backward Equalization:

obj↑

∼= (L↑) R=

obj↑

L= R=

• Forward Negation:

advmod↑

L↓ ¬(R↑)

advmod↑

L↓ R↓

• Forward Equalization:

advmod↑

L= ∼= (R↑)

advmod↑

L= R=

where ¬means negation and∼= means equalization.
A top-down negation is used by the polarization

rule like determiner (det) and adverbial modifier
(advmod). It starts at the parent node of the current
tree, and flips the arrow on each node under that
parent node excluding the current tree. This top-
down negation is used by det, case, and advmod
when a negation operators like no, not, or at-most
appears. Below is an example of a tree before and
after applying the top-down negation:

¬(nsubj↑)

det↑

No↑ cat↓
¬(flies↑)

nsubj↓

det↑

No↑ cat↓
flies↓

Polarity Generation The polarity is generated
by words. During the polarization, the polarity can
change based on a particular word that can promote
the polarity governing the part of the sentence to
which it belongs. These words include quantifiers
and verbs. For the monotonicity from quantifiers,
we follow the monotonicity profiles listed in the
work done by Icard III and Moss (2014) on mono-
tonicity, which built on van Benthem (1986). Addi-
tionally, to extend to more quantifiers, we observed
polarization results generated by ccg2mono. Over-
all, we categorized the quantifiers as follows:

• Universal Type

Every ↓ ↑ Each ↓ ↑ All ↓ ↑

• Negation Type

No ↓ ↓ Less than ↓ ↓ At most ↓ ↓

• Exact Type

Exactly n = = The = ↑ This = ↑

• Existential Type

Some ↑ ↑ Several ↑ ↑ A,An ↑ ↑

• Other Type

Most = ↑ Few = ↓

Where the first mark is the monotonicity for the
first argument after the quantifier and the second
mark is the monotonicity for the second argument
after the quantifier. For verbs, there are upward
entailment operators and downward entailment op-
erators. Verbs that are downward entailment opera-
tors, such as refuse, promote an antitone polarity,
which will negate its dependents. For example, for
the phrase refused to go, refused will promote an
antitone polarity, which negates to dance:

xcomp↑

¬(mark↑)

¬(to↑) ¬(go↑)

refused↑

xcomp↑

mark↓

to↓ go↓
refused↑

In addition to quantifiers and verbs, some other
words also change the monotonicity of a sentence.
For example, words like not, none, and nobody
promote an antitone polarity. Our system also han-
dles material implications with the form if x then
y. Based on Moss (2012), the word if promotes
an antitone polarity in the antecedent and posi-
tive polarity in the consequent. For background
on monotonicity and semantics, see van Benthem
(1986), Keenan and Faltz (1984), and also Kart-
tunen (2012).

3.4.2 Dependency Relation Rules

Each dependency relation has a corresponding po-
larization rule. All the rules start with initializing
the starting node as upward monotone polarity (↑).
Alternatively, if the starting node has a polarity
marked, each child node will inherit the root node’s
polarity. Each rule’s core part is a combination of
the default rules and monotonicity generation rules.
In this section, we will briefly show three major
types of dependency relation rules in the polariza-
tion algorithm. The relative clause modifier rela-
tion will represent rules for modifier relations. The
determiner relation rule will represent rules con-
taining monotonicity generation rules. The Object
and open clausal complement rule will represent
rules containing word-level polarization rules.
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Algorithm 3 Polarize_acl:relcl
Input: T : binary dependency sub-tree
Output: T ∗: polarized binary dependency sub-tree

1: if T .mark 6= NULL then
2: T .right.mark = T .mark
3: else
4: T .right.mark = ↑
5: end if
6: T .left.mark = ↑
7:
8: POLARIZE(T .right)
9: POLARIZE(T .left)

10:
11: if T .right.mark == ↓ then
12: NEGATE(T .left)
13: else if T .right.mark == = then
14: EQUALIZE(T .left)
15: end if

Relative Clause Modifier For the relative clause
modifier relation (acl:relcl), the relative clause de-
pends on the noun it modifies. First, the polariza-
tion will first be performed on both the left and
right nodes, and then, depending on the polarity
of the right node, a negation or an equalization
rule will be applied. The algorithm first applies a
top-down inheritance if the root already has its po-
larity marked; otherwise, it initializes the left and
right nodes as monotone. The algorithm polarizes
both the left and right nodes. Next, the algorithm
checks the right node’s polarity. If the right node
is marked as antitone, a backward negation is ap-
plied. Alternatively, if the right node is marked as
no monotonicity information, a backward equaliza-
tion is applied. During the experiments, we noticed
that if the root node is marked antitone, and the left
node inherits that, a negation later will cause a dou-
ble negation, producing incorrect polarity marks.
To avoid this double negation, we exclude the left
node from the top-down inheritance rule by initial-
izing the left node directly with a monotone mark.
The rule for acl:relcl also applies to the adverbial
clause modifier (advcl) and the clausal modifier of
noun (acl). An overview of the algorithm is shown
in Algorithm 3.

Determiner For the determiner relation (det),
each different determiner can assign a new mono-
tonicity to the noun it modifies. First, the algorithm
performs a top-down inheritance on the left node if
the root already has polarity marked. Next, the al-
gorithm assigns the polarity for the noun depending
on the determiner’s type. For example, if the deter-
miner is a universal quantifier, an antitone polarity
is assigned to the right node. For negation quanti-

Algorithm 4 Polarize_det
Input: T : binary dependency sub-tree

D: determiner mark dictionary
Output: T ∗: polarized binary dependency sub-tree

1: det_type← GET_DET_TYPE(T .left)
2: if T .mark 6= NULL then
3: T .left.mark = T .mark
4: else
5: T .left.mark = ↑
6: end if
7:
8: T .right.mark = D[det_type]
9: POLARIZE(T .right)

10:
11: if det_type == negation then
12: NEGATE(T .parent)
13: end if

fiers like no, its right node also receives an antitone
polarity. Thus, a top-down negation is applied at
the determiner relation tree’s parent. Algorithm 4
shows an overview of the algorithm.

Object and Open Clausal Complement For
the object relation (obj) and the open clausal com-
plement relation xcomp, both the verb and the noun
would inherit the monotonicity from the parent in
the majority of cases. The inheritance procedure is
the same as the one used in acl:relcl’s rule. Sim-
ilarly, after the inheritance, the rule will polarize
both the right sub-tree and the left sub-tree. Differ-
ently, since obj and xcomp both have a verb under
the relation, they require a word-level polarization
rule that will check the verb determine if the verb
is a downward entailment operator, which prompts
an antitone monotonicity. The algorithm takes in
a dictionary that contains a list of verbs and their

Algorithm 5 Polarize_obj
Input: T : binary dependency sub-tree
Output: T ∗: polarized binary dependency sub-tree

1: if T .mark 6= NULL then
2: T .right.mark = T .mark
3: else
4: T .right.mark = ↑
5: end if
6: T .left.mark = ↑
7:
8: POLARIZE(T .right)
9: POLARIZE(T .left)

10:
11: . Word-level polarization rule for downward entailment

operators
12: if IS_DOWNWARD_OPERATOR(T .right.mark) then
13: NEGATE(T .left)
14: end if
15:

126



implicatives. The dictionary is generated from the
implicative verb dataset made by Ross and Pavlick
(2019). If a verb is a downward entailment opera-
tor, which has a negative implicative, the rule will
apply a negation rule on the left sub-tree to flip
each node’s arrow in the left sub-tree. An overview
of the algorithm is shown in Algorithm 5.

4 Comparison to Existing Systems

We conducted several preliminary comparisons to
two existing systems. First, we compared to Nat-
Log’s monotonicity annotator. Natlog’s annotator
also uses dependency parsing. The polarization al-
gorithm does pattern-based matching for finding oc-
currences of downward monotonicity information,
and the algorithm only polarizes on word-level. In
contrast, our system uses a tree-based polarization
algorithm that polarizes both on word-level polari-
ties and constituent level polarities. Our intuition
is that the Tregex patterns used in NatLog is not
as common or as easily understandable as the bi-
nary tree structure, which is a classic data structure
wildly used in the filed of computer science.

According to the comparison on a list of sen-
tences, NatLog’s annotator does not perform as
well as our system. For example, for a phrase the
rabbit, rabbit should have a polarity with no mono-
tonicity information (=). However, NatLog marks
rabbit as a monotone polarity (↑). NatLog also
incorrectly polarizes sentences containing multiple
negations. For example, for a triple negation sen-
tence, No newspapers did not report no bad news,
NatLog gives: No↑ newspapers↓ did↓ not↓ report↑

no↑ bad↑ news↑. This result has incorrect polar-
ity marks on multiple words, where report, bad,
news should be ↓, and no should be ↑. Both of the
scenarios above can be handled correctly by our
system.

Comparing to ccg2mono, our algorithm shares
some similarities to its polarization algorithm. Both
of the systems polarize on a tree structure and rely
on a lexicon of rules, and they both polarize on
the word-level and the constituent level. One dif-
ference is that ccg2mono’s algorithm contains two
steps, the first step puts markings on each node, and
the second step puts polarities on each node. Our
system does not require the step of adding mark-
ings and only contains the step of adding polarities
on each node.

Our system has multiple advantages over
ccg2mono. For parsing, our system uses UD pars-

ing, which is more accurate than CCG parsing used
by ccg2mono due to a large amount of training
data. Also, our system covers more types of text
than ccg2mono because UD parsing works for a
variety of text genres such as web texts, emails, re-
views, and even informal texts like Twitter tweets.
(Silveira et al., 2014; Zeldes, 2017; Liu et al., 2018).
Our system can also work for more languages than
ccg2mono since UD parsing supports more lan-
guages than CCG parsing.

Overall, our system delivers more accurate po-
larization than ccg2mono. Many times the CCG
parser makes mistakes and leads to polarization
mistakes later on. For example, in the annotation
The↓ market↓ is↓ not↓ impossible↓ to↓ navigate↓,
ccg2mono incorrectly marks every word as ↓. Our
system, on the other hand, uses UD parsing which
has higher parsing accuracy than CCG parsing, and
thus leads to fewer polarization mistakes compared
to ccg2mono. For the expression above, our sys-
tem correctly polarizes it as The↑ market= is↑ not↑

impossible↓ to↑ navigate↑.

Our system also handles multi-word quantifiers
better than ccg2mono. For example, for a multi-
word quantifier expression like all of the dogs,
ccg2mono mistakenly marks dogs as =. Our sys-
tem, however, can correctly mark the expression:
all↑ of ↑ the↑ dogs↓.

Moreover, the core of ccg2mono does not in-
clude aspects of verbal semantics of downward-
entailing operators like forgot and regret (Moss
and Hu, 2020). For example ccg2mono’s polariza-
tion for Every↑ member↓ forgot↑ to↑ attend↑ the↑

meeting= is not correct because it fails to flip the
polarity of to attend the. In contrast, our system
produces a correct result: Every↑ member↓ forgot↑

to↓ attend↓ the↓ meeting=.

All three systems have difficulty polarizing sen-
tences containing numbers. A scalar number n’s
monotonicity information is hard to determine be-
cause it can presenter different contexts: a single
number n, without additional quantifiers or adjec-
tives, can either mean at least n, at most n, exactly
n, and around n. These contexts are syntactically
hard to identify for a dependency parser or a CCG
parser because it would require pragmatics and
some background knowledge which the parsers do
not have. For example, in the sentence A dog ate
2 rotten biscuits, the gold label for 2 is = which
indicates that the context is "exactly 2". However,
our system marks this as "↓ since it considers the
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sentence type
More↑ dogs↑ than↑ cats↓ sit= comparative
Less↑ than↑ 5↑ people↓ ran↓ less-than

A↑ dog↑ who↑ ate↑ two= rotten↑ biscuits↑ was↑ sick↑ for↑ three↓ days↓ number
Every↑ dog↓ who↓ likes↓ most↓ cats= was↑ chased↑ by↑ at↑ least↑ two↓ of↑ them↑ every:most:at-least

Even↑ if↑ you↓ are↓ addicted↓ to↓ cigarettes↓ you↑ can↑ smoke↑two↓ a↑ day↑ conditional:number

Table 2: Example sentences in Hu and Moss (2020)’s evaluation dataset

context as "at least 2", which is different from the
gold label.

5 Experiment

Dataset We obtained the small evaluation dataset
used in the evaluation of ccg2mono (Hu and Moss,
2020) from its authors. The dataset contains 56
hand-crafted English sentences, each with manu-
ally annotated monotonicity information. The sen-
tences cover a wide range of linguistic phenomena
such as quantifiers, conditionals, conjunctions, and
disjunctions. The dataset also contains hard sen-
tences involving scalar numbers. Some example
sentences from the dataset are shown in Table 2.

Dependency Parser In order to obtain a univer-
sal dependency parse tree from a sentence, we uti-
lize a parser from Stanza (Qi et al., 2020), a Python
natural language analysis package made by Stan-
ford. The neural pipeline in Stanza allow us to
use pretrained neural parsing models to generate
universal dependency parse trees. To achieve op-
timal performance, we trained two neural parsing
models: one parsing model trained on Universal
Dependency English GUM corpus (Zeldes, 2017).
The pretrained parsing model achieved 90.0 LAS
(Zeman et al., 2018) evaluation score on the testing
data.

Experiment Setup We evaluated the polariza-
tion accuracy on both the token level and the sen-
tence level, in a similar fashion to the evaluation for
part-of-speech tagging (Manning, 2011). For both
levels of accuracy, we conducted one evaluation on
all tokens (acc(all-tokens) in Table 3) and another
one on key tokens including content words (nouns,
verbs, adjectives, adverbs), determiners, and num-
bers (acc(key-tokens) in Table 3). The key tokens
contain most of the useful monotonicity informa-
tion for inference. In token-level evaluation, we
counted the number of correctly annotated tokens
for acc(all-tokens) or the number of correctly anno-
tated key tokens for acc(key-tokens). In sentence-
level evaluation, we counted the number of cor-

Token-level
system NatLog ccg2mono ours

acc(all-tokens) 69.9 76.0 96.5
acc(key-tokens) 68.1 78.0 96.5

Sentence-level
system NatLog ccg2mono ours

acc(all-tokens) 28.0 44.6 87.5
acc(key-tokens) 28.6 50.0 89.2

Table 3: This table shows the polarity annotation accu-
racy on the token level and the sentence level for three
systems: NatLog, ccg2mono, and our system. The to-
ken level accuracy counts the number of correctly anno-
tated tokens, and the sentence level accuracy counts the
number of correctly annotated sentences. Two types of
accuracy are used. For acc(all-tokens), all tokens are
evaluated. For acc(key-tokens), only key tokens (con-
tent words + determiners + numbers) are evaluated.

rect sentences. A correct sentence has all tokens
correctly annotated for acc(all-tokens) or all key
tokens correctly annotated for acc(key-tokens). We
also evaluated our system’s robustness on the token
level. We followed the robustness metric for eval-
uating multi-class classification tasks, which uses
precision, recall, and F1 score to measure a sys-
tem’s robustness. We calculated these three metrics
for each polarity label: monotone(↑), antitone(↓),
and None or no monotonicity information(=). The
robustness evaluation is also done both on all to-
kens and on key tokens.

6 Evaluation

Table 3 shows the performance of our system, com-
pared with NatLog and ccg2mono. Our evaluation
process is the same as Hu and Moss (2020). From
Table 3, we first observe that our system consis-
tently outperforms ccg2mono and NatLog on both
the token level and the sentence level. For accuracy
on the token level, our system has the highest ac-
curacy for the evaluation on all tokens (96.5) and
the highest accuracy for the evaluation on key to-
kens (96.5). Our system’s accuracy on key tokens
is higher than the accuracy on all tokens, which
demonstrates our system’s good performance on
polarity annotation for tokens that are more signif-
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All Tokens
system NatLog ccg2mono ours
Polarity Monotone Antitone None Monotone Antitone None Monotone Antitone None
precision 71.4 43.5 70.7 86.0 75.6 58.0 97.6 96.5 91.7

recall 87.3 15.9 63.9 77.8 78.3 74.6 97.2 89.4 87.3
F1-score 78.6 23.3 67.1 81.7 76.9 65.3 97.4 97.6 89.4

Key Tokens
system NatLog ccg2mono ours
Polarity Monotone Antitone None Monotone Antitone None Monotone Antitone None
precision 68.7 70.9 42.1 85.2 78.7 62.7 96.9 96.4 94.2

recall 88.6 61.5 14.0 80.3 79.3 73.7 97.9 98.5 86.0
F1-score 77.4 65.9 21.1 82.7 79.0 67.7 97.4 97.4 89.9

Table 4: Token level robustness comparison between NatLog, ccg2mono, and our system. The robustness score
is evaluated both on all tokens and on key tokens (content words + determiners + numbers). For each of the three
polarities: monotone(↑), antitone(↓), and None or no monotonicity information(=), the relative precision, recall
and F1 score are calculated.

icant to monotonicity inference. For accuracy on
the sentence level, our system again has the high-
est accuracy for the evaluation on all tokens (87.5)
and the highest accuracy for the evaluation on key
tokens (89.2). Such results suggest that our system
can achieve good performance on determining the
monotonicity of the sentence constituents. Overall,
the evaluation validates that our system has higher
polarity annotation accuracy than existing systems.
We compared our annotations to ccg2mono’s an-
notation and observed that of all the tokens in the
56 sentences, if ccg2mono annotates it correctly,
then our system also does so. This means, our sys-
tem’s polarization covers more linguistic phenom-
ena than ccg2mono. Table 4 shows the robustness
score of our system and the two existing systems.
Our systems has much higher precision and recall
on all three polarity labels than the other two sys-
tems. For the F1 score, our system again has the
highest points over the other two systems. The con-
sistent and high robustness scores show that our
system’s performance is much more robust on the
given dataset than existing systems.

7 Conclusion and Future Work

In this paper, we have demonstrated our system’s
ability to automatically annotate monotonicity in-
formation (polarity) for a sentence by conducting
polarization on a universal dependency parse tree.
The system operates by first converting the parse
tree to a binary parse tree and then marking po-
larity on each node according to a lexicon of po-
larization rules. The system produces accurate an-
notations on sentences involving many different
linguistic phenomena such as quantifiers, double
negation, relative clauses, and conditionals. Our

system had better performance on polarity marking
than existing systems including ccg2mono (Hu and
Moss, 2018) and NatLog (MacCartney and Man-
ning, 2009; Angeli et al., 2016). Additionally, by
using UD parsing, our system offers many advan-
tages. Our system supports a variety of text genres
and can be applied to many languages. In general,
this paper opens up a new framework for perform-
ing inference, semantics, and automated reasoning
over UD representations.

For future work, an inference system can be
made that utilizes the monotonicity information an-
notated by our system, which is similar to the Mon-
aLog system (Hu et al., 2020). Several improve-
ments can be made to the system to obtain more
accurate annotations. One improvement would be
to incorporate pragmatics to help determine the
monotonicity of a scalar number.
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Abstract
Research in NLP has mainly focused on fac-
toid questions, with the goal of finding quick
and reliable ways of matching a query to an
answer. However, human discourse involves
more than that: it contains non-canonical ques-
tions deployed to achieve specific communica-
tive goals. In this paper, we investigate this
under-studied aspect of NLP by introducing a
targeted task, creating an appropriate corpus
for the task and providing baseline models of
diverse nature. With this, we are also able to
generate useful insights on the task and open
the way for future research in this direction.

1 Introduction

Recently, the field of human-machine interaction
has seen ground-breaking progress, with the tasks
of Question-Answering (QA) and Dialog achiev-
ing even human-like performance. The probably
most popular example is Watson (Ferrucci et al.,
2013), IBM’s QA system which was able to com-
pete on the US TV program Jeopardy! and beat
the best players of the show. Since then and par-
ticularly with the rise of Neural Networks (NN),
various high-performance QA and Dialog systems
have emerged. For example, on the QQP task of
the GLUE benchmark (Wang et al., 2018), the cur-
rently best performing system achieves an accuracy
of 90.8%. Despite this success, current QA and Di-
alog systems cannot be claimed to be on a par with
human communication. In this paper we address
one core aspect of human discourse that is under-
researched within NLP: non-canonical questions.

Research in NLP has mainly focused on factoid
questions, e.g., When was Mozart born?, with the
goal of finding quick and reliable ways of match-
ing a query to terms found in a given text collec-
tion. There has been less focus on understanding
the structure of questions per se and the commu-
nicative goal they aim to achieve. State-of-the-art

parsers are mainly trained on Wikipedia entries or
newspaper texts, e.g., the Wall Street Journal, gen-
res which do not contain many questions. Thus, the
tools trained on them are not effective in dealing
with questions, let alone distinguishing between
different types. Even within more computational
settings that include deep linguistic knowledge,
e.g., PARC’s Bridge QA system (Bobrow et al.,
2007) which uses a sophisticated LFG parser and
semantic analysis, the actual nature and structure of
different types of questions is not studied in detail.

However, if we are aiming at human-like NLP
systems, it is essential to be able to efficiently
deal with the fine nuances of non-factoid questions
(Dayal, 2016). Questions might be posed

• as a (sarcastic, playful) comment, e.g., Have
you ever cooked an egg? (rhetorical)

• to repeat what was said or to express in-
credulity/surprise, e.g., He went where?
(echo)

• to make a decision, e.g., What shall we have
for dinner? (deliberative)

• to deliberate rather than ask or to rather ask
oneself than others, e.g., Do I even want to go
out? (self-addressed)

• to request or order something, e.g., Can you
pass me the salt? (ability/inclination)

• to suggest that a certain answer should be
given in reply, e.g., Don’t you think that call-
ing names is wrong? (suggestive)

• to assert something, e.g., You are coming,
aren’t you? (tag)

• to quote the words of somebody else, e.g., And
he said, “Why do you bother?” (quoted)

• to structure the discourse, e.g., What has this
taught us? It ... (discourse-structuring)

• etc.
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The importance of these communicative goals
in everyday discourse can be seen in systems like
personal assistants, chatbots and social media. For
example, personal assistants like Siri, Alexa and
Google should be able to distinguish an ability
question of the kind Can you play XYZ? from a
rhetorical question such as Can you be even more
stupid? Similarly, chatbots offering psychother-
apeutic help (Ly et al., 2017; Håvik et al., 2019)
should be able to differentiate between a factoid
question such as Is this a symptom for my condi-
tion? and a self-addressed question, e.g., Why can’t
I do anything right? In social media platforms like
Twitter, apart from the canonical questions of the
type Do you know how to tell if a brachiopod is
alive?, we also find non-canonical ones like why
am I lucky? Paul et al. (2011) show that 42% of all
questions on English Twitter are rhetorical.

To enable NLP systems to capture non-factoid
uses of questions, we propose the task of Question-
Type Identification (QTI). The task can be defined
as follows: given a question, determine whether
it is an information-seeking question (ISQ) or a
non information-seeking question (NISQ). The for-
mer type of question, also known as a canoni-
cal or factoid question, is posed to elicit informa-
tion, e.g., What will the weather be like tomorrow?
In contrast, questions that achieve other commu-
nicative goals are considered non-canonical, non-
information-seeking. NISQs do not constitute a
homogeneous class, but are heterogeneous, com-
prising sub-types that are sometimes difficult to
keep apart (Dayal, 2016). But even at the coarse-
grained level of distinguishing ISQs from NISQs,
the task is difficult: surface forms and structural
cues are not particularly helpful; instead, Bartels
(1999) and Dayal (2016) find that prosody and con-
text are key factors in question classification.

Our ultimate objective in this paper is to pro-
vide an empirical evaluation of learning-centered
approaches to QTI, setting baselines for the task
and proposing it as a tool for the evaluation of QA
and Dialog systems. However, to the best of our
knowledge, there are currently no openly available
QTI corpora that can permit such an assessment.
The little previous research on the task has not
contributed suitable corpora, leading to compara-
bility issues. To address this, this paper introduces
RQueT (rocket), the Resource of Question Types,
a collection of questions in-the-wild labeled for
their ISQ-NISQ type. As the first of its kind, the

resource of 2000 annotated questions allows for ini-
tial machine-/deep-learning experimentation and
opens the way for more research in this direction.

In this paper, we use this corpus to evaluate a
variety of models in a wide range of settings, includ-
ing simple linear classifiers, language models and
other neural network architectures. We find that
simple linear classifiers can compete with state-of-
the-art transformer models like BERT (Devlin et al.,
2019), while a neural network model, combining
features from BERT and the simple classifiers, can
outperform the rest of the settings.

Our contributions in this paper are three-fold.
First, we provide the first openly-available QTI cor-
pus, aiming at introducing the task and comprising
an initial benchmark. Second, we establish suit-
able baselines for QTI, comparing systems of very
different nature. Finally, we generate linguistic
insights on the task and set the scene for future
research in this area.

2 Relevant Work

Within modern theoretical linguistics, a large body
of research exists on questions. Some first analyses
focused on the most well-known types, i.e., deliber-
ative, rhetorical and tag questions (Wheatley, 1955;
Sadock, 1971; Cattell, 1973; Bolinger, 1978, to
name only a few). Recently, researchers have stud-
ied the effect of prosody on the type of question
as well as the interaction of prosody and seman-
tics on the different types (Bartels, 1999; Dayal,
2016; Biezma and Rawlins, 2017; Beltrama et al.,
2019; Eckardt, 2020, to name a few). It should
also be noted that research in developing detailed
pragmatic annotation schemes for human dialogs,
thus also addressing questions, has a long tradition,
e.g., Jurafsky et al. (1997); Novielli and Strappar-
ava (2009); Bunt et al. (2016); Asher et al. (2016).
However, most of this work is too broad and at the
same time too fine-grained for our purposes: on the
one hand, it does not focus on questions and thus
these are not studied in the desired depth and on the
other, the annotation performed is sometimes too
fine-grained for computational approaches. Thus,
we do not report further on this literature.

In computational linguistics, questions have
mainly been studied within QA/Dialog systems,
(e.g., Alloatti et al. (2019); Su et al. (2019)), and
within Question Generation, (e.g., Sasazawa et al.
(2019); Chan and Fan (2019)). Only a limited
amount of research has focused on (versions of)
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the QTI task. One strand of research has used
social media data – mostly Twitter – training sim-
ple classifier models (Harper et al., 2009; Li et al.,
2011; Zhao and Mei, 2013; Ranganath et al., 2016).
Although this body of work reports on interesting
methods and findings, the research does not follow
a consistent task definition, analysing slightly dif-
ferent things that range from “distinguishing infor-
mational and conversational questions”, “analysis
of information needs on Twitter” to the identifica-
tion of rhetorical questions. Additionally, they do
not evaluate on a common dataset, making compar-
isons difficult. Furthermore, they all deal with so-
cial media data, which, despite its own challenges
(e.g., shortness, ungrammaticality, typos), is en-
riched with further markers like usernames, hash-
tags and urls, which can be successfully used for
the classification. A different approach to the task
is pursued by Paul et al. (2011), who crowdsources
human annotations for a large amount of Twitter
questions, without applying any automatic recog-
nition. More recently, the efforts by Zymla (2014),
Bhattasali et al. (2015) and Kalouli et al. (2018)
are more reproducible. The former develops a rule-
based approach to identify rhetorical questions in
German Twitter data, while Bhattasali et al. (2015)
implements a machine-learning system to identify
rhetorical questions in the Switchboard Dialogue
Act Corpus. In Kalouli et al. (2018) a rule-based
multilingual approach is applied on a parallel cor-
pus based on the Bible.

3 RQueT: a New Corpus for QTI

The above overview of relevant work indicates that
creating suitable training datasets is challenging,
mainly due to the sparsity of available data. So-
cial media data can be found in large numbers and
contains questions of both types (Wang and Chua,
2010), but often the context in which the ques-
tions are found is missing or very limited, mak-
ing their classification difficult even for humans.
On the other hand, corpora with well-edited text
such as newspapers, books and speeches are gener-
ally less suitable, as questions, in particular NISQs,
tend to appear more often in spontaneous, unedited
communication. Thus, to create a suitable bench-
mark, we need to devise a corpus fulfilling three
desiderata: a) containing naturally-occurring data,
b) featuring enough questions of both types, and c)
providing enough context for disambiguation.

3.1 Data Collection
To this end, we find that the CNN transcripts1 fulfill
all three desiderata. We randomly sampled 2000
questions of the years 2006–2015, from settings
featuring a live discussion/interview between the
host of a show and guests. Questions are detected
based on the presence of a question mark; this
method misses the so-called “declarative” ques-
tions (Beun, 1989), which neither end with a ques-
tion mark nor have the syntactic structure of a ques-
tion, but this compromise is necessary for this first
attempt on a larger-scale corpus. Given the impor-
tance of the context for the distinction of the ques-
tion types (Dayal, 2016), along with the question,
we also extracted two sentences before and two
sentences after the question as context. For each of
these sentences as well as for the question itself, we
additionally collected speaker information. Table
1 shows an excerpt of our corpus. Unfortunately,
due to copyright reasons, we can only provide a
shortened version of this corpus containing only
1768 questions; this can be gained via the CNN
transcripts corpus made available by Sood (2017).2

The results reported here concern this subcorpus,
but we also provide the results of the entire corpus
of 2000 questions in Appendix A. Our corpus is
split in a 80/20 fashion, with a training set of 1588
and a test set of 180 questions (or 1800/200 for the
entire corpus, respectively).

3.2 Data Annotation
The RQueT corpus is annotated with a binary
scheme of ISQ/NISQ and does not contain a finer-
grained annotation of the specific sub-type of NISQ.
We find it necessary to first establish the task in its
binary formulation. Each question of our corpus
was annotated by three graduate students of com-
putational linguistics. The annotators were only
given the definition of each type of question and an
example, as presented in Section 1, and no further
instructions. The lack of more detailed instructions
was deliberate: for one, we wanted to see how easy
and intuitive the task is for humans given that they
perform it in daily communication. For another, to
the best of our knowledge, there are no previous
annotation guidelines or best-practices available.

The final label of each question was determined
by majority vote, with an inter-annotator agreement
of 89.3% and Fleiss Kappa at 0.58. This moderate

1http://transcripts.cnn.com/
TRANSCRIPTS/

2See https://github.com/kkalouli/RQueT
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Sentence Text Speaker QT
Ctx 2 Before This is humor. S. BAXTER

NISQ
Ctx 1 Before I think women, female candidates, have to be able to take those shots. S. BAXTER
Question John Edwards got joked at for his $400 hair cut, was it? S. BAXTER
Ctx 1 After And you know, he was called a Brett Girl. S. BAXTER
Ctx 2 After This, is you know, the cut and thrust of politics. S. BAXTER

Table 1: Sample of the corpus format. Each row contains a sentence and its context before and after. The question
and its context also hold the speaker information. Each question is separately annotated for its type.

agreement reflects the difficulty of the task even for
humans and hints at the improvement potential of
the corpus through further context, e.g., in the form
of intonation and prosody (see e.g., Bartels 1999).
The resulting corpus is an (almost) balanced set of
944 (1076 for the entire corpus) ISQ and 824 (924
for the entire corpus) NISQ. The same balance is
also preserved in the training and test splits. Table
2 gives an overview of RQueT.

4 RQueT as a Benchmarking Platform

We used the RQueT corpus to evaluate a variety
of models,3 establishing appropriate baselines and
generating insights about the nature and peculiari-
ties of the task.

4.1 Lexicalized and Unlexicalized Features
Following previous literature (Harper et al., 2009;
Li et al., 2011; Zymla, 2014; Bhattasali et al., 2015;
Ranganath et al., 2016) and our own intuitions, we
extracted 6 kinds of features, 2 lexicalized and 4
unlexicalized, a total of 16 distinct features:

1. lexicalized: bigrams and trigrams of the sur-
face forms of the question itself (Q), of the
context-before (ctxB1 and ctxB2, for the first
and second sentence before the question, re-
spectively) and of the context-after (ctxA1 and
ctxA2, for the first and second sentence after
the question, respectively)

2. lexicalized: bigrams and trigrams of the POS
tags of the surface forms of the question itself
(Q), of the context-before (ctxB1, ctxB2) and
of the context-after (ctxA1 and ctxA2)

3. unlexicalized: the length difference between
the question and its first context-before (len-
DiffQB) and the question and its first context-
after (lenDiffQA), as real-valued features

4. unlexicalized: the overlap between the
words in the question and its first context-
before/after, both as an absolute count

3https://github.com/kkalouli/RQueT

ISQ NISQ All
Train 847 (969) 741 (831) 1588 (1800)
Test 97 (107) 83 (93) 180 (200)
Total 944 (1076) 824 (924) 1768 (2000)

Table 2: Distribution of question type in the shortened
and the entire RQueT corpus, respectively.

(wOverBAbs and wOverAAbs for context be-
fore/after, respectively) and as a percentage
(wOverBPerc and wOverAPerc for context be-
fore/after, respectively)

5. unlexicalized: a binary feature capturing
whether the speaker of the question is the
same as the speaker of the context-before/after
(speakerB and speakerA, respectively)

6. unlexicalized: the cosine similarity of the In-
ferSent (Conneau et al., 2017) embedding of
the question to the embedding of the first
context-before/after4 (similQB and similQA,
respectively).

We used these feature combinations to train three
linear classifiers for each setting: a Naive Bayes
classifier (NB), a Support Vector Machine (SVM)
and a Decision Tree (DT). These traditional classi-
fiers were trained with the LightSide workbecnh.5

The Stanford CoreNLP toolkit (Toutanova et al.,
2003) was used for POS tagging.

4.2 Fine-tuning Pretrained BERT

Given the success of contextualized language mod-
els and their efficient modeling of semantic infor-
mation, e.g., Jawahar et al. (2019); Lin et al. (2019),
we experiment with BERT (Devlin et al., 2019) for
this task. Since the semantic relations between the
question and its context are considered the most
significant predictors of QT, contextualized models

4Here we opt for the non-contextualized InferSent embed-
dings because contextualized embeddings like BERT inher-
ently exhibit high similarities (Devlin et al., 2019).

5http://ankara.lti.cs.cmu.edu/side/
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should be able to establish a clear baseline. The
QTI task can be largely seen as a sequence classifi-
cation task, much as Natural Language Inference
and QA. Thus, we format the corpus into appropri-
ate BERT sequences, i.e., question-only sequence
or question – context-before or question – context-
after sequence, and fine-tune the pretrained BERT
(base) model on that input. We explicitly fine-tune
the parameters recommended by the authors. The
best models train for 2 epochs, have a batch size
of 32 and a learning rate of 2e-5. By fine-tuning
the embeddings, we simultaneously solve the QTI
task, which is the performance we report on in
this setting. The fine-tuning is conducted through
HuggingFace.6

4.3 BERT Embeddings as Fixed Features

The fine-tuned BERT embeddings of Section 4.2
can be extracted as fixed features to initialize fur-
ther classifier models (cf. Devlin et al. 2019). We
input them to the same linear classifiers used in sec-
tion 4.1, i.e., NB, SVM and DT, but also use them
for neural net (NN) classifiers because such archi-
tectures are particularly efficient in capturing the
high-dimensionality of these inputs. To utilize the
most representative fine-tuned BERT embeddings,
we experiment with the average token embeddings
of layer 11 and the [CLS] embedding of layer 11.
We chose layer 11 as the higher layers of BERT
have been shown to mostly capture semantic as-
pects, while the last layer has been found to be very
close to the actual classification task and thus less
suitable (Jawahar et al., 2019; Lin et al., 2019). We
found that the [CLS] embedding performs better
and thus, we only report on this setting.

Moreover, as shown in Section 5, some of the un-
lexicalized features of Section 4.1 lead to competi-
tive performance with the pretrained BERT mod-
els. Thus, we decided to investigate whether the
most predictive unlexicalized feature can be effi-
ciently combined with the BERT fine-tuned em-
beddings and lead to an even higher performance.
To this end, each linear classifier and NN model
was also trained on an extended vector, comprising
the CLS-layer11 fine-tuned BERT embedding of
the respective model, i.e., only of the question (Q-
Embedding), of the question and its (first) context-
before (Q-ctxB-Embedding) and of the question
and its (first) context-after (Q-ctxA-Embedding) as
a fixed vector, and an additional dimension for the

6https://huggingface.co/

binary encoded unlexicalized feature.
We experimented with three NN architectures

and NN-specific parameters were determined via
a grid search separately for each model. Each NN
was optimized through a held-out validation set
(20% of the training set). First, we trained a Multi-
Layer Perceptron (MLP) with a ReLU activation
and the Adam optimizer. Second, we trained a feed-
forward (FF) NN with 5 dense hidden layers and
the RMSprop optimizer. Last, we trained an LSTM
with 2 hidden layers and the RMSprop optimizer.
Both the FF and the LSTM use a sigmoid activa-
tion for the output layer, suitable for the binary
classification. All NNs were trained with sklearn.

5 Results and Analysis

5.1 Quantitative Observations

The results of the training settings are presented
in Table 3. Recall that these results concern the
corpus of 1768 questions. The results on the entire
corpus can be found in Appendix A. For space rea-
sons, we only present the most significant settings
and results. For the lexicalized features, all mod-
els use both the surface and the POS n-grams as
their combination proved best — the separate set-
tings are omitted for brevity, so e.g., Q tokens/POS
stands for a) the question’s bigrams and trigrams
and b) the question’s POS bigrams and trigrams.
All performance reported in Table 3 represents the
accuracy of the models.

The careful benchmarking presented in Table 3
allows for various observations. We start off with
the diverse combinations of lexicalized and unlex-
icalized features. First, we see that training only
on the question, i.e., on its n-grams and POS tags,
can serve as a suitable baseline with an accuracy of
62.7% for NB. Adding the first context-before im-
proves performance and further adding the second
context-before improves it even further at 72.7%
for NB. A similar performance leap is observed
when the first context-after is added to the question
(73.3% for NB), while further adding the second
context-after does not change the picture. Since
adding the first context-before and -after to the
question increases accuracy, we also report on the
setting where both first context-before and -after
are added to the question. This does indeed boost
the performance even more, reaching an accuracy
of 75% for NB. Given that the second context-
before is beneficial for the Q+ctxB1+ctxB2 set-
ting, we add it to the previously best model of 75%
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3 62.7 61.1 63.3 - - - -
3 3 68.8 69.4 58.5 - - - -
3 3 3 72.7 70 61.1 - - - -
3 3 73.3 65 66.1 - - - -
3 3 3 68.8 68.8 63.3 - - - -
3 3 3 75 62.7 62.7 - - - -
3 3 3 3 66.1 66.6 58.5 - - - -
3 3 3 3 3 65 67.2 58.8 - - - -

3 57.2 57.2 57.2 57.2 57.2 56.9 -
3 77.7 77.7 77.7 77.7 77.7 77.7 -

3 3 77.7 77.7 77.7 77.7 77.7 77.7 -
3 3 3 77.7 77.7 77.7 77.7 77.7 77.7 -

3 3 3 3 73.3 69.4 61.1 - - - -
3 3 3 75 73.3 76.1 - - - -
3 3 3 3 75.5 72.7 76.1 - - - -
3 3 3 3 74.4 71.6 62.7 - - - -
3 3 3 3 3 67.2 76.1 75.5 - - - -
3 3 3 3 3 74.4 71.6 75.5 - - - -
3 3 3 3 3 74.4 71.6 75.5 - - - -

PT - - - - - - 76.1
PT - - - - - - 78.3

PT - - - - - - 80.1
FN 77.7 72.7 72.7 71.1 75.5 75.5 -

3 FN 77.7 80 83.8 80 78.8 80 -
FN 76.6 82.2 72.2 77.2 80 81.1 -

3 FN 76.6 81.6 72.2 81.1 80 78.3 -
FN 83.3 83.3 77.7 81.1 82.7 76.6 -

3 FN 83.3 83.3 81.1 82.2 84.4 80 -
3 3 3 3 3 3 3 Ensemble: *88.3*

Table 3: Accuracy of the various classifiers and feature combinations (settings). A checkmark means that this
feature was present in this setting. PT stands for the pretrained BERT embeddings and FN for the fine-tuned
ones. Bolded figures are the best performances across types of classifiers. The stared figure is the best performing
ensemble model across settings. wOverAbs and wOverPerc are omitted for brevity.

and find out that their combination rather harms
the accuracy. Experimenting with both contexts-
before and -after and the question does not lead
to any improvements either. The combinations of
the lexicalized features show that the best setting is
the one where the question is enriched by its first
context-before and -after (75%).

We make a striking observation with respect to
the unlexicalized features. Training only on the
speaker-after, i.e., on whether the speaker of the
question is the same as the speaker of the first
context-after, and ignoring entirely the question
and context representation is able to correctly pre-
dict the QT in 77.7% of the cases. This even out-
performs the best setting of the lexicalized features.
The speaker-before does not seem to have the same
expressive power and training on both speaker fea-

tures does not benefit performance either. We also
find that the rest of the unlexicalized features do not
have any impact on performance because training
on each of them alone hardly outperforms the sim-
ple Q tokens/POS baseline, while by training on all
unlexicalized features together we do not achieve
better results than simply training on speaker-after.7

Based on the finding that the speaker-after is so
powerful, we trained hybrid combinations of lexi-
calized features and the speaker information. First,
the speaker-before is added to the Q+ctxB1+ctxB2,
which is the best setting of contexts-before, but we
do not observe any significant performance change.
This is expected given that speaker-before alone
does not have a strong performance. Then, the
speaker-after is added to the setting Q+ctxA1 and

7These settings are omitted from the table for brevity.
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the performance reaches 76.1% (for DT), approach-
ing the best score of speaker-after. The addition
of speaker-before to this last setting does not im-
prove performance. On the other hand, adding
the speaker-after information to the best lexical-
ized setting (Q+ctxB1+ctxA1) does not have an
effect, probably due to a complex interaction be-
tween the context-before and the speaker. This
performance does not benefit either from adding
the second context-before (which proved beneficial
before) or adding the other unlexicalized features.8

Moving on, we employ the pretrained BERT
embeddings to solve the QTI task. Here, we can
see that the model containing the question and
the context-after (Q-ctxA-Embedding) is the best
one with 80.1%, followed by the model contain-
ing the question and the context-before (Q-ctxB-
Embedding, 78.3). Worst-performing is the model
based only on the question (Q-Embedding). This
simple fine-tuning task shows that contextualized
embeddings like BERT are able to capture the QT
more efficiently than lexicalized and unlexicalized
features – they even slightly outperform the power-
ful speaker feature. This means that utilizing these
fine-tuned embeddings as fixed input vectors for
further classifiers can lead to even better results,
and especially, their combination with the predic-
tive speaker information can prove beneficial.

In this last classification setting, we observe that
the classifiers trained only on the fine-tuned BERT
embeddings deliver similar performance to the fine-
tuning task itself. This finding reproduces what is
reported by Devlin et al. (2019). However, the real
value of using this feature-based approach is high-
lighted through the addition of the speaker infor-
mation to the contextualized vectors. The speaker
information boosts performance both in the setting
of fine-tuned Q-Embedding and in the setting fine-
tuned Q-ctxA-Embedding. In fact, the latter is the
best performing model of all with an accuracy of
84.4%. Adding the speaker-before information to
the fine-tuned Q-ctxB-Embedding does not have an
impact on performance due to the low impact of
the speaker-before feature itself.

5.2 Qualitative Interpretation
The results presented offer us interesting insights
for this novel task. First, they confirm the previ-
ous finding of the theoretical and computational

8Although the unlexicalized features had shown no signifi-
cant performance, they were added here to check for interac-
tion effects between them and the lexicalized features.

literature that context is essential in determining
the question type. Both the lexicalized and the em-
beddings settings improve when context is added.
Concerning the lexicalized settings, we conclude
that the surface and syntactic cues present within
the question and its first context-after are more
powerful than the cues present within the question
and the first context-before. This is consistent with
the intuition that whatever follows a question tends
to have a more similar structure to the question
itself than whatever precedes it: no matter if the
utterer of the question continues talking or if an-
other person addresses the question, the attempt
is to stay as close to the question as possible, to
either achieve a specific communication goal or to
actually answer the question, respectively. How-
ever, our experiments also show that combining
the first context-before and -after with the ques-
tion does indeed capture the most structural cues,
generating the insight that one sentence before and
after the question is sufficient context for the task at
hand. Interestingly, we can confirm that the second
context-after is not useful to the classification of
the QT, probably being too dissimilar to the ques-
tion itself. Table 4 shows examples of the most
predictive structural cues for the best setting of the
lexicalized classifiers (Q+ctxB1+ctxA1).

ISQ you feel, what do you, do you agree,
make of that, you expect, me ask you,
why did you, how did you

NISQ why arent’t, and should we,
COMMA how about, how could,
do we want, can we

Table 4: Structural features with the most influence in
the model Q+ctxB1+ctxA1.

Training on non-linguistic unlexicalized features
does not boost performance. However, our work
provides strong evidence that the speaker meta-
information is of significant importance for the
classification. This does not seem to be a peculiar-
ity of this dataset as later experimentation with a
further English dataset and with a German corpus
shows that the speaker information is consistently
a powerful predictor. Additionally, we can confirm
from Appendix A that the speaker feature has the
same behavior, when trained and tested on the en-
tire corpus. To the best of our knowledge, previous
literature has not detected the strength of this fea-
ture. From the prediction power of this feature, it
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Figure 1: Interactive visualization of the wrongly predicted instances of the models fine-tuned Q-ctxB-Embedding
and fine-tuned Q-ctxA-Embedding+speakerA. Based on this visualization, we can observe sentences with similar
patterns and how these are learned from the models. Some sentences are ambiguous having both patterns; thus, we
need a third model for our ensemble.

might seem that information on the question and
its context is not necessary at all. However, we
show that the addition of the linguistic information
of the question and its context through the fine-
tuned embeddings provides a clear boost for the
performance. The importance of similar linguistic
unlexicalized features has to be investigated in fu-
ture work. In fact, for the current work, we also
experimented with the topic information, i.e., based
on topic modeling, we extracted a binary feature
capturing whether the topic of the question and
the context-after is the same or not. However, this
feature did not prove useful in any of the settings
and was thus omitted from the analysis. Future
work will have to investigate whether a better topic
model leads to a more expressive binary feature
and whether other such features, such as sentiment
extracted from a sentiment classification model,
can prove powerful predictors.

Concerning the distributional and NN methods,
this is the first work employing such techniques for
the task and confirming the findings of the more tra-
ditional machine learning settings. Fine-tuning the
pretrained BERT embeddings reproduces what we
showed for the standard classifiers: the context and
especially the context-after boosts the performance.
This finding is also confirmed when treating the
fine-tuned BERT embeddings as standard feature
vectors and further training on them. Most impor-
tantly, this setting allows for the expansion of the
feature vector with the speaker information: this
then leads to the best performance. Unsurprisingly,
the speaker-before is not beneficial for the clas-
sification, as it was not itself a strong predictor.
Finally, we also observe that the results reported

for this smaller corpus are parallel to the results
reported for the entire corpus (see Appendix A).

5.3 Further Extension & Optimization

By studying Table 3 the question arises whether
our best-performing model of fine-tuned Q-ctxA-
Embedding+speakerA can be further improved and
crucially, whether the context-before can be of
value. With our lexicalized models, we show that
the best models are those exploiting the informa-
tion of the context-before, in addition to the ques-
tion and the context-after. However, all of our
BERT-based models have been trained either on
the combination of question and context-before or
on the combination of question and context-after,
but never the combination of all three. The inher-
ent nature of the BERT model, which requires the
input sequence to consist of a pair, i.e., at most two
distinct sentences separated by the special token
[SEP], is not optimized for a triple input. On the
other hand, “tricking” BERT into considering the
context-before and the question as one sentence de-
livers poor results. Thus, we decided to exploit the
power of visualization to see whether an ensemble
model combining our so far best performing model
of fine-tuned Q-ctxA-Embedding+speakerA with
our context-before BERT-based model fine-tuned
Q-ctxB-Embedding would be beneficial.

To this end, we created a small interactive
Python visualization to compare the two models,
using UMAP (McInnes et al., 2018) as a dimen-
sionality reduction technique and visualizing the
datapoints in a 2D scatter plot. We computed po-
sitions jointly for both models and projected them
into the same 2D space using cosine similariy as the
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distance measure. As we are interested in potential
common wrong predictions between the models,
we only visualize wrongly classified samples, and
group them by two criteria: the model used (color-
encoded) and the gold label (symbol-encoded).

Examining the visualization of Figure 1 (left)
we observe that there is no overlap between the
wrongly predicted labels of the two models. This
means that training an ensemble model is a promis-
ing way forward. Additionally, through the interac-
tive visualization, we are guided to the most suit-
able ensemble model. Particularly, we see some
common patterns for the wrongly predicted labels
for each of the models. The fine-tuned Q-ctxA-
Embedding+speakerA has a better performance in
predicting ISQ, whereby the decision seems to be
influenced by the speaker feature (i.e., if the ques-
tion and context-after have different speakers, the
model predicts ISQ). However, the fine-tuned Q-
ctxB-Embedding model seems to learn a pattern of
a context-before being a question; in such cases,
the target question is predicted as NISQ. In the
ground truth we have ambiguous cases though,
where questions have both patterns. Thus, although
it seems that the two models fail on different in-
stances and that they could thus be combined in
an ensemble, they would alone likely fail in pre-
dicting the ambiguous/controversial question in-
stances. Instead, surface and POS features of the
questions and their contexts should be able to dif-
ferentiate between some of the controversial cases.
To test this, we created an ensemble model con-
sisting of the two models and the best lexicalized
model holding such features (Q+ctxB1+ctxA1).
First, this ensemble model checks whether fine-
tuned Q-ctxA-Embedding+speakerA and fine-tuned
Q-ctxB-Embedding predict the same label. If so,
it adopts this label too. Otherwise, it picks up the
prediction of Q+ctxB1+ctxA1. With this ensemble
approach, we are indeed able to improve our so-far
best model by 4%, reaching an accuracy of 88.3%,
as shown in the last entry of Table 3.

At this point, two questions arise. First, the
reader might wonder whether this result means
that the task is virtually “solved”. Recall that the
inter-annotator agreement was measured at 89.3%
and thus, it might seem that our ensemble model
is able to be competitive with that. However, this
is not the case: if we observe the Fleiss Kappa, we
see that it only demonstrates moderate agreement.
This could be due to the difficulty of the task, as

mentioned before, but it also shows that the task
formulation has room for improvement. In a post-
annotation session, our annotators reported that
some of the uncertainty and disagreement could be
tackled with multi-modal data, where also audio or
video data of the corresponding questions is pro-
vided. Additionally, higher agreement could have
been achieved with more annotators. Thus, our
current work offers room for improvement, while
providing strong baselines. Second, the question is
raised whether this feature combination is indeed
the best setting for all purposes of this task; the
answer to this depends on what the ultimate goal
of this task is. If the ultimate goal is application-
based, where a model needs to determine whether
a question requires a factoid answer (or not) in a
real-life conversation, the trained model should not
include the context-after as a feature as this would
exactly be what we want to determine based on the
model’s decision. However, if the goal is to auto-
matically classify questions of a given corpus to
generate linguistic insights, then the trained model
can include all features. The evaluation undertaken
here serves both these purposes by detailing all
settings. On the one hand, we show that the mod-
els achieve high performance even when removing
the context-after and that therefore an application-
based setting is possible. On the other hand, we
also discover which feature combination will lead
to the best predictions, generating theoretical in-
sights and enabling more research in this direction.

6 Conclusion

In this paper, we argued for the need of the
Question-Type Identification task, in which ques-
tions are distinguished based on the communicative
goals they are set to achieve. We also provided the
first corpus to be used as a benchmark. Addition-
ally, we studied the impact of different features
and established diverse baselines, highlighting the
peculiarities of the task. Finally, we were able to
generate new insights, which we aim to take up on
in our future work.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) for funding
within project BU 1806/10-2 “Questions Visual-
ized” of the FOR2111 “Questions at the Interfaces”.
We also thank our annotators, as well as the anony-
mous reviewers for their helpful comments.

140



References
Francesca Alloatti, Luigi Di Caro, and Gianpiero

Sportelli. 2019. Real Life Application of a Question
Answering System Using BERT Language Model.
In Proceedings of the 20th Annual SIGdial Meeting
on Discourse and Dialogue, pages 250–253, Stock-
holm, Sweden. Association for Computational Lin-
guistics.

Nicholas Asher, Julie Hunter, Mathieu Morey, Bena-
mara Farah, and Stergos Afantenos. 2016. Dis-
course structure and dialogue acts in multiparty di-
alogue: the STAC corpus. In Proceedings of the
Tenth International Conference on Language Re-
sources and Evaluation (LREC’16), pages 2721–
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Appendix A: Performance Results on the entire RQueT

The following table collects all performance results when training on the entire RQueT corpus of 2000
questions. Although we cannot make this whole corpus available, we would like to report on the
performance to show how our findings are parallel in both variants of the corpus and that the smaller size
of the corpus we make available does not obscure the overall picture.
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3 3 67.5 67 62 - - - -
3 3 3 72.5 62.5 56.5 - - - -
3 3 73 62 63 - - - -
3 3 3 71 65.5 62.5 - - - -
3 3 3 75.5 65.5 61 - - - -
3 3 3 3 67.5 62 60 - - - -
3 3 3 3 3 66.5 61 58 - - - -

3 57 57 57 57 56.9 56.9 -
3 78.5 78.5 78.5 78.5 78.5 78.5 -

3 3 78.5 78.5 78.5 78.5 78.5 78.5 -
3 3 3 78.5 77.5 78.5 - - - -

3 3 3 3 72 65 56.5 - - - -
3 3 3 77.5 69 75 - - - -
3 3 3 3 76 70 75 - - - -
3 3 3 3 78 73 77 - - - -
3 3 3 3 3 69 71 75.5 - - - -
3 3 3 3 3 78 74.5 76.5 - - - -
3 3 3 3 3 78 72 77 - - - -

PT - - - - - - 76.4
PT - - - - - - 77.4

PT - - - - - - 79.4
FN 76.5 76 72.5 77 76.4 72.5 -

3 FN 77 78.5 73 80 79.5 76.4 -
FN 76 78.5 78.5 80 79.5 79.5 -

3 FN 76 79 78.5 78.5 80 79 -
FN 78.5 78 79.5 78.5 79.5 76.4 -

3 FN 78.5 80 80 81.5 82.4 78.5 -
3 3 3 3 3 3 3 Ensemble: *85*

Table 5: Accuracy of the various classifiers and feature combinations (settings) on the entire RQueT corpus of 2000
questions. A checkmark means that this feature was present in this setting. PT stands for the pretrained BERT
embeddings and FN for the fine-tuned ones. Bolded figures are the best performances across types of classifiers.
The stared figure is the best performing ensemble model across settings. wOverAbs and wOverPerc are omitted for
brevity.
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Abstract

Reliable tagging of Temporal Expressions
(TEs, e.g., Book a table at L’Osteria for
Sunday evening) is a central requirement for
Voice Assistants (VAs). However, there is a
dearth of resources and systems for the VA
domain, since publicly-available temporal tag-
gers are trained only on substantially different
domains, such as news and clinical text.

Since the cost of annotating large datasets is
prohibitive, we investigate the trade-off be-
tween in-domain data and performance in DA-
Time, a hybrid temporal tagger for the English
VA domain which combines a neural architec-
ture for robust TE recognition, with a parser-
based TE normalizer. We find that transfer
learning goes a long way even with as little as
25 in-domain sentences: DA-Time performs at
the state of the art on the news domain, and
substantially outperforms it on the VA domain.

1 Introduction

Many Natural Language Processing (NLP) appli-
cations rely on a temporal tagger to successfully
identify and normalize temporal expressions (TEs:
e.g. seven in the evening → T19:00). Examples
include question answering, summarization, and
information extraction (Strötgen and Gertz, 2016).
Temporal tagging serves to anchor events on the
temporal axis and contributes to event ordering
sequences (UzZaman and Allen, 2010). This is par-
ticularly useful for Voice Assistants (VAs), that is
software agents such as Apple’s Siri or Amazon’s
Alexa, which are able to interpret spoken human
queries (commands) and help their users perform
simple tasks, including scheduling tasks such as
setting reminders or creating and editing calendar
events. For example, given the query Delete my
Monday’s meeting, a VA might have to retrieve
information from a calendar corresponding to the

day the user is referring to as Monday. In order to
succeed in such tasks, VAs require a reliable tem-
poral tagger, which can identify TEs and classify
them into categories (TE recognition, for exam-
ple, DATE vs. TIME) and then convert them into
machine-readable canonical values (TE normaliza-
tion, e.g. seven in the evening→ T19:00).

The major shortcoming of current temporal tag-
gers is arguably their domain dependence, as it
is well known that NLP tools degrade on out-
of-domain data. The publicly available tempo-
ral taggers (Chang and Manning, 2012; Filan-
nino et al., 2013; Strötgen and Gertz, 2013; Lee
et al., 2014) have been developed and evaluated
on domain-specific datasets annotated according to
the TimeML standard (Pustejovsky et al., 2003a),
notably the news (Pustejovsky et al., 2003b), so-
cial media (Zhong et al., 2017), narrative (Mazur
and Dale, 2010), or clinical domain (Galescu and
Blaylock, 2012). In contrast, to our best knowl-
edge, there is no existing temporal tagger opti-
mized for the VA domain, which differs consid-
erably from other domains: it is dominated by con-
cise stand-alone commands, typically referring to
single future events (e.g., Add yoga to my calendar
tomorrow at 6), often outside disambiguating dis-
course. As a result, coreference and event ordering
play a smaller role than in other domains. Also,
VA queries, compared to the news domain, con-
tain more references to the time of an event (at 6)
and to regular event repetitions (Wake me up every
day at 7), as well as more underspecified or vague
time expressions (Remind me to call mom later this
evening) (Rong et al., 2017; Tissot et al., 2019).

A possible solution to overcome the problem
of the scarcity of tagged training data for the VA
domain is to adopt a transfer learning approach
(Bengio, 2011). However, this leaves open the
question of what the training curve looks like: how
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Add my appointment at Varin Salon on
<TIMEX3 tid="t1" type="DATE" value="

2020-04-27"> April 27th </TIMEX3>
from
<TIMEX3 tid="t2" type="TIME" value="

2020-04-27T10:30" anchorTimeID="t1">
10:30 am </TIMEX3>
to
<TIMEX3 tid="t3" type="TIME" value="

2020-04-27T11:30" anchorTimeID="t1">
11:30 am </TIMEX3>
<TIMEX3 tid="t4" type="DURATION" value=

"PT1H" beginPoint="t2" endPoint="t3"
/>

to the calendar.

Figure 1: TimeML example from Zarcone et al. (2020).

much data is necessary until performance “flattens
out”? We investigate the performance of a tempo-
ral tagger pre-trained on news and fine-tuned on
the VA domain and find that a surprisingly small
amount of data (less than 100 in-domain sentences)
is sufficient to achieve reasonable performance on
the low-resource target domain, substantially out-
performing existing systems on the VA domain.
Paper structure. We first contrast annotated data
in the news and VA domain (Sec. 2). After an
overview of related work (Sec. 3), we introduce
DA-Time, a hybrid temporal tagger for the VA do-
main, which uses a neural model for TE recognition
and a parsing-based model for TE normalization
(Sec. 4). After describing the experimental setup
(Sec. 5), we present a detailed evaluation for vary-
ing amount of target domain annotations (Sec. 6).

2 Annotation and Data

2.1 The TimeML Markup Standard
TimeML is a widely-adopted framework for anno-
tating time, events and event relations in text fol-
lowing the ISO 8601 standard1 (Pustejovsky et al.,
2003a). TimeML has also been used for the influen-
tial TempEval competitions (Verhagen et al., 2007,
2010; UzZaman et al., 2013) which form the basis
for most work on temporal tagging. TimeML spec-
ifies four major data structures: EVENT, TIMEX3,
SIGNAL, and LINK. Among these, TIMEX3 de-
scribes TEs; EVENT, SIGNAL, and LINK describe
relations among TEs. For the purposes of this study,
we focus on TIMEX3 and do not take relations
among events into account, as motivated by the
lower significance of such relations for VAs.

1ISO 8601 is an international standard covering the ex-
change of date- and time-related data

TE Value Pattern (type) Unit

Last summer YYYY-SS (DATE) Season
Last year YYYY (DATE) Year
This month YYYY-MM (DATE) Month
Next week YYYY-WXX (DATE) Week
Sunday the 5th YYYY-MM-DD (DATE) Day

7 pm tonight YYYY-MM-DDTHH Hour(TIME)

15 minutes later YYYY-MM-DDTHH:MM Minute(TIME)

At 3:07:15 YYYY-MM-DDTHH:MM:SS Second(TIME)

Table 1: Examples of temporal units, with correspond-
ing TE examples and their value patterns.

TEs in TIMEX3 are classified into four types:
DATE (e.g., May 2nd), TIME (e.g., tomorrow
morning), DURATION (e.g., an hour), SET (e.g.,
every Monday). An example is given in Figure
1. Each TE in TIMEX3 is identified by a unique
ID (tid attribute). TEs are assigned values in a
normalized machine-readable format following the
ISO 8601 standard. Reference date information is
also included on TIME type, which refers to the
date to which the TE is anchored. TEs of type
DURATION are also tagged with a beginPoint and
endPoint, corresponding to the tid of the two TEs
the DURATION type expression is anchored to. As
Figure 1 shows, sometimes the range of a dura-
tion remains underspecified. In this case, an empty
tag of type DURATION is added. Similarly, if
only the duration range and either the beginning or
end point are mentioned (e.g. Book the room from
10:30 am for two hours), then an empty TIME type
tag is added to indicate the missing TE. If the value
of a TE is derived from the value of another one,
the anchorTimeID attribute indicates which TE the
tagged TIMEX3 is anchored to.

On a more fine-grained level, TEs can be de-
scribed using temporal units at different levels of
granularity (Strötgen and Gertz, 2016), e.g. the
2nd week of February, the 2nd day of February),
next February (month). These units are not explic-
itly annotated in TIMEX3, but they can be used to
identify different value patterns (see Table 1).

2.2 Datasets

We now introduce the TimeML-annotated English
datasets in the source (news) and target domain
(VA). Descriptive statistics are reported in Table 2.

News domain The news domain is widely stud-
ied because of the vast availability of news text, and
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Figure 2: Comparison between the news and VA corpora on Sentence length distribution across datasets (left) and
TIMEX3 type distribution (right). The Figure on the right includes empty tags for Snips and PÂTÉ.

Tokens Sent.s w/ # of
TIMEXes TIMEXes

TBAQ 99420 1469 1822
TE-3 Silver 713091 10020 12739

N
ew

s TE-3 812511 11489 14561(TBAQ+Silver)
TE-3 Simplified 289897 12897 14561
TE-3 Platinum 7009 106 138

VA

Snips 9677 697 947
PÂTÉ 5633 353 767

Table 2: Statistics on datasets for two domains (TE-3:
TempEval-32). TE-3 Simplified is described in 5.1.

the importance of TEs for relationships between
reported events. In TempEval-3 (UzZaman et al.,
2013), the manually annotated TBAQ corpus, con-
sisting of TimeBank and AQUAINT corpus, was
used as a training set (99K tokens) (Pustejovsky
et al., 2003b). Additionally, a 700K-token machine-
annotated corpus (TE-3 Silver) was created from
Gigaword (Parker et al., 2011). Furthermore, a plat-
inum set (TE-3 Platinum) was provided for evalua-
tion, which had a higher inter-annotator agreement
than existing TimeML corpora (hence the name).

Voice Assistant domain Two datasets have re-
cently become available for the VA domain: Snips
(Coucke et al., 2018) and PÂTÉ (Zarcone et al.,
2020). Snips is a widely-adopted dataset for bench-
marking intent and entity classification in the VA
domain. No details are provided on how Snips
was created. A subset of Snips was annotated with
TimeML/TIMEX3 tags by Zarcone et al. (2020).
PÂTÉ is a TE-rich crowdsourced dataset for the VA
domain, whose collection effort was specifically
focused on eliciting naturally-sounding commands
containing a wide variety of TEs. As such, we
focus on PÂTÉ for our final evaluation.

2.3 Cross-domain Comparison

A comparison between the news and VA domains
on the basis of the abovementioned corpora is
shown in Figure 2. News texts are typically gram-
matical and coherent reports of past events that
took place at a certain moment in time. The news
datasets contain longer sentences (Figure 2, left),
with longer-distance relationships between events
(e.g. After that year) that pose a challenge for nor-
malization. VA commands, on the other hand, are
comparatively shorter, and they do not provide a
large sentence context nor do they typically contain
references to previous event mentions. Typically,
TEs in VA domain are used to refer to future events.
In some cases, VA commands can contain multiple
TEs, posing a challenge to the normalizer in iden-
tifying the relations among them (e.g., Move yoga
from Monday at 8 pm to Sunday at 7).

Figure 2 (right) shows the distribution of
TIMEX3 types in the datasets. It is skewed towards
DATE throughout, but DATE is even more domi-
nant in TempEval. TIME type TEs are substantially
underrepresented in the news domain compared to
the VA domain: news are generally reported on
a daily level of granularity, whereas scheduling
tasks require more fine-grained temporal descrip-
tions. Granularity differences are also reflected
in the unit distribution: the news domain mostly
contains units of type DAY (48%), while in the VA
domain HOUR and DAY are equally represented as
the most frequent units (52% DAY, 40% HOUR).

Another difference between the datasets in Fig-
ure 2 is that the VA domain datasets contain a
substantial number of empty tags, which are typ-

2TempEval-3 Task: https://www.cs.york.ac.
uk/semeval-2013/task1/index.html
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ical of VA interactions where temporal informa-
tion can be inferred from context (e.g., Remind me
in two hours where the inferred absolute time in-
formation can be used to set a reminder). Snips and
PÂTÉ contain around 20% and 10% empty tags
respectively. In Snips, 18.6% of the DATE tags and
25.4% of the TIME (but none of the DURATION
tags) are empty tags. In PÂTÉ, 91% of the DU-
RATION tags are empty tags but only 1% of the
DATE tags and 1.8% of the TIME tags are empty
tags. Most of the empty tags in PÂTÉ (90%) are
DURATION tags, while in Snips, they are either
DATE (43%) or TIME (57%) tags. Meanwhile,
the news datasets do not use empty tags in their
annotation at all, so a comparison is not possible.

In sum, we can expect temporal taggers that are
optimized on news to perform worse on the VA do-
main given the differences in distribution of types,
units, and domain-specific features they rely on.

3 Related Work

The first TempEval challenge (Verhagen et al.,
2007) focused on the automatic extraction of tem-
poral relations given a TimeML-annotated dataset.
TempEval-2 (Verhagen et al., 2010) introduced the
task of temporal tagging of TEs for the English
news domain, consisting in their recognition and
normalization, and as a prerequisite for temporal
information extraction, which also includes the ex-
traction of events and of their temporal relations.
TempEval-3 (UzZaman et al., 2013) extended the
task to multilingual settings providing TIMEX3
annotation in English and Spanish. More recent
TempEval challenges (Bethard et al., 2015, 2016,
2017) also branched out to the clinical domain.
As to temporal tagging in different domains (e.g.,
news, narrative, colloquial, autonomic), Strötgen
and Gertz (2016) addressed potential challenges,
observing that existing temporal taggers work suf-
ficiently well only in the domain they were devel-
oped for. This is probably why, to the best of our
knowledge, work on temporal tagging has so far
only been considered in within-domain settings.

TempEval-3 can serve as a showcase of ap-
proaches to temporal tagging. The nine participants
tackled the task either with rule-based, data-driven,
or hybrid methods (UzZaman et al., 2013). Heidel-
Time (Strötgen et al., 2013), a rule-based system,
obtained the top rank. The system used regular
expression-based rules to identify and normalize
time expressions in multilingual settings (Strötgen

and Gertz, 2015). Later, they extended their rules to
cover different domains (e.g., narrative, colloquial)
(Strötgen and Gertz, 2016). When TEs were un-
derspecified (e.g. January 6th), domain-sensitive
strategies (such as searching for contextual cues
or identifying a reference time) were adopted to
normalize them (e.g. to normalize January 6th as
the previous January 6th or the forthcoming one).
As rule-based systems are typically crafted to work
for their reference domain, HeidelTime is not able
to identify and normalize expressions that are more
typical of concise commands to a VA, such as Book
a slot for the 5th, where the month is not mentioned.
UW-Time (Lee et al., 2014) is a hybrid seman-
tic parsing-based tagger using Combinatory Cate-
gorial Grammar (Steedman and Baldridge, 2011).
Compared to HeidelTime, UW-Time successfully
combines hand-engineered and trained rules, show-
ing the benefit of context-handling over rule-based
approach. UW-Time can use features such as the
tense of a verb to determine if the TEs refer to ei-
ther the past or the future, or can determine if a
four-digit number in a text refer to a year or not
depending on the context. UW-Time was evalu-
ated on the news and narrative domain and set the
current state-of-the-art of temporal tagging on the
TempEval-3 evaluation set, working exceptionally
well but with a high degree of domain specificity.

4 DA-Time

We now present a hybrid system for temporal tag-
ging, which we use to investigate domain adapta-
tion of temporal tagging: DA-Time (for Domain-
Adapted Time Tagger). DA-Time is a pipeline of a
neural TE recognizer and a rule-based normalizer3.

4.1 TE Recognizer

We frame TE recognition as a joint TE type and
unit classification tasks. As argued in Tissot et al.
(2019), temporal unit or granularity is a key fea-
ture of TEs, and can be expected to improve TE
recognition, in particular for imprecise TEs4, for
example those formed by a temporal unit of a spe-
cific degree of granularity and a fuzzy quantifier
(e.g., some days, several weeks, years after). We
adopt a sequence-labelling architecture influenced
by the neural NER model of Lample et al. (2016).

3The implementation of the TE recognizer is available at
this Github repository under an academic use license:
https://github.com/audiolabs/DA-Time/

4Since temporal unit is not an explicit part of TIMEX3, we
derive it from the normalized value (details in Section 5.1).
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Figure 3: TE recognizer (bottom) and TE normalizer (top). Example input: Add an event on the 2nd of next month.
Recognizer output (bottom): the 2nd of next month as DATE type and DAY unit. Normalizer (top): Given the
recognizer output, reference date, and dependency analysis of TE, the rules are checked sequentially. The output
is a normalized value for the TE.

The model takes a sentence as an input sequence
and predicts type and unit in a BIO labeling scheme,
as shown in Figure 3 (bottom). We use a contextu-
alized embedding model, DistilBERT5 (Sanh et al.,
2019), as an embedding layer. DistilBERT is a
smaller and faster version of BERT (Devlin et al.,
2019) which is compressed during pre-training by
using knowledge distillation. This improves on the
inference speed compared to BERT. The embed-
ding layer is followed by two Bi-LSTM layers. An
add layer after the second Bi-LSTM which acts as
a residual add or skip connection layer to improve
learning (He et al., 2016). Finally, a dense layer fol-
lowed by two different Conditional Random Field
(CRF) layers on top is added.

Baseline model No other neural model is avail-
able as a baseline for the task of full temporal tag-
ging of the PÂTÉ dataset, and due to its size the
dataset would not be suitable for training a neural

5DistilBERT uncased: https://huggingface.co/
distilbert-base-uncased

model on it. However a reasonable alternative is to
adopt a pre-trained language model (Peters et al.,
2018; Howard and Ruder, 2018). We propose a Dis-
tilBERT + CRF based model as a baseline, where
DistilBERT is used as a pre-trained model and CRF
is used to extract the labels (type and unit).

Transfer learning We apply the two approaches
proposed by Felbo et al. (2017). The first method,
chain, fine-tunes each layer sequentially (except
the embedding layer in our experiment), freezing
all the other layers. The second method, full, fine-
tunes the whole network together. They found the
chain method to perform well for sentiment analy-
sis, as individual layers are learned with a reduced
risk of overfitting. Since we observed the same
pattern in preliminary experiments, we only report
results from fine-tuning with the chain method.

For our target domain, we further apply a rule-
based post-processing step to predict empty tags.
Our approach consists in (1) identifying patterns of
one DATE or TIME type begin-point (identifiable
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by tokens such as from, between, etc.) and one end-
point (to, and, etc..), where no DURATION tag is
present, and (2) adding an empty DURATION tag
anchored to the begin-point and end-point TEs. For
example, in a command, Set a meeting FROM 5 TO

6 pm, the neural model predicts 5 and 6 pm as two
TIME type and further post-processing identifies
an additional DURATION type.

4.2 TE Normalizer

For the normalization task, we propose a rule-based
model using a dependency parser sketched in Fig-
ure 3 (top). TEs are fed into the parser6. Based
on the extracted type and temporal unit, the nor-
malizer identifies a valid normalization pattern (out
of 11 expected patterns, cf. Section 5.1) for that
type and unit. For example, given a DATE type
and a WEEK unit, the normalizer expects to find
an output pattern of YYYY-WXX. If the pattern
predictions from the type and unit are incompatible
(e.g., a DATE type with an HOUR unit), the nor-
malizer uses the next most probable unit from the
recognizer model to find as pattern that is compati-
ble with the unit (e.g. a TIME type). This permits a
more robust choice of normalization pattern and re-
duces the need for iterating over non-relevant rules.
After identifying the pattern, each sub-unit in the
pattern is normalized sequentially using parsing-
based rules. In the case of YYYY-WXX, first the
value of YEAR and then WEEK is normalized. For
every pattern, we define a set of at least four rules:
rules for explicit TEs (12th Jan 2020), relative TEs
(tomorrow morning), relative with modifier (three
hours ago), for underspecified TEs (the 5th), as
well as some pattern-specific rules (e.g. for weekly).
For each TE, the normalizer iterates over rules for
each sub-unit of the pattern. Additionally, we de-
fine a gazetteer, containing the values for weekdays,
times of the day, etc.

In our domain-specific settings, our normalizer
assumes that underspecified expressions (e.g., June
5, underspecified year) refer to the past (the previ-
ous year’s June 5) in the news domain and to the
future (next year’s June 5) in the VA domain. This
hierarchically-structured rule-based model (which
first identifies a pattern and then pattern-specific
rules) can easily be adapted to other domains by
defining different pattern-specific rules for every
type of expression (relative, underspecified, etc.).

6We use the SpaCy dependency parser (v.2.3.0): https:
//spacy.io/api/dependencyparser

5 Experimental Setup

5.1 Data Preprocessing

We perform two data preprocessing steps: sentence
simplification and inference of temporal units.

Sentence simplification As mentioned in Sec-
tion 2.2, the news and VA domains greatly dif-
fer with regard to the distribution of sentence
length. To reduce this discrepancy, we experiment
with a parsing-based7 text simplification method
to preprocess news sentences. For each TE, it
extracts the minimal complete sentence contain-
ing it (phrase type S). For example, in “Wash-
ington said he will argue to save his client’s
life when the sentencing phase of the trial begins
next Wednesday”, the underlined sub-sentence was
extracted. This reduces the average length of news
domain sentences from 24 to 16.

Temporal unit inference As described above,
we need to access the granularity of temporal units
as supervision for our model. However, temporal
units are not explicitly annotated in TIMEX3: for
example, February and 2nd week both have type
DATE but not MONTH or WEEK, respectively.
However, the unit is reflected in the value pattern
(XXXX-02 and XXXX-W06). Thus, we infer the
TE’s unit from their TimeML value fields using the
patterns in Table 1. To cover TimeML values out-
side those mentioned in the ISO 8601, we introduce
three additional units: QUARTER, a sub-unit of
YEAR (first quarter of 2020); REF, which is used
for reference time points (currently); and OTHER,
which includes a number of infrequent value pat-
terns, values for entities of type SET, and units less
relevant for VAs such as century or decade.

5.2 Experiments

First, we train our DA-Time models on the news
domain: DA-Time1 (trained with TE-3), DA-Time2
(trained with TE-3 Simplified), DA-TimeBL (base-
line model trained with TE-3). We split the dataset
for our target VA domain, PÂTÉ, into a train/test
set with an 80:20 ratio, keeping the class distribu-
tion constant between partitions. We perform two
experiments8: (1) in-domain evaluation of news-
trained models on the TE-3 platinum test set (all
3 DA-Time models); (2) out-of-domain evaluation

7Stanford CoreNLP parser: https://stanfordnlp.
github.io/CoreNLP/

8(Hyper-)parameters are described in the Appendix.
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Model Training data Extentstrict Extentrelax Unitrelax Typerelax Valuerelax

HeidelTime (rule-based) 81.8 90.7 - 83.3 78.1
UW-Time TBAQ 83.1 91.4 - 85.4 82.4
DA-TimeBL TE-3 (TBAQ+Silver) 81.3±1.3 87.5±1.0 74.0±0.5 74.9±2.3 59.6±1.9
DA-Time1 TE-3 (TBAQ+Silver) 86.6±0.4 91.4±0.8 78.2±1.5 80.7±2.3 71.7±2.2
DA-Time2 TE-3 Simplified 85.1±0.8 90.0±1.3 77.4±2.7 81.1±2.1 71.3±3.0

Table 3: Experiment 1: F1 Evaluation scores on the news domain (TempEval-3 platinum). DA-Time scores are
averages of 5 runs with standard deviations.

of news-trained models on the PÂTÉ test set (DA-
Time2, for better comparison with the VA domain,
where sentences are shorter). For our second exper-
iment, we compare three settings: (a) direct evalu-
ation of the news model to obtain a lower bound;
(b) fine-tuning the news model on PÂTÉ-train and
Snips (using Felbo et al. (2017)) and evaluating on
PÂTÉ-test to obtain an upper bound; (c), repeating
(b) with smaller amounts of VA data (10-100% of
PÂTÉ-train with a step size of 10%, i.e., about 50
sentences) to quantify the importance of target do-
main data. For comparison, we report results for
two existing systems, UW-Time and HeidelTime.
For news, we report results from the literature, and
for PÂTÉ, we evaluate the publicly available UW-
Time9 and HeidelTime10 systems.

5.3 Evaluation Metrics

We report the F-score metrics from TempEval-3.
These include (a) two measures of the overlap be-
tween the predicted and gold TE spans (extent),
computed both in a strict (TEs are exactly matched)
and a relaxed condition (TEs are partially matched);
and (b) scores for attribute values (type and value)
as well as unit. For our own system, scores are re-
ported averages of 5 runs with standard deviations.

6 Results and Analysis

6.1 Experiment 1: In-Domain Evaluation

Table 3 shows results on the TE-3 platinum test
set. For extent recognition, DA-Time1 outperforms
the other models, as its neural architecture bene-
fits from the large training set. However, we also
see that using the noisy silver corpus affects the
type, and consequently the value scores adversely.
The best-performing models for value scores are

9UW-Time: https://bitbucket.org/kentonl/
uwtime/src/master/

10HeidelTime (news domain): https://heideltime.
ifi.uni-heidelberg.de/

the rule-based HeidelTime and UW-Time, which
rely on comprehensive domain-specific knowledge.
The scores from the DA-TimeBL baseline are rel-
atively poor, which is expected here. The exten-
sion of the Bi-LSTM and residual layers in the
DA-Time1 allows the model to learn task-specific
features. The performance of DA-Time2, which
uses simplified sentences, is slightly reduced - un-
surprisingly, given that the test set is not simplified.

Error analysis. We observe that most errors
arise from missing DURATION type TEs and from
wrong predictions of DATE instead of DURATION.
In some cases, mismatches are due to incorrect an-
notations in the evaluation set (e.g. a TE 2008 is
annotated as DURATION but with a value of 2008).
In a few cases, DA-Time falsely predicts modifiers
(e.g., the day before) as being part of a TE. Such
modifiers are handled in the TimeML annotation by
tagging them as SIGNAL - however, SIGNAL tags
are out of the scope of our current work. Normaliza-
tion can be further improved by leveraging on the
tense of the verbs. Currently, DA-Time is built on
the assumption that news texts refer to past events.
In several cases the TE is underspecified, but the
tense reveals it refers to a future point in time (e.g.,
The event will take place on March 15). Besides,
the normalizer of DA-Time is designed to handle
TEs in the VA domain. Thus, units like decades
and centuries cannot be normalized by DA-Time.

6.2 Experiment 2: Cross-Domain Evaluation

Figure 4 shows the results for evaluating DA-Time2
on the PÂTÉ test set without and with fine-tuning
on various amounts of PÂTÉ and Snips data. The
horizontal lines are for DA-Time2 and literature
models without domain adaptation.

As expected, results on PÂTÉ for models with-
out domain adaptation are substantially worse than
on the news domain. As the Extent and Type eval-
uations show, the strongly data-driven DA-Time2
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Figure 4: Experiment 2: Evaluation on PÂTÉ-test. X axis indicates the percentage of fine-tuning data used. Scores
are an average of 3 runs. Horizontal lines are for models without domain adaptation. The arrows in the legend
indicate which datasets were used for training and for fine-tuning, e.g. DA-Time2 (TE3→ Snips) was trained with
the TE3 corpus and fine-tuned with the Snips corpus. If only one dataset is indicated, the model was not fine-tuned.

TE recognizer (without fine-tuning - DA-Time2
(TE3) in the figure) performs rather badly com-
pared to HeidelTime and UWTime, presumably
due to the changed properties of the input. Never-
theless, it manages to outperform both competitors
in the Value evaluation, due to the domain-specific
TE normalization component. This underlines the
importance of domain specific knowledge.

Fine-tuning on Snips (DA-Time2 (TE3 →
Snips)) brings about notable improvement for Ex-
tent, Type and Unit, which also translate into an
improvement for Value. However, the improve-
ments flatten out after using ≈ 30% of Snips. We
believe that this is due to the differences between
Snips and PÂTÉ, even if the two datasets contain
data from the same domain.

In comparison, fine-tuning on PÂTÉ (DA-Time2
(TE3→ PÂTÉ)) yields the best results. Strikingly,
the biggest jump occurs for just adding 10% of the
data or about 25 sentences (strict extent: +30%,
relaxed metrics (extent, type and unit): +≈ 20%,
value: +10%). The figures keep improving to some
extent with more data, with a final value F1 score of

68% compared to 49% without domain adaptation,
and 38% for UW-Time and HeidelTime.

Error analysis. Domain adaptation improves
performance in particular on minority classes. Ta-
ble 4 shows a detailed class breakdown for type
classification for one run of the model from Sec-
tion 6.2. Fine-tuning with 10% of the data increases
the F-score for the TIME type from 0 to 75%, as
precision and recall increase by 70% and 79% re-
spectively. The F-score for TIME further increases
by 12 extra points after fine-tuning with the full
amount of data (75% to 87%): The major differ-
ence between news and VA is the difference in class
distribution which we have already seen in Figure
2. DURATION type expressions, which often con-
tain empty tags and are thus dependent on TIME
or DATE type TEs, also improve substantially.

Table 4 also shows a corresponding breakdown
for unit classification. Among the two major units
(DAY and HOUR), F-score of HOUR unit shows
an increment of 71 and 80 points when fine-tuning
with 10% and 100% of the data respectively. This is
expected, as the class distribution difference influ-
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F-score ∆ after fine-tuning F-score ∆ after fine-tuning
w/o fine- w/ 10% w/ 100% w/o fine- w/ 10% w/ 100%

Type (freq.) tuning data data Unit (freq.) tuning data data

DATE (68) 64.0 +20 +30 DAY (61) 66.0 +9 +26
TIME (48) 0.0 +75 +87 HOUR (44) 7.0 +71 +80

DURATION (21) 32.0 +36 +40 WEEK (5) 44.0 +0 -4
SET (3) 50.0 +30 +30 MONTH (3) 55.0 -5 +12

Table 4: Per-typerelaxed and per-unitrelaxed evaluation of DA-Time2 on PÂTÉ test: F-scores without fine-tuning
(TE3) and ∆ after fine-tuning with 10% and 100% of the data (TE3→ PÂTÉ).

enced the unit distribution too. Other minor classes
are again too infrequent for a reliable analysis.

The rule-based empty tag recognition in DA-
Time2 identifies some false positive TEs. This hap-
pens when two different TEs are present, which do
not denote the beginning and end of an event but
rather a change in schedule (BOOK a schedule from
3 to 5 pm Vs. MOVE a schedule from 3 to 5 pm).
Domain adaptation however makes a difference
compared to out-of-domain scenarios by correctly
recognizing a singular numerical token as a TE
(Book a hotel reservation from May 3 to 5 or, Set
a reminder on May 3 at 5) as they are quite com-
mon in the VA domain commands. But this is still
a challenge when normalizing multiple TEs with-
out identifying the relations among the TEs (e.g.,
Change Star wars 9 from the 25th to the same time
on the 24th). We also find that our parsing-based
normalizer provides a particular benefit for han-
dling long TEs (e.g., the 15th of next month or
the day before last Tuesday, etc.).

7 Conclusion

Identifying time expressions (TEs) is a crucial part
of the interaction between a voice assistant (VA)
and a user, but only small annotated TE corpora
exist in the TE domain. In this paper, we have pre-
sented DA-Time, a hybrid model combining a neu-
ral TE recognizer with a rule-based TE normalizer,
and assessed how much data is necessary to fine-
tune DA-Time on the VA domain after pre-training
on the much better resourced news domain.

We find that our DA-Time model, which per-
forms competitively with the state of the art on
news, can be fine-tuned very effectively on the
VA domain. While, unsurprisingly, the best per-
formance is achieved with the full target domain
training set, already 10% of that dataset – some 25
sentences – is sufficient to achieve major improve-

ments over the news-trained model. Particularly
relevant is the improvement on the Value F1 metric,
i.e., the quality of the normalized TEs.

To our best knowledge, this is also the first ap-
proach to consider the granularity of temporal unit
following the TimeML annotation and ISO 8601
standard, and to leverage it to recognize TEs in
parallel with TIMEX3 types in a parallel setting.
TIMEX3 type and unit are both crucial inputs for
our hybrid normalizer. Our normalizer encodes
some domain-specific assumptions (e.g., about un-
derspecified TEs). These are particularly important
in handling long TEs. While our normalizer is
domain-specific, leveraging on temporal units can
ease domain adaptation to new domains.

We believe that the small amount of necessary
data for fine-tuning is promising for the generaliza-
tion of temporal taggers for other specific domains.
In the future, further improvement may be brought
by leveraging anchored time information to iden-
tify relations among TEs. Taking into consider-
ation of other TimeML tags (EVENT, SIGNAL)
can improve some of the current limitations of the
model (for example by identifying event-time rela-
tionships or prepositional modifiers). More gener-
ally speaking, training temporal taggers in a more
end-to-end fashion is a promising direction that
appears particularly feasible in the Voice Assistant
domain. Considering DA-Time as a baseline model
could lead to further neural-based research in the
VA domain or for other application domains where
identification of temporal information is important.
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A TE Recognizer

Parameter Value
DA-Time1 input maximum
length

50

DA-Time2 input maximum
length

30

Batch size 32
Training epochs 30
Fine-tuning epochs 20
Initial learning rate 0.001
Fine-tuning learning rate 0.0001
Bi-LSTM dropout rate 0.5
Bi-LSTM recurrent dropout rate 0.5
DistilBERT dimensions 3072
Recurrent unit 256
Dense layer unit 50
Dense layer activation ReLu
Optimizer Adam
Early stopping patience 5
Validation split 0.1

Table 5: Training hyper-parameters for TE Recognizer
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Abstract

Frame-semantic parsers traditionally predict
predicates, frames, and semantic roles in a
fixed order. This paper explores the ‘chicken-
or-egg’ problem of interdependencies between
these components theoretically and practically.
We introduce a flexible BERT-based sequence
labeling architecture that allows for predict-
ing frames and roles independently from each
other or combining them in several ways.
Our results show that our setups can approxi-
mate more complex traditional models’ perfor-
mance, while allowing for a clearer view of the
interdependencies between the pipeline’s com-
ponents, and of how frame and role prediction
models make different use of BERT’s layers.

1 Introduction

FrameNet (Baker et al., 2003) is a computational
framework implementing the theory of frame se-
mantics (Fillmore, 2006). At its core is the notion
of linguistic frames, which are used both for classi-
fying word senses and defining semantic roles. For
example, in (1), “bought” is said to evoke the COM-
MERCE BUY frame, and “Chuck”, “some eggs”,
and “yesterday” instantiate its associated roles.

(1) COMMERCE BUY

[Buyer Chuck ] �bought [Goods some eggs ]
[Time yesterday ]

In NLP, frame-semantic parsing is the task of
automatically analyzing sentences in terms of
FrameNet frames and roles. It is a form of se-
mantic role labeling (SRL) which defines semantic
roles (called frame elements) relative to frames
(Gildea and Jurafsky, 2002). Canonically (Baker
et al., 2007), frame-semantic parsing has been split
up into a three-component pipeline: targetID
(find frame-evoking predicates), then frameID
(map each predicate to a frame), and lastly argID

(given a predicate-frame pair, find and label its argu-
ments). Some recent systems, such as the LSTM-
based Open-SESAME and (Swayamdipta et al.,
2017) or the classical-statistical SEMAFOR (Das
et al., 2014), implement the full pipeline, but with a
strong focus specifically on argID. Other models
implement some subset of the components (Tan,
2007; Hartmann et al., 2017; Yang and Mitchell,
2017; Peng et al., 2018), while still implicitly adopt-
ing the pipeline’s philosophy.1 However, little fo-
cus has been given to frame-semantic parsing as
an end-to-end task, which entails not only imple-
menting the separate components of the pipeline,
but also looking at their interdependencies.

We highlight such interdependencies from a the-
oretical perspective, and investigate them empiri-
cally. Specifically, we propose a BERT-based (De-
vlin et al., 2019) sequence labeling system that
allows for exploring frame and role prediction in-
dependently, sequentially, or jointly. Our results (i)
suggest that the traditional pipeline is meaningful
but only one of several viable approaches to end-
to-end SRL, (ii) highlight the importance of the
frameID component, and (iii) show that, despite
their interdependence, frame and role prediction
need different kinds of linguistic information.

Contributions The main contributions of this pa-
per are the following:

• We identify theoretical and practical challenges
in the traditional FrameNet SRL pipeline (§2);

• We introduce a flexible, BERT-based sequence-
labeling architecture, and experiment with pre-
dicting parts of the pipeline separately (§3);

• We explore four methods for re-composing an
end-to-end system (§4);

1Yang and Mitchell (2017) and Peng et al. (2018) learn
frames and arguments jointly, but still need targetID as a
separate step.

155



• Through two evaluation metrics, we empirically
show the relative contribution of the single com-
ponents and their reciprocal impact (§5-6).

All of our source code and instructions for how
to reproduce the experiments is publicly avail-
able at https://gitlab.com/gosseminnema/

bert-for-framenet.

2 On pipelines, chickens, and eggs

According to Fillmore (2006), an essential feature
of a frame is that it is “any system of concepts re-
lated in such a way that to understand any one of
them you have to understand the whole structure
in which it fits.” In particular, linguistic frames are
systems of semantic roles, possible predicates, and
other semantic information. In this section, we dis-
cuss the relationship between these concepts in the
context of frame-semantic parsing and highlight in-
terdependencies between the various components.

2.1 Challenges for parsers

The following artificial examples display some of
the challenges that frame-semantic parsers face:

(2) SELF MOTION

[Self mover Angela ] �ran [Goal to school ]

(3) FLUIDIC MOTION

[Fluid A tear ] �ran [Path down my cheek ]

(4) EXPEND RESOURCE

[Agent We ] �ran �out [Resource of cookies ]

(5) ∅
His girlfriend ran him home.2

In each example, the predicate contains “ran”,
but used in different frames. In (2) and (3), the pred-
icate is the verb “run”, but used in two different
senses (running of a person vs. running of a liquid),
corresponding to two different frames. Here, the
main parsing challenge is resolving this ambiguity
and choosing the correct frame (frameID). By
contrast, in (4), the predicate is “run out”. This
complex verb is not ambiguous, so the main chal-
lenge in this sentence would be targetID (i.e.
identifying that the target consists of the two to-
kens “ran” and “out”). Similarly, in (5), “run” is
used in a sense not listed in FrameNet, so the chal-
lenge here is to make sure nothing is tagged at all.

2See sense #14 of “run” in https://
www.oxfordlearnersdictionaries.com/
definition/english/run_1?q=run

The roles-make-the-frame problem In (2-3),
given the target (“ran”), the task is to find the cor-
rect frame and its corresponding roles. In the tradi-
tional pipeline, we would do this by first predicting
a frame, and then labeling the dependents of “ran”
with roles from this frame. However, the question
is what kinds of patterns a frame-finding model
needs to learn in order to be successful. It is clearly
not sufficient to learn a one-to-one mapping be-
tween word forms and frames, not just because of
known ambiguous cases (“Angela runs” vs. “a tear
runs”), but also because of gaps in FrameNet that
conceal unknown ambiguities, such as in (5).

To distinguish between “ran” in (2) and (3), a
model has to to take into account the sentential
context in some way, which is exactly what LSTM-
based models or BERT-based models can do. But
what kind of contextual information exactly do
we need? SELF MOTION and FLUIDIC MOTION

have a very similar syntax and semantics, the cru-
cial difference being the semantic category of the
“mover”. Concretely, this means that in (2-3), we
would benefit from recognizing that “Angela” de-
notes an animate entity while “a tear” denotes a
fluid. Doing so would amount to doing partial
semantic role labeling, since we are looking at
the predicate’s syntactic arguments and their se-
mantic properties, which is exactly the informa-
tion an argID model needs to tag “Angela” with
“Self mover” and “a tear” with “Fluid”. While it
is possible to use contextual information without
knowledge of dependency structure (perhaps sim-
ple co-occurrence is enough), we hypothesize that
such knowledge would be helpful, and thus, that
doing frameID and argID simultaneously, or
even predicting frameID after argID.

The frames-make-the-targets problem In the
literature, targetID has received even less at-
tention than frameID — all models we are aware
of use gold targetID inputs — but is crucial to
the success of any end-to-end model. Theoretically
speaking, the targetID problem is less interest-
ing than frameID: since as almost any content
word can evoke a frame, assuming a fully com-
plete FrameNet (containing all possible predicates),
doing targetID would amount to a (simplified)
POS-tagging task where content words are labeled
as “yes”, and (most) function words as “no”.

However, in practice, FrameNet is far from com-
plete, so that doing targetID means identify-
ing all wordforms that correspond to some pred-
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icate evoking a frame present in FrameNet, mak-
ing targetID dependent on frameID.3 For ex-
ample, to find the target in (2-3), it would suf-
fice to lemmatize “ran” to “run”, and check if
“run” is listed under any FrameNet frames. But
this strategy would fail in (4-5): in those cases,
‘ran’ is not the full target, but either only a part
of it (4), or not at all (5). In order to predict this,
we would need to recognize that “run out” is part
of the EXPEND RESOURCE frame, and that “run
someone somewhere” is a different sense of “run”
that does not match either FLUIDIC MOTION or
SELF MOTION. Hence, targetID seems to pre-
suppose (partial) frameID in some cases.

2.2 Pipelines: NLP vs. SRL
The type of problem that we identified in this sec-
tion is not unique to frame-semantic parsing but
also occurs in the standard NLP pipeline of tok-
enization, POS-tagging, lemmatization, etc. For
example, for POS-tagging “run” as either a verb or
a noun (as in “we run” vs. “a long run”), one (the-
oretically speaking) needs access to dependency
information (i.e. is there a subject, adjectival mod-
ification, etc.). Conversely, dependency parsing
benefits from access to POS tags. This would im-
ply that a traditional pipeline might need a lot of re-
dudancy; e.g., a perfect POS-tagging model would
also learn some dependency parsing. For (amongst
others) this reason, the problem of pipelines ver-
sus joint prediction has been extensively studied in
NLP in general and SRL in particular. For example,
Toutanova et al. (2005) found that predicting all
PropBank semantic roles together produced better
results than predicting each role separately, Finkel
and Manning (2009) proposed a joint model for
syntactic parsing and named entity recognition as
an alternative to separate prediction or a pipeline-
based approach, and He et al. (2018) propose pre-
dicting PropBank predicates and semantic roles
together instead of sequentially. However, as far
as we are aware, no work so far has systematically
addressed the frame semantic parsing pipeline and
the possible ways for arranging its different com-
ponents.

In modern NLP, traditional pipelines have largely
been replaced by neural models performing several
tasks at once. However, a line of work initiated by
Tenney et al. (2019); Jawahar et al. (2019) shows

3It also makes the task somewhat arbitrary (since it de-
pends on what happens to be annotated in FrameNet), leading
some researchers to ignore the problem altogether (Das, 2014).

Boris
screamed  

and 
ran 

home

Input Sequence labels

R:Self_mover|R:Sound_source
F:Make_noise

F:Self_motion
R:Direction

⟨⟨MAKE_NOISE, ⟨screamed⟩⟩, 
{⟨Sound_source, ⟨Boris⟩⟩}⟩

⟨⟨SELF_MOTION, ⟨ran⟩⟩, 
{⟨Self_mover,⟨Boris⟩⟩, 
⟨Direction, ⟨home⟩⟩}⟩

Frame structures

Figure 1: Frame structures and sequence labels
(N.B.: color added for illustrative purposes only)

that neural models like BERT implicitly learn to
reproduce the classical NLP pipeline, with differ-
ent layers specializing in specific components of
the pipeline, and the possibility for later layers to
dynamically resolve ambiguities found in earlier
layers. For the BERT-based models we propose,
we study the relationship between different layers
and the traditional FrameNet pipeline (cf. §6.2).

3 Dissecting the pipeline

We argued that the different components of the
frame-semantic parsing task are mutually depen-
dent on each other. Here, we take a more practical
view and re-define the parsing problem in a way
that allows for experimenting with individual parts
of the pipeline and different combinations of them.

3.1 Strip the parser: just sequence labels

For our purposes, a crucial limitation of existing
frame-semantic parsing models is that they are rel-
atively complex and not very flexible: the different
components have to be executed in a fixed order
and depend on each other in a fixed way, leaving
no room for experimenting with different orders or
alternative ways to combine the components.

By contrast, we propose a maximally flexible ar-
chitecture by redefining frame-semantic parsing
as a sequence labeling task: given a tokenized
sentence S = 〈t1, . . . , tn〉, we predict a frame
label sequence FL = 〈l1, . . . , ln〉, where every
li ∈ (FID ∪ {∅})× 2AID is a pair of zero or one
frame labels in FID = {FAbandonment, . . . , FWorry}
and zero or more role labels in AID =
{AAbandonment@Agent, . . . , AWorry@Result}. Note that
there can be more than one frame in every sentence,
and the spans of different roles can overlap. This is
illustrated in Figure 1: Boris has two RID labels,
each of which is associated to a different frame
(Self mover belongs with SELF MOTION, while
Sound source belongs to MAKE NOISE.

This problem definition comprises several sim-
plifications. First of all, we integrate targetID
and frameID into a single component. Moreover,

157



we ‘flatten’ the role labels, discarding predicate-
role dependency information, and assume that most
of this information can be recovered during post-
processing (see §5.2). We further simplify the
role labels by removing frame names from argu-
ment labels, as in AID′ = {AAgent, . . . , AResult}.
While this complicates recovering structural infor-
mation, it also greatly condenses the label space
and might improve generalization across frames:
many frames share roles with identical names (e.g.,
Time, Location, or Agent), which we assume are
likely to share at least some semantic properties. It
should be noted that this assumption is not trivial,
given that there is a long and controversial literature
on the generalizability of semantic (proto-)roles
(Reisinger et al., 2015); we will make it here
nonetheless, especially since initial experiments
on the development set showed a clear advantage
of removing frame names from argument labels.

We implement our architecture using a BERT-
based sequence labeler: given a sentence, we to-
kenize it into byte-pairs, compute BERT embed-
dings for every token, feed these (one-by-one) to
a simple feed-forward neural network, and predict
a label representation. By having BERT handle
all preprocessing, we avoid making design choices
(e.g. POS-tagging, dependency parsing) that can
have a large impact on performance (cf. Kabbach
et al., 2018), and make our approach easier to adapt
to other languages and datasets.

3.2 Strip the tasks: just frames, just roles

Having maximally ‘stripped down’ the architec-
ture of our parsing model, we can now define the
two most basic tasks: frame prediction (equivalent
to targetID plus frameID in the traditional
pipeline), or role prediction (equivalent to argID,
but without needing frames as input). We can then
perform the tasks separately, but also jointly, or
combine them in any desired way.

FRAMESONLY The first basic task is predict-
ing, given a token, whether this token ‘evokes’ a
FrameNet frame, and if so, which one. We ex-
periment with two types of label representation
settings: Sparse, which represents each frame
(and the empty symbol) as a one-hot vector, while
Embedding defines dense embeddings for frames.
The embedding of a frame F is defined as the
centroid of the embeddings of all predicates in F ,
which in turn are taken from a pre-trained GloVe

FRAMESONLY ROLESONLY Stripped

Joint
MULTILABEL MULTITASK

can frames and roles help each other?

Reverse-
Traditional

FRAMESONLY
do roles help predict frames?

ROLESONLY

Neo-
Traditional

FRAMESONLY ROLESONLY

do frames help predict roles?

(ML)

FRAMESONLY ROLESONLY Merged(ML)

Figure 2: Overview of possible end-to-end systems
(N.B.: boxes marked with (ML) use role predictions
from MULTILABEL)

model (Pennington et al., 2014).4 This is very simi-
lar to the approach taken by Alhoshan et al. (2019).
Prediction is done by regressing to the frame em-
bedding space, and selecting the frame with the
smallest cosine distance to the predicted embed-
ding. The empty symbol is predicted if the cosine
similarity to the best frame is below a threshold tf .

ROLESONLY The other basic task predicts zero
or more bare role labels for every token in the input.
These labels are encoded in a binary vector that
represents which roles are active for a given token.
During decoding, tokens with an activation value
exceeding a threshold tr are kept as the final output.

4 Re-composing an end-to-end system

Having defined a basic setup for experimenting
with predicting frames and roles alone, we can now
design experiments for investigating any interac-
tions between frames and roles. Figure 2 provides
an overview of the possible ways for combining
the FRAMESONLY and ROLESONLY models: sim-
ply merging the outputs, predicting the two tasks
jointly, or using a sequential pipeline.

4.1 Do-it-together: multilabel or multitask
Given the overlap between the frame and role pre-
diction tasks, we test whether predicting frames
and roles jointly might help the two models mutu-
ally inform each other and learn more efficiently.

Joint(MULTILABEL) The first ‘joint’ approach
is to predict, for every token in the input, a binary
vector representing any frame target, as well as any
role labels carried by the token. Hence, there is
only one decoder and all parameters are shared.

4We use the model glove.42B.300d from https:
//nlp.stanford.edu/projects/glove/.
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Joint(MULTITASK) As an alternative, we also
try a setup with separate decoders for roles and
frames, without any shared parameters (except
for the BERT encoder). Backpropagation is done
based on a weighted sum of the losses of the two
decoders, where the ‘loss weights’ are learned.

4.2 Do-it-sequentially: what comes first?

Neo-traditional In the Neo-traditional experi-
ment, we test the traditional pipeline structure: i.e.,
learning frames first, and using these to (explicitly)
inform role learning. In order to do this, we make
two modifications to ROLESONLY: 1) we split the
target role labels by frame, i.e. we ask the model
to predict only one frame’s roles at any given time,
and 2) a representation of the ‘active’ frame is con-
catenated to the BERT embeddings as input to the
model. This representation could be either Sparse
or Embedding (see above). After role prediction,
any roles that did not match the frame inputs are
filtered out, and the predictions are merged with
the frame model’s output.

Neo-traditional+MULTILABEL Following pre-
liminary results, we repeat the experiment using
MULTILABEL instead of ROLESONLY. In a final
merging step, we keep all role predictions from
MULTILABEL and any frame predictions that do
not clash with the outputs of FRAMESONLY.

Reverse-traditional In this setup, we invert the
traditional pipeline: given a sentence, we first pre-
dict role labels (using ROLESONLY), which are
then used as input for the frame prediction model.5

4.3 Do-it-separately: copy-and-paste

Finally, we tried an approach assuming no interac-
tion between frame and role prediction at all.

Merged In the Merged experiment, we sim-
ply merge the outputs of FRAMESONLY and
ROLESONLY. In this scenario, both models are
completely independent, without any possibility
for frames and roles to inform each other.

Merged+MULTILABEL Based on initial results
showing that MULTILABEL beats ROLESONLY on
roles while FRAMESONLY wins on frames, we also
experiment with simply merging the output of these
two ‘winning’ models.

5Other setups, e.g. using MULTILABEL for role predic-
tions, might give better performance, but would obfuscate the
effect of predicting roles before frames.

5 Evaluation: tokens vs. structures

Since our setup diverges significantly from previ-
ous systems, testing our models is not trivial. Here,
we propose two evaluation methods: a token-based
metric that can directly score our models’ output
(§5.1), and an algorithm for ‘recovering’ full frame
structures that can be checked using the standard
SemEval 2007 method (Baker et al., 2007) (§5.2).

5.1 Sequence-label evaluation
The simplest way of evaluating our models’ per-
formance is to simply count the number of correct
frame and role labels per token. We compute this
given a token sequence 〈t1, . . . , tn〉, a sequence of
gold labels 〈G1, . . . , Gn〉 and a sequence of pre-
dicted labels 〈P1, . . . , Pn〉, where every Gi and Pi

is either a set of frame or role labels, or the empty
label {∅}. We can now define: true positive =∑n

i=1 |Pi ∩ Gi|, false positive =
∑n

i=1 |Pi \ Gi|,
and false negative =

∑n
i=1 |Gi \ Pi|. Finally, we

calculate micro-averaged precision, recall, and F-
scores in the usual way.

Consistency scoring A limitation of our
sequence-labeling approach is that there are
no explicit constraints on the predicted role
labels and it is not guaranteed that the set of
role predictions for a given sentence will be
compatible with the set of frame predictions.
Hence, we need to evaluate not just the respective
accuracy, but also the mutual consistency, of
predicted roles and frames. We define this as∑

s∈S
∑

t∈tok(s) |{r ∈ Rs,t|r ∈ allowed(Fs)}|,
where S is the set of sentences in the evaluation
set, tok(s) returns the sequence of tokens in
a sentence, Rs,t is the set of predicted role
labels for a particular token, Fs is the set of
all predicted frame labels in the sentence, and
allowed(F ) returns the set of role labels that are
consistent with a particular set of frame labels.
For example, allowed({KILLING,USING}) gives
{Killer,Victim, . . . ,Agent, . . .}. The number of
consistent roles is then divided by the total number
of predicted roles

∑
s

∑
t |r ∈ Rs,t| to yield a

global consistency score.

5.2 Recovering frame structures
For comparing our models to existing work
in frame-semantic parsing, and validating the
assumptions underlying our sequence-labeling
setup, we need to recover full frame structures
from the output of our models. Formally,
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DEV TEST

frames roles frames roles
Experiment R P F R P F R P F R P F

Open-SESAME 0.66 0.68 0.67 0.41 0.54 0.47 0.58 0.62 0.60 0.38 0.41 0.39

Joint(MULTILABEL) 0.58 0.65 0.61 0.39 0.48 0.43 0.55 0.44 0.49 0.36 0.27 0.31
Joint(MULTITASK) 0.69 0.73 0.71 0.24 0.35 0.28 0.65 0.49 0.56 0.24 0.21 0.21
Neo-traditional(MULTILABEL)*† 0.66 0.73 0.69 0.41 0.54 0.47 0.64 0.51 0.57 0.40 0.30 0.34
Reverse-traditional(ROLESONLY)‡ 0.68 0.72 0.70 0.32 0.46 0.38 0.65 0.49 0.56 0.31 0.27 0.28
Merged(MULTILABEL)* 0.72 0.68 0.70 0.39 0.49 0.43 0.69 0.48 0.57 0.36 0.28 0.31

Stripped(FRAMESONLY, Embedding) 0.68 0.69 0.69 - - - 0.65 0.46 0.54 - - -
Stripped(FRAMESONLY, Sparse) 0.65 0.75 0.70 - - - 0.63 0.52 0.57 - - -
Stripped(ROLESONLY) - - - 0.32 0.46 0.38 - - - 0.31 0.27 0.28

Table 1: Sequence labeling scores (avg. over three runs). N.B: *For brevity reasons, for Merged and Neo-
traditional, we only give results for the MULTILABEL setting, which performs better on role prediction than
ROLESONLY. † Results on Neo-traditional are using Sparse frame inputs. ‡ Results on Reverse-traditional are
using Sparse frame outputs.

given a tokenized sentence 〈t1, . . . , tn〉, and a
sequence 〈l1, . . . ln〉 of frame and role labels,
we want to find the set of frame structures
{〈TI1, RI1〉, . . . , 〈TIn, RIn〉}. Here, every target
instance TIi = 〈FTi, 〈tj , . . . , tk〉〉 is a pairing
of a frame type FT ∈ {FAbandonment, . . . FWorry}
and a sequence of tokens containing the
lexical material that evokes the frame. Sim-
ilarly, we define every role instance RIi =
{〈RTi1 , 〈tj1 , . . . tk1〉〉, . . . , 〈RTin , 〈tjn , . . . , tkn〉〉}
as a set of pairs of role types RT ∈
{AAbandonment@Agent, . . . , AWorry@Result} and
token spans instantiating these role types. See Fig-
ure 1 (§3) for an example sentence with sequence
labels and corresponding frame structures.

Recovery algorithm We propose a simple rule-
based approach. First, we find the set of target
instances in the sentence, and the corresponding
set of frame types.6 Next, we find the set of
(bare) role labels that can be associated to each
of the predicted frame types, e.g. WORRY 7→
{Experiencer, . . . ,Result}. Next, for each of the
the predicted role spans 〈ti, . . . , tj〉 in the sentence,
we find all of the compatible frame target instances.
If there is more than one compatible target, we
select the target that is closest in the sentence to
the role span. Note that our algorithm would miss
cases of more than one frame instance ‘sharing’ a
role (i.e. all having a role with the same label and
span), but we assume that such cases are rare. In
cases where it is already known which role labels
are associated to which frame types (i.e., in the

6If more than one frame target label is predicted for a given
token, we only keep the label with the highest probability.

Neo-traditional setup), we allow the algorithm to
take this information into account, but we found
that this has little impact on performance.

SemEval’07 scoring Having recovered the set
of predicted frame structures, we can evaluate our
models using the standard SemEval 2007 scoring
method (Baker et al., 2007). During evaluation on
the development set, we noticed that our models
frequently seem to make minor mistakes on role
spans (i.e. erroneously missing or including an
extra token). Since the SemEval script does not
take into account partially matching role spans,
we propose a modification to the script that gives
partial credit for these role spans, and report this in
addition to the scores from the original script.

6 Experiments

6.1 Setups
All experiments were run using a pre-trained
bert-base-cased model, fine-tuned with a
simple feedforward network decoder. Loss
functions depend on the setup: we optimize
Mean Squared Error Loss for ROLESONLY and
MULTILABEL, Sequence Cross-Entropy Loss
for FRAMESONLY/Sparse, and Cosine Embed-
ding Loss for FRAMESONLY/Embedding. We
found best performance using Adam optimization
(Kingma and Ba, 2014) with lr = 5e−5, train-
ing for 12 epochs, with a single hidden layer of
size 1000 in the decoder. Unless specified other-
wise, the BERT embeddings are an automatically
weighted sum (“Scalar Mix”) of BERT’s hidden
layers. For implementation, we used AllenNLP
(Gardner et al., 2017) and PyTorch (Paszke et al.,
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DEV TEST

strict modified strict modified
Experiment R P F R P F R P F R P F

Open-SESAME (true) 0.47 0.52 0.49 0.51 0.57 0.54 0.44 0.50 0.47 0.47 0.53 0.50
Open-SESAME (recovered) 0.46 0.51 0.48 0.50 0.56 0.53 0.43 0.49 0.46 0.46 0.53 0.49

Joint(MULTILABEL) 0.31 0.40 0.35 0.37 0.48 0.42 0.32 0.42 0.36 0.36 0.48 0.41
Joint(MULTITASK) 0.34 0.44 0.38 0.38 0.50 0.43 0.36 0.43 0.39 0.40 0.48 0.43
Neo-traditional(MULTILABEL)*† 0.33 0.38 0.35 0.42 0.49 0.45 0.34 0.37 0.35 0.42 0.46 0.44
Reverse-traditional(ROLESONLY)‡ 0.33 0.48 0.39 0.38 0.55 0.45 0.34 0.47 0.40 0.38 0.53 0.45
Merged(MULTILABEL)* 0.37 0.44 0.40 0.44 0.52 0.47 0.40 0.44 0.42 0.45 0.50 0.47

Table 2: SemEval’07 scores (avg. over three runs)

2019). All models were trained and tested on the
standard FrameNet 1.7 fulltext corpus (see Ap-
pendix B for more details on the data).

While our main aim remains a deeper under-
standing of the components of frame-semantic pars-
ing and their interdependencies, we still need to
put our scores into perspective and legitimize our
sequence labeling approach. Thus, we took Open-
SESAME, the only existing, open-source model
that we are aware of that is capable of producing
end-to-end predictions, as our baseline.7 We used
default settings (i.e., without scaffolding and en-
sembling) for better comparability with our own
models. Hence, note that the results reported here
for Open-SESAME are not the state-of-the-art re-
sults reported by Swayamdipta et al. (2017).

6.2 Results

Sequence labeling Table 1 reports the results on
the sequence labeling task.8 On the test set, Open-
SESAME is the best model for both tasks. While
best performance is not the core goal of this work,
the fact that our best models perform in a similar
range shows that our setup is sound to serve as a
tool for comparing different pipeline variations.

Comparing our own models, we see that frame
prediction performance is similar across setups: ex-
cept for MULTILABEL, all F1-scores are within
3 points of each other. On role prediction, the se-
tups that use MULTILABEL outperform the others.
Neo-traditional performs the best on roles over-
all, whereas MULTITASK scores the worst. For

7Note that the Open-SESAME paper only treats
argID, but models published at https://github.com/
swabhs/open-sesame use the same architecture for do-
ing targetID and frameID and are discussed at https:
//github.com/swabhs/coling18tutorial.

8For checking stability, all experiments were repeated three
times and the scores averaged across runs. Overall, the models
were quite stable and have F1-scores with standard deviations
of ≤ 0.03. See the Appendix for full stability scores.

frame prediction, performance does not seem to be
boosted by joint role prediction. In fact, in MULTI-
LABEL, performance on frames is very poor.

Similarly, adding roles as input for frame pre-
dictions (as in Reverse-traditional) does not help
performance. Additional experiments to test the
theoretical effectiveness of this strategy, using gold
role labels as input, showed a slight improvement
over FRAMESONLY (increasing F1 to 0.58 on test).
However, when using predicted roles, we find no
improvement and even see a small detrimental ef-
fect due to the poor performance of ROLESONLY.
By contrast, Neo-traditional and Merged, when
combining FRAMESONLY and MULTILABEL, per-
form well on both frames and roles. Lastly, MULTI-
TASK does well on frames (but only slightly better
than FRAMESONLY), but very poorly on roles.

Structural evaluation SemEval’07 scores are
shown in Table 2. Note that two separate scores are
reported for Open-SESAME: “true” and “recov-
ered”. For “true”, we converted Open-SESAME
predictions to SemEval format using all available
structural information (i.e., links between roles,
frames, and predicates); for “recovered”, we first
removed structural information and then attempted
to recover it using our algorithm (see §5.2). The
small difference between these scores suggests that
recovery usually succeeds.

In any case, Open-SESAME consistently outper-
forms our models, and the difference is, overall,
larger on the SemEval task than on the sequence
labeling task. On the test set, Merged is our best
model and has an F1-score within 0.05 of Open-
SESAME using strict evaluation, and within 0.03
using partial span scoring. Interestingly, whereas
the sequence-labeling performance of all models
drops dramatically on the test set compared to the
development set, SemEval task scores are more sta-
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Stripped MULTILABEL

frames roles frames roles
R P F R P F R P F R P F

L02 0.65 0.72 0.68 0.36 0.43 0.39 0.55 0.64 0.59 0.34 0.45 0.39
L04 0.66 0.75 0.70 0.36 0.52 0.43 0.60 0.63 0.62 0.38 0.46 0.42
L06 0.62 0.77 0.69 0.39 0.47 0.42 0.59 0.67 0.62 0.39 0.58 0.47
L08 0.68 0.73 0.71 0.42 0.55 0.47 0.56 0.66 0.61 0.42 0.54 0.47
L10 0.71 0.72 0.71 0.45 0.52 0.48 0.56 0.62 0.59 0.47 0.55 0.51
L12 0.68 0.74 0.71 0.46 0.56 0.51 0.58 0.70 0.63 0.46 0.60 0.52

Mix 0.65 0.75 0.72 0.32 0.46 0.38 0.58 0.65 0.61 0.39 0.48 0.43

Table 3: Sequence-label scores (DEV) by BERT layer

ble. Finally, as expected, both Open-SESAME and
our models get higher scores when partial credit
is given to incomplete role spans, but our models
benefit more from this than Open-SESAME does.

Out of our own models, Merged clearly wins,
with a five points’ difference to MULTILABEL, the
worst-scoring model. A possible explanation for
this difference is that MULTILABEL has poor recall
for frame prediction: since frame structures always
need to have a frame target, missing many frames is
likely to cause low SemEval scores. However, good
frames are not enough: while Merged beats Open-
SESAME on frames on the development set, it has
lower SemEval scores. More generally, it is inter-
esting to note that good sequence labeling scores do
not guarantee good SemEval performance. On one
hand, we find that Reverse-traditional has good Se-
mEval scores, especially for precision, even though
it has poor sequence labeling scores on roles. On
the other hand, Neo-traditional has good sequence
labeling scores, but disappointing SemEval scores.

Consistency A factor that would be expected to
lead to better SemEval scores is consistency be-
tween role and frame prediction: predicting many
correct frames, but also many roles inconsistent
with these frames, might lead to overall worse struc-
tures. Table 4 gives consistency scores (see §5.1)
for all setups except Stripped. Open-SESAME and
Neo-traditional score perfectly because frames are
known at role prediction time, so that inconsistent
roles are filtered out. There are large differences
between the other setups: Merged has nearly 80%
‘legal’ roles, whereas Joint(MULTITASK) scores
only 62%. Moreover, Merged outperforms MUL-
TILABEL, despite getting its roles from MULTIL-
ABEL. We speculate that this is caused by MUL-
TILABEL predicting ‘orphaned’ roles (i.e., cor-
rect roles lacking a matching frame) that are ‘re-
parented’ in Merged, which adds ‘extra’ frames

from FRAMESONLY. Finally, Reverse-traditional’s
consistency is lower than would be expected given
that frame prediction is constrained by information
about roles, which we attribute to poor role pre-
diction in ROLESONLY. Still, Reverse-traditional
performs quite well on SemEval, meaning that role
coherence alone does not predict structural quality.

BERT layer analysis Analyzing the contribu-
tions of different BERT layers helps us better under-
stand the implicit ‘pipeline’ learned by the model.
Table 3 shows sequence labeling scores for the
Stripped and MULTILABEL models, retrained us-
ing embeddings from individual layers. For com-
parison, the last row shows scores from Table 1.

We see an interesting discrepancy between
frames and roles: role prediction clearly improves
when using higher layers, but frame prediction
is mostly stable, suggesting that the latter bene-
fits from lexical information more than the former.
This is true for both the Stripped and MULTIL-
ABEL models. Another interesting pattern is that
role prediction is better for individual layers than
for the “ScalarMix” setup, whereas this is not the
case for frame prediction. This means that it is
difficult to learn automatically which layers to use
for role prediction, but it is yet unclear why.

7 Conclusions

We examined the frame-semantic parsing pipeline
theoretically and practically, identifying ‘chicken-
or-egg’ issues in the dependencies between sub-
tasks, and studying them empirically within a
BERT-based sequence-labeling framework.

We found that joint frame and role prediction
works well, but not always better than using frames
as input to roles. By contrast, previous studies
(Yang and Mitchell, 2017; Peng et al., 2018) found
substantial improvements from joint prediction.
However, these systems use gold targets as input,
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Experiment DEV TEST
score stdev score stdev

Open-SESAME 1.00 0.00 1.00 0.00
Joint(MULTILABEL) 0.77 0.01 0.74 0.02
Joint(MULTITASK) 0.62 0.05 0.62 0.06
Neo-traditional(MULTILABEL)*† 1.00 0.00 1.00 0.00
Reverse-traditional(ROLESONLY)*† 0.71 0.06 0.70 0.04
Merged(MULTILABEL)* 0.80 0.01 0.78 0.02

Table 4: Consistency scores and deviance across runs

differ in architecture, and (partially) use different
datasets, making direct comparison hard.

The main advantage of our sequence-labeling
setup is the possibility to investigate frame and
role prediction independently, as well as their mu-
tual dependency. We found substantial benefits
for role prediction from access to frame informa-
tion through joint prediction or by receiving frames
as input. For frame prediction, instead, the pic-
ture is less clear: while we found a theoretical
benefit of using (gold) roles as input, this bene-
fit disappears when using predicted roles. Sim-
ilarly, when jointly predicting frames and roles,
the MULTITASK setup yielded a slight improve-
ment for frame prediction, whereas MULTILABEL

deteriorated it. These results can be taken as sup-
porting the traditional pipeline approach, but our
results using SemEval evaluation, which looks at
full frame structures, do not unequivocally confirm
this: Open-SESAME performs best, but amongst
our models, Reverse-traditional and Merged out-
perform the others, including Neo-traditional. This
suggests that there might be valid alternatives to
the standard pipeline, and exploring these might
lead to a deeper understanding of frame semantic
parsing task itself.

Our setup also allows for investigating which
BERT layers both components use. Role prediction
strongly prefers high BERT layers, while frame
prediction is less picky, suggesting that the tasks
use different linguistic information.

We see several logical extensions of our work.
First, qualitative analysis of the overlaps in predic-
tions from different models could shed light on the
discrepancies between sequence labeling scores,
consistency scores, and SemEval scores. A second
direction would be to explore how our observations
about the relationship between different compo-
nents of the frame semantic parsing pipeline and
BERT layers could be used to improve models.
Finally, one could try more sophisticated architec-

tures for sequence-labeling models, in particular by
enforcing frame-role consistency within the model
itself rather than during post-processing.
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A Supplemental material

A.1 Model stability
In order to check for model stability, we repeated
all our experiments (excl. the experiments for
BERT layer analysis) three times. The standard de-
viations of the sequence-labeling scores are shown
in Table A.1. F1-scores seem quite stable over-
all, but in a few cases there are larger devia-
tions in precision and/or recall, especially in the
Joint(MULTITASK) model.

frames roles
Experiment R P F R P F
Joint(MULTILABEL) 01 00 00 00 01 01
Joint(MULTITASK) 02 02 00 04 07 01
Neotrad.(MULTILABEL, Sp.) 02 01 01 02 04 01
Merged(MULTILABEL) 01 01 00 00 01 01
Stripped(FRAMESONLY, Emb.) 02 04 01 - - -
Stripped(FRAMESONLY, Sp.) 03 02 01 - - -
Stripped(ROLESONLY) - - - 02 04 03

Table A.1: Model stability: standard deviation (%)
across runs of sequence-labeling scores (on DEV)

A.2 FrameNet data
Corpus We used the standard FrameNet corpus
(release 1.7) for all experiments. We used the
fulltext.train split for training, the dev
split for validation and evaluation, and the test
split for final evaluation. Table A.2 shows the rela-
tive sizes of these splits.

Distribution of roles One of the key simplifica-
tions of our sequence labeling setup is ‘decoupling’
frames and roles. This reduces the label space
since some roles occur in many different frames.
Figure A.1 shows the most frequent role names
with the number of different frames that they occur
in. As can be seen from the graph, most frequent
roles are very general ones such as ‘Time’, ‘Place’,
‘Manner’, etc. Although roles are, in the FrameNet
philosophy, strictly defined relative to frames, we
expect that roles sharing a name across frames will
have a very similar semantics.

Split #Sentences #Frame structures

train 3,413 19,391
dev 387 2,272
test 2,420 6,714

Table A.2: FrameNet corpus stats
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Figure A.1: Top-20 role names by number of frames
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Abstract

We use dialogue act recognition (DAR) to
investigate how well BERT represents utter-
ances in dialogue, and how fine-tuning and
large-scale pre-training contribute to its per-
formance. We find that while both the stan-
dard BERT pre-training and pretraining on
dialogue-like data are useful, task-specific fine-
tuning is essential for good performance.

Large-scale neural language models trained on
massive corpora of text data have achieved state-of-
the-art results on a variety of traditional NLP tasks.
Given that dialogue, especially spoken dialogue,
is radically different from the kind of data these
language models are pre-trained on, it is uncertain
whether they would be useful for dialogue-oriented
tasks. In the example from the Switchboard corpus,
shown in Table 1, it is evident that the structure of
dialogue is quite different from that of written text.
Not only is the internal structure of contributions
different—with features such as disfluencies, repair,
incomplete sentences, and various vocal sounds—
but the sequential structure of the discourse is dif-
ferent as well.

In this paper, we investigate how well one such
large-scale language model, BERT (Devlin et al.,
2019), represents utterances in dialogue. We use
dialogue act recognition (DAR) as a proxy task,
since both the internal content and the sequential
structure of utterances has bearing on this task

We have two main contributions. First we find
that while standard BERT pre-training is useful, the
model performs poorly without fine-tuning (§3.1).
Second, we find that further pre-training with data
from the target domain shows promise for dialogue,
but the results are mixed when pre-training with a
larger corpus of dialogical data from outside the
target domain (§3.2).

Speaker DA Utterance

A sd Well, I’m the kind of cook that I don’t
normally measure things,

A sd I just kind of throw them in
A sd and, you know, I don’t to the point of,

you know, measuring down to the exact
amount that they say.

B sv That means you’re a real cook.
A bd <Laughter> Oh, is that what it

means.
A b Uh-huh.
A x <Laughter>.

Table 1: Example from the SWDA corpus
(sw2827). Dialogue acts: sd—Statement-non-
opinion, sv—Statement-opinion, bd—Downplayer,
b—Backchannel, x—Non-verbal.

1 Background

1.1 Dialogue Act Recognition

The concept of a dialogue act is based on that of
speech acts (Austin and Urmson, 2009). Breaking
with classical semantic theory, speech act theory
considers not only the propositional content of an
utterance but also the actions, such as promising
or apologizing, it carries out. Dialogue acts extend
the concept of the speech act, with a focus on the
interactional nature of most speech.

DAR is the task of labeling utterances with the
dialogue act they perform from a given set of di-
alogue act tags. As with other sequence labeling
tasks in NLP, some notion of context is helpful in
DAR. One of the first performant machine learn-
ing models for DAR was a Hidden Markov Model
that used various lexical and prosodic features as
input (Stolcke et al., 2000). Most successful neu-
ral approaches also model some notion of context
(e.g., Kalchbrenner and Blunsom, 2013; Tran et al.,
2017a; Bothe et al., 2018b,a; Zhao and Kawahara,
2018).
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1.2 Transfer learning for NLP
Transfer learning techniques allow a model trained
on one task—often unsupervised—to be applied to
another. Since annotating natural language data is
expensive, there is a lot of interest in transfer learn-
ing for natural language processing. Word vectors
(e.g., Mikolov et al., 2013; Pennington et al., 2014)
are a ubiquitous example of transfer learning in
NLP. We note, however, that pre-trained word vec-
tors are not always useful when applied to dialogue
(Cerisara et al., 2017).

BERT, a multi-layer transformer model (Devlin
et al., 2019), is pre-trained on two unsupervised
tasks: masked token prediction and next sentence
prediction. In masked token prediction, some per-
centage of words are randomly replaced with a
mask token. The model is trained to predict the
identity of the original token based on the context
sentence. In next sentence prediction, the model is
given two sentences and trained to predict whether
the second sentence follows the first in the original
text or if it was randomly chosen from elsewhere
in the corpus. After pre-training, BERT can be
applied to a supervised task by adding additional
un-trained layers that take the hidden state of one
or more of BERT’s layers as input.

There is some previous work applying BERT to
dialogue. Bao et al. (2020) and Chen et al. (2019)
both use BERT for dialogue generation tasks. Sim-
ilarly, Vig and Ramea (2019) find BERT useful
for selecting a response from a list of candidate re-
sponses in a dialogue. Mehri et al. (2019) evaluate
BERT in various dialogue tasks including DAR,
and find that a model incorporating BERT outper-
forms a baseline model. Finally, Chakravarty et al.
(2019) use BERT for dialogue act classification for
a proprietary domain and achieves promising re-
sults, and Ribeiro et al. (2019) surpass the previous
state-of-the-art on generic dialogue act recognition
for Switchboard and MRDA corpora. This paper
aims to supplement the findings of previous work
by investigating how much of BERT’s success for
dialogue tasks is due to its extensive pre-training
and how much is due to task-specific fine-tuning.

Fine-tuning vs. further in-domain pre-training
We experiment with the following two transfer
learning strategies (Sun et al., 2019): further pre-
training, in which the model is trained in an
un-supervised way, similar to its initial training
scheme, but on data that is in-domain for the tar-
get task; and single-task fine-tuning, in which the

Switchboard AMI Corpus

Dyadic Multi-party
Casual conversation Mock business meeting
Telephone In-person & video

English English
Native speakers Native & non-native speakers
early ’90s 2000s

2200 conversations 171 meetings
1155 in SWDA 139 in AMI-DA

400k utterances 118k utterances
3M tokens 1.2M tokens

Table 2: Comparison between Switchboard and the
AMI Meeting Corpus

model’s encoder layers are optimized during train-
ing for the target task.

Whether or not the encoder model has under-
gone further in-domain pre-training, there remains
a choice of whether to fine-tune during task train-
ing, or simply extract features from the encoder
model without training it (i.e., freezing). Freezing
the encoder model is more efficient, since the gra-
dient of the loss function need only be computed
for the task-specific layers. However, fine-tuning
can lead to better performance since the encoding
itself is adapted to the target task and domain.

Peters et al. (2019) investigate when it is best
to fine-tune BERT for sentence classification tasks
and find that when the target task is very similar to
the pre-training task, fine-tuning provides less of
a performance boost. We note that there is some
conceptual relationship between DAR and next sen-
tence prediction, since the dialogue act constrains
(or at least is predictive of) the dialogue act that
follows it. That said, the discourse strucutre of the
encyclopedia and book data that makes up BERT’s
pre-training corpus is probably quite different from
that of natural dialogue.

2 Data

We perform experiments on the Switchboard Dia-
logue Act Corpus (SWDA), which is a subset of the
larger Switchboard corpus, and the dialogue act-
tagged portion of the AMI Meeting Corpus (AMI-
DA). SWDA is tagged with a set of 220 dialogue
act tags which, following Jurafsky et al. (1997), we
cluster into a smaller set of 42 tags. AMI uses a
smaller tagset of 16 dialogue acts (Carletta, 2007).
See Table 2 for details.

Preprocessing We make an effort to normalize
transcription conventions across SWDA and AMI.
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We remove disfluency annotations and slashes from
the end of utterances in SWDA. In both corpora,
acronyms are tokenized as individual letters. All
utterances are lower-cased.

Utterances are tokenized with BERT’s word
piece tokenizer with a vocabulary of 30,000. To
this vocabulary we added five speaker tokens
and prepend each utterance with a speaker token
that uniquely identifies the corresponding speaker
within that dialogue.

2.1 Pre-training corpora

We also experiment with three unlabeled dialogue
corpora, which we use to provide further pre-
training for the BERT encoder.

The first two corpora are constructed from the
same source as the dialogue act corpora. We use
the SWDA portion of the un-labeled Switchboard
corpus (SWBD) and the entire AMI corpus (in-
cluding the 32 dialogues with no human-annotated
DA tags that are not included in the DAR training
set). In both cases, we exclude dialogues that are
reserved for DAR testing.

We also experiment with a much larger a corpus
(350M tokens) constructed from OpenSubtitles (Li-
son and Tiedemann, 2016). Because utterances are
not labeled with speaker, we randomly assigned
a speaker token to each utterance to maintain the
format of the other dialogue corpora.

The pre-training corpora were prepared for the
combined masked language modeling and next sen-
tence (utterance) prediction task, as described by
Devlin et al. (2019). For the smaller SWBD and
AMI corpora, we generate and train on multiple
epochs of data. Since there is randomness in the
data preparation (e.g., which distractor sentences
are chosen and which tokens are masked), we gen-
erate each training epoch separately.1

3 Model

We use a simple neural architecture with two com-
ponents: an encoder that vectorizes utterances
(BERT), and single-layer RNN sequence model
that takes the utterance representations as input.2

At each time step, the RNN takes the encoded ut-
terance as input and its hidden state is passed to a

1For details, see the finetuning example from Hugging
Face.

2We have experimented with LSTM as the sequence model,
but the accuracy was not significantly different compared to
RNN. It can be explained by the absence of longer distance
dependencies on this level of our model.

linear layer with softmax over dialogue act tags.3

Conceptually, the encoded utterance represents
the context-agnostic features of the utterance, and
the hidden state of the RNN represents the full
discourse context.

For the BERT utterance encoder, we use the
BERTBASE model with hidden size of 768 and 12
transformer layers and self-attention heads (Devlin
et al., 2019, §3.1). In our implementation, we use
the un-cased model provided by Wolf et al. (2020).
The RNN has a hidden layer size of 100.

3.1 Pre-training vs. fine-tuning

First, we analyze how pre-training affects BERT’s
performance as an utterance encoder. To do so,
we consider the performance of DAR models with
three different utterance encoders:

• BERT-FT – pre-trained + DAR fine-tuning
• BERT-FZ – pre-trained, frozen during DAR
• BERT-RI – random init. + DAR fine-tuning

BERT-FT is more accurate than BERT-RI by
several percentage points on both DA corpora, sug-
gesting that BERT’s extensive pre-training does
provide some useful information for DAR (Ta-
ble 3). This performance boost is much more pro-
nounced in the macro-averaged F1 score,4 which
is explained by the fact that at the tag level, pre-
training has a larger impact on less frequent tags
(see Figure 1 in the supplementary materials).

The BERT-FZ performs very poorly compared
to either BERT-FT or BERT-RI, however. It
is heavily biased towards the most frequent tags,
which explains its especially poor macro-F1 score
(Table 3). In SWDA, for example, the model with
a frozen encoder predicts one of the two most com-
mon tags (Statement-non-opinion or Acknowledge)
86% of the time, whereas those two tags account
for only 51% of the ground truth tags. BERT-FT is
much less biased; it predicts the two most common
tags only 59% of the time.

3.2 Impact of dialogue pre-training

Next, we assess the effect of additional dialogue
pre-training on BERT’s performance as an utter-

3Other work has shown that DAR benefits from more so-
phisticated decoding, such as conditional random field (Chen
et al., 2018) and uncertainty propagation (Tran et al., 2017b).

4We report both accuracy (which is equal to micro-
averaged or class-weighted F1) and macro-F1, which is the
unweighted average of the F1 scores of each class.
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ance encoder.5 Sun et al. (2019) has reported that
performing additional pre-training on unlabeled
in-domain data improves performance on classifi-
cation tasks. We want to see if BERT can benefit
from pre-training on dialogue data, including from
data outside the immediate target domain.

For each of the target corpora (SWDA and AMI-
DA), we compare four different pre-training con-
ditions: The in-domain corpus (ID), consisting
of the AMI pre-training corpus for the AMI-DA
model and the SWBD pre-traning corpus for the
SWDA model; the cross-domain corpus (CC), con-
sisting of both the AMI and SWBD pre-training
corpora; and finally the OpenSubtitles corpus (OS).
As before, we experiment with both frozen and
fine-tuned models at the task training stage.

We performed 10 epochs of pre-training on the
in-domain models and 5 epochs of pre-training on
the cross-domain models so that the total amount of
training data was comparable. The OpenSubtitles
models were trained for only one epoch but with
much more total training time.

In the fine-tuned condition, additional pre-
training offers a modest boost in overall accuracy
and a substantial boost to the macro-F1 scores,
with the cross-domain corpus providing the largest
boost. In the frozen condition, only the very large
OpenSubtitles corpus is helpful, suggesting that
when adapting BERT to dialogue, the size of the
corpus is more important than its quality or fi-
delity to the target domain. Still, pre-training pro-
vides nowhere near the performance improvement
achieved by fine-tuning on the target task.

4 Discussion

A key aspiration of transfer learning is to expose
the model to phenomena that are too infrequent
to learn from labeled training data alone. We
show some evidence of that here. Pre-trained
BERT-FT performs better on infrequent dialogue
acts than BERT-RI, suggesting it draws on the
extensive pre-training to represent infrequent fea-
tures of those utterances. Indeed, a simple lexi-
cal probe supports this explanation: in utterances
where the pre-trained model is correct and the ran-
domly initialized model is not, the rarest word is
1.9 times rarer on average than is typical of corpus
as a whole.

5In-domain pre-training is sometimes referred to as fine-
tuning, but we reserve that term for task-specific training on
labeled data.

6Kozareva and Ravi (2019)

SWDA AMI-DA

F1 acc. F1 acc.
BERT-FT 36.75 76.60 43.42 64.93
BERT+ID-FT 43.63 77.01 46.70 68.88
BERT+CC-FT 47.78 77.35 48.86 68.79
BERT+OS-FT 41.42 76.95 48.65 68.07

BERT-FZ 7.75 55.61 14.86 48.34
BERT+ID-FZ 6.46 52.30 14.48 48.18
BERT+CC-FZ 5.76 51.14 11.34 40.48
BERT+OS-FZ 9.60 57.67 17.03 51.03

BERT-RI 32.18 73.80 34.88 60.89

Majority class 0.78 33.56 1.88 28.27
SotA - 83.16 - -

Table 3: Comparison of macro-F1 and accuracy with
further in-domain (ID), cross-domain corpus (CC),
and OpenSubtitles (OS) dialogue pre-training, for the
frozen (FZ) and fine-tuned (FT) conditions. BERT-RI
uses a randomly initialized utterance encoder with no
pre-training but with fine-tuning.

In spite of that, the representations learned
through pre-training are simply not performant
without task-specific fine-tuning, suggesting that
they are fundamentally lacking in information that
is important for the dialogue context. We should
note that this is in stark contrast to many other
non-dialogical semantic tasks, where frozen BERT
performs on par or better than the fine-tuned model
(Peters et al., 2019).

By performing additional pre-training on a large
dialogue-like corpus (OpenSubtitles), we were able
to raise the performance of the frozen encoder by
a small amount. This deserves further investiga-
tion. Bao et al. (2020) find that further pre-training
BERT on a large-scale Reddit and Twitter corpus is
helpful for response selection, but given the unim-
pressive results with subtitles, it remains an open
question how well the text chat and social media
domains transfer to natural dialogue.

There is also abundant room to investigate
how speech-related information, such as laughter,
prosody, and disfluencies can be incorporated into a
DAR model that uses pre-trained features. Stolcke
et al. (2000) showed, for example, that dialogue
acts can have specific prosodic manifestations that
can be used to improve dialogue act classification.
Incorporating such information is crucial if models
pre-trained on large-scale text corpora are to be
adapted for use in dialogue applications.
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Figure 1: F1 scores by dialogue act for BERT with standard pre-training and DAR fine-tuning (BERT-FT) vs. the
same model without pre-training (BERT-RI) and without fine-tuning (BERT-FZ). Dialogue acts are ordered with
the most common on the left.
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Abstract
We adopt, evaluate, and improve upon a two-
step natural language understanding (NLU)
pipeline that incrementally tames the vari-
ation of unconstrained natural language in-
put and maps to executable robot behaviors.
The pipeline first leverages Abstract Mean-
ing Representation (AMR) parsing to capture
the propositional content of the utterance, and
second converts this into “Dialogue-AMR,”
which augments standard AMR with informa-
tion on tense, aspect, and speech acts. Sev-
eral alternative approaches and training data
sets are evaluated for both steps and corre-
sponding components of the pipeline, some of
which outperform the original. We extend the
Dialogue-AMR annotation schema to cover a
different collaborative instruction domain and
evaluate on both domains. With very little
training data, we achieve promising perfor-
mance in the new domain, demonstrating the
scalability of this approach.

1 Introduction

We adopt, evaluate, and improve upon the two-step
NLU pipeline, described in Bonial et al. (2020),
which aims to incrementally tame the variation of
incoming natural language that the robot must inter-
pret before responding. For each domain in which
it operates, the robot must determine whether or
not the commands it receives correspond to one
of its executable behaviors, such as MOVEMENT

(along a front-back axis) and ROTATION. The NLU
pipeline leverages AMR to capture the basic con-
tent of the input language, and then a conversion
system adds behavior time, completion status and
speech act information to the original “Standard-
AMR,” and updates the main action relation of
the input AMR to a relation consistently represent-
ing an executable robot behavior (see Fig. 1 for
a Standard and Dialogue-AMR example compari-
son). There are two high-level components of the

NLU pipeline: a Standard-AMR parser and a graph-
to-graph conversion system to convert the Standard-
AMR into Dialogue-AMR. Here, we offer the first
evaluation of both the Dialogue-AMR annotation
schema itself and the components of the pipeline
used to automatically obtain the Dialogue-AMR.
We test not only in the human-robot, search-and-
navigation dialogue domain for which the schema
and pipeline was developed, but also in a somewhat
similar, yet challenging domain: human-human
communication collaboratively building structures
in the virtual gaming environment, “Minecraft.” In
this way, we address the question of what would
happen if we wanted our robot to collaborate on a
new and different task. We refer to this challenge
as “domain extension,” instead of “domain adap-
tation,” as we aim to maintain the coverage of our
original domain while extending to a new one.
(a) (b)
(m / move-01 (c / command-SA
:ARG0 (y / you) :ARG0 (c2 / commander)
:direction (b / back)) :ARG1 (g / go-02 :completable -

:ARG0 r
:direction (b / back)
:time (a / after

:op1 (n / now)))
:ARG2 (r / robot))

Figure 1: Move back in (a) Standard-AMR (parser out-
put), (b) Dialogue-AMR (conversion system output).

After providing background on AMR and
Dialogue-AMR (§2) and detailing our approach
(§3), we report on the human-robot evaluation (§4),
followed by the Minecraft evaluation (§5), and do-
main extension of the conversion system and sub-
sequent evaluation (§6). Our contributions include:
i. Retraining existing Standard-AMR parsers
(3.1) and evaluating on the human-robot (4.1) and
Minecraft domains (5.1);
ii. Evaluating and improving a conversion system
for automatically obtaining Dialogue-AMR (3.2) in
both the robot (4.2) and Minecraft (5.2) domains;
iii. Extending the coverage of the Dialogue-AMR
annotation schema (2.1) to a new domain (6.1)
and evaluation after domain extension (6.3).
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2 Background

To summarize where this work is situated with
respect to the past research on this topic—while
Bonial et al. (2020) details the Dialogue-AMR an-
notation schema and proposes the two-step pipeline
as one way of automatically obtaining Dialogue-
AMR, the technical details of an implementation
of the pipeline itself are not described and no eval-
uation is given. Subsequent research from Abrams
et al. (2020) does provide an initial evaluation of a
baseline version of the graph-to-graph conversion
component of the proposed two-step pipeline; we
adopt and evaluate an updated version of this com-
ponent (described in greater detail in §3.2), how-
ever, our evaluation is not directly comparable to
the evaluation given in Abrams et al. (2020), since
the earlier version of the component was tested on
only a limited subset of the annotation categories
of Dialogue-AMR. Thus, the current paper consti-
tutes the first evaluation of the proposed two-step
pipeline and its components, as well as an evalua-
tion of the extensibility of those components and
the Dialogue-AMR schema itself to a new domain.

2.1 AMR & Dialogue-AMR

The two-step NLU pipeline of Bonial et al. (2020)
leverages AMR, as it abstracts away from some id-
iosyncratic surface variation in favor of a more con-
sistent representation for the same concept. This
serves the purposes of a dialogue system well:
AMR smooths over the nuances of language that
may be unimportant for mapping a particular in-
put to one of the robot’s behaviors. Nonetheless,
“Standard-AMR” does not represent some aspects
of meaning that are critical for the human-robot
dialogue domain, where the robot must be cued
as to what the current dialogue state is, as well
as what the current time and completion status of
various instructions are. To capture this informa-
tion, the NLU pipeline uses the “Dialogue-AMR”
formalism (Bonial et al., 2020), which adds action
time, completion status (i.e., limited tense, aspect)
and speech act information to the Standard-AMR.
Additionally, to facilitate the final step of mapping
to one of the robot’s behaviors, Dialogue-AMR fur-
ther generalizes from the input language, convert-
ing a variety of surface realizations (e.g., turn, ro-
tate, pivot) of a particular action relation into a sin-
gle canonical numbered relation (e.g., turn-01)
to represent one of the robot’s behaviors (e.g., RO-
TATION). Standard-AMR and Dialogue-AMR are

contrasted in Figs. 1 and 2.
In Dialogue-AMR, the content of the Standard-

AMR is nested in a structure that adds the
speech act information as the root predicate
(e.g., command-SA in Figs. 1, 2). Additionally,
the main action from the Standard-AMR (e.g.,
move-01) is converted to one of the action re-
lations (e.g., go-02), termed the “robot-concept
relation” that maps to an executable robot behav-
ior. Information about the time of that behavior is
added (in Fig. 2, the motion event will happen in
the future, after the speaking time of the command;
thus, it is represented as :time after-now).1

Finally, the behavior completion status, a type of
aspect information, is added—whether or not the
instructed behavior is telic or contains a clear end
point (in Fig. 2, indicated by completable +).2

Dialogue-AMR draws upon an inventory of 13
speech acts and 26 robot behaviors or “robot-
concept relations.” Action time and comple-
tion status are integrated into Dialogue-AMR
by adopting the annotation schema of Do-
natelli et al. (2018), which categorizes the
robot behavior as past, present, or future,
and categorizes 4 aspectual labels: :stable
+/-, :ongoing +/-, :complete +/-, and
:habitual +/-. Dialogue-AMR uses the
added category :completable +/- to signal
whether or not a hypothetical event has an end-goal
achievable for the robot.

2.2 Annotated Corpora

We draw from two datasets with Standard-AMR
annotations, collected with the aim of developing
an interactive agent for collaboration in grounded
scenarios. We leverage the DialAMR corpus (Bo-
nial et al., 2020) as training and evaluation data for
the NLU pipeline within the human-robot dialogue
domain. DialAMR encompasses 1122 instances
of The Situated Corpus of Understanding Trans-

1In ongoing work to extend the Dialogue-AMR schema,
we plan to refine the :time annotations to better capture the
possibility that an instructed action could already be under-
way at speaking time, given that we observed that in highly
collaborative dialogue, utterances often overlap with actions.

2End-point information is needed by a robot to execute
a behavior in a low-bandwidth environment where there is
a communications lag, precluding real-time voice teleopera-
tion. What constitutes a fully specified behavior is somewhat
task and robot-specific; for example, a robot with a static,
front-facing camera can assume, as a default, that a picture
taken for a user will be from this perspective unless the user
specifies otherwise, but a robot with a movable, 360-degree
view camera may need to ask the user to provide information
on the desired camera angle.
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actions (SCOUT), annotated with both Standard-
AMR and Dialogue-AMR. SCOUT is comprised
of over 80 hours of dialogues from the robot navi-
gation domain (Marge et al., 2016, 2017), collected
via a “Wizard-of-Oz” experimental design (Riek,
2012), in which participants directed what they
believed to be an autonomous robot to complete
search and navigation tasks. The DialAMR cor-
pus was used in the development of the Dialogue-
AMR schema, as well as training and testing of the
components of the conversion system of Abrams
et al. (2020), which we initially adopt, described
in §3.2. The data from SCOUT selected for the Di-
alAMR corpus includes a randomly selected, con-
tinuous 20-minute experimental trial, which con-
tains 304 utterances (called the Continuous-Trial
subset). This is the held-out test set that we use
throughout our “in-domain” evaluation, as it is rep-
resentative of an ongoing human-robot interaction.

In addition to in-domain evaluation, we extend
evaluation of the Dialogue-AMR schema and NLU
pipeline by annotating and testing on the Minecraft
Dialogue Corpus (Narayan-Chen et al., 2019). This
corpus consists of 509 conversations and game
logs, in which two humans communicate via the
Minecraft gaming interface chat window while col-
laboratively building blocks structures. Standard-
AMR annotations for the Minecraft corpus (Bonn
et al., 2020) were obtained from the developers
via a private data-sharing agreement. Our addi-
tion of Dialogue-AMR annotations to this corpus
is described in §6.1.

3 Approach: Two-Step NLU Pipeline

We adopt and evaluate the two-step NLU pipeline
described in Bonial et al. (2020) and Bonial et al.
(2019), including both a Standard-AMR parser and
a system for converting this into Dialogue-AMR.
We describe our selection of an initial Standard-
AMR parser and conversion system, both of which
we retrain and improve upon, below.

3.1 Standard-AMR Retrained Parser

Standard-AMR provides an initial interpretation of
an utterance to be transferred to the Dialogue-AMR.
Therefore, an effective Standard-AMR parser is
critical for the overall success of the NLU pipeline.
We considered several open-source AMR parsers
as candidates, and selected two recent releases, the
parsers described in Zhang et al. (2019) and Linde-
mann et al. (2019), which both make use of BERT

embeddings (Devlin et al., 2019) and were eval-
uated on AMR releases, thus providing us with
baselines to compare them to each other and to
assess our retrained models against their reported
performances.

We were able to retrain both of these state-of-the-
art AMR parsers on the AMR 2.0 corpus and the
recently released AMR 3.0 corpus (a larger corpus
including the 2.0 data), and then also retrain them
on each of these individual releases of Standard-
AMR together with the Standard-AMR subset of
the DialAMR corpus of over 800 Standard-AMRs,
to adapt them to our human-robot dialogue domain.
We evaluated these particular combinations of train-
ing data because we wanted to explore whether or
not the larger set of data in the AMR 3.0 corpus im-
proved performance on the human-robot dialogue
domain, or if it further washed out the distinctions
from our smaller in-domain corpus. This yielded a
total of eight parsers (see Table 1) for us to evaluate
and select from for the purpose of then including
in the full NLU parsing pipeline.

3.2 Conversion System

The next step in the NLU pipeline is a graph-to-
graph conversion system that uses the input of the
utterance text and the Standard-AMR graph to cre-
ate a Dialogue-AMR graph. We leverage an exist-
ing conversion system, “Abrams+”, and experiment
with improvements to how it classifies the robot-
concept relation in our own updated graph-to-graph
conversion system, “G2G”.

3.2.1 Abrams+ Conversion
We obtained a version of the conversion system
described in Abrams et al. (2020), which had been
updated by that author in two ways: i. expanded
to handle the additional speech acts and robot-
concept relation categories of the full Dialogue-
AMR schema outlined in Bonial et al. (2020), not
all of which were present during the original de-
velopment, and ii. shifted from a Naı̈ve Bayes to a
SVM model for speech act classification. We refer
to this system as “Abrams+”. This graph-to-graph
conversion system implements both rule-based and
classifier-based methods in converting a Standard-
AMR graph into a Dialogue-AMR graph, and lever-
ages the original utterance and the structure of
the Standard-AMR to produce the final Dialogue-
AMR, which includes the speech act, tense and
aspect information, and a designation of the robot-
concept relation. As we use this system as our
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Figure 2: Standard and Dialogue-AMR comparison for
Commander instructing robot Move forward three feet.

starting point for improvement, we will briefly de-
scribe how each of these additions are made in the
order just listed, but refer the reader to Abrams et al.
(2020) for full details.

Following the numbering of the example in
Fig. 2, the first step in the transformation process
employs a SVM model with token unigrams fea-
tures to predict the speech act from the original
utterance—critical information for human-robot
communication that cannot be gleaned from the
Standard-AMR graphs alone.3 After classifica-
tion, the speech act label is then stored as a slot
to be added to the Dialogue-AMR graph and refer-
enced for decision-making processes downstream.
Second, to add behavior time, another classifier—
a Naı̈ve Bayes model using token unigrams as
features—determines if the event corresponding
to the robot behavior pertains to a past, present,
or future action. Third, designation of the robot
behavior is implemented through a keyword-based
approach, which extracts the top root relation (key-
word) in the Standard-AMR and checks it against a
keyword dictionary of similar actions, and maps it
to a single robot-concept relation. Fourth, particu-

3We acknowledge that the interpretation of speech acts,
and indirect speech acts in particular, can be affected by con-
text. Following (Hinkelman and Allen, 1989), we start with
only the linguistic signal in the first phase. Since the restricted
domain is predictable, it is usually sufficient, but further re-
search aims to leverage situational information and dialogue
context where necessary, e.g., to disambiguate an ability ques-
tion from an indirect instruction.

lar combinations of speech act, tense, and the pres-
ence or absence of certain arguments of the robot-
concept relation trigger an aspectual label that cor-
responds to an action’s completion status. In the
final step of transformation process, the system’s
rule-based methods use pattern matching tech-
niques to serve multiple functions, including slot
filling and slot changing (e.g., transforming men-
tions of you to the fixed role of the addressee
in Dialogue-AMR).

3.2.2 G2G: Our Updated Conversion System
While we hypothesize speech act, tense, and aspect
classification may be fairly robust to language in a
new domain, we readily acknowledge that new do-
mains will require the robot to engage in novel be-
haviors, for example, BUILDING in the Minecraft
domain. Thus, although there are many different
aspects of the conversion system that we could
attempt to improve upon (e.g., classifier types, or-
dering of components), we saw an opportunity to
have the most impact on system performance in
multiple domains by focusing on varying the robot-
concept relation classification approach. We de-
scribe three variants (one keyword-based and two
classifier-based) of our updated G2G conversion
system below.

G2G Expanded Keyword-Based Variant We
expanded upon the keyword approach of the
Abrams+ system, which was restricted to search-
ing for keyword matches with the top, root rela-
tion of the Standard-AMR. We found that this re-
striction was problematic because the same root
relation in the Standard-AMR could correspond
to multiple robot-concept relations. Move and go,
generally parsed as move-01 and go-02, are par-
ticularly prevalent and could correspond to either
front-back MOVEMENT or a ROTATION behavior;
both of these were keywords triggering front-back
movement in Abrams+, which therefore incorrectly
categorized utterances like Move right 45 degrees
(a ROTATION behavior). In our expansion, the G2G
keyword variant searches for matches within all
utterance tokens, AMR relations, and arguments.
Furthermore, the keyword dictionary was informed
by a data-driven analysis in which we created his-
tograms of all utterance tokens and Standard-AMR
relations within an instance mapped to a particu-
lar robot-concept relation in the manual Dialogue-
AMR annotations. In this way, we could see which
words and relations occurred with multiple robot-
concept relations, like move-01, and therefore
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remove these from our keyword dictionaries, while
adding keywords that are unique to a particular
robot-concept relation in the data, such as degrees,
which consistently cues a ROTATION behavior.

G2G One-Hot and GloVe Variants We also
experimented with classifier-based approaches to
robot-behavior classification, which we hypothe-
sized may be more efficient to extend to a new
domain than a keyword-based approach. The clas-
sifiers are Support Vector Machines with different
vectorization methods including one-hot encoding
and word embeddings from GloVe. Training data
for the robot-concept relation classifier comes from
examples of each robot-concept category in Bo-
nial et al. (2020), gold-standard labels from the
Continuous-Trial subset utterances 101-305 (those
not used in a held-out test set), and examples pulled
from speech act classifier training bins. There are
a total of 26 labels for this task, and while many
of the movement actions were abundant from these
other sources, some of the minority labels (e.g.,
equip-01, wait-01, clarify-10) required
up-sampling to balance training proportions.

4 In-Domain Evaluation

4.1 In-Domain Standard-AMR Parsing

We evaluated the retrained parsers on the SCOUT
Continuous-trial dataset. We note substantial
improvement in Standard-AMR parsing Smatch
scores on this set when training with DialAMR in
addition to the base training sets (AMR 2.0 and
3.0).4 Results for the AMR parsing models are pre-
sented in Table 1. The noticeably high scores on
the parsers retrained on the AMR 3.0 + DialAMR
is due in large part to the nature of the speakers’
language in the SCOUT corpus and the high lev-
els of similarity in participants’ instructions to the
robot. This underscores how critical evaluation
in another dialogue domain is. We note that, at
the segment level as well as can be seen in the Ta-
ble 1, the Lindemann et al. (2019) parser retrained
with DialAMR data evaluated across-the-board to
higher scores than the comparably retrained Zhang
et al. (2019) parser. Of those two Lindemann et al.
(2019) parsers whose Smatch scores did not differ
significantly, we selected the one trained with the
larger 3.0 dataset with its larger language model as
the first component in the full parsing pipeline.

4Smatch is an evaluation algorithm for scoring AMR
graphs (Cai and Knight, 2013).

Parser Training P R F

Zhang et al.

AMR 2.0 .47 .77 .58
2.0 + DialAMR .73 .77 .75
AMR 3.0 .52 .80 .63
3.0 + DialAMR .88 .89 .89

Lindemann

AMR 2.0 .53 .77 .63
2.0 + DialAMR .92 .94 .93
AMR 3.0 .55 .81 .65
3.0 + DialAMR .91 .95 .93

Table 1: Retrained AMR parser Smatch results on
SCOUT Continuous-trial test set.

4.2 In-Domain Conversion to Dialogue-AMR

To pinpoint the performance of the conversion
system alone (without error introduced by the
automatic Standard-AMR parsing), we report re-
sults with gold-standard, manually assigned input
Standard-AMR parses. Results are summarized
in Evaluation Domain A of Table 2. Focusing ini-
tially on the overall Smatch Precision, Recall, and
F-scores of the conversion system, our updated sys-
tem, G2G, leveraging the classifier with one-hot
vectorization achieves the highest precision (.85)
and F-score (.83) in our domain. All approaches
perform comparably overall, especially given that
Smatch scores can vary slightly (Opitz et al., 2020)
because Smatch is a non-deterministic, greedy hill-
climbing algorithm with a preset, default number
of random restarts (Cai and Knight, 2013).

Drilling down into the accuracy of the individual
component classification tasks, we find accuracy
scores of 1.00 for speech acts, .93 for tense, and
.93 for aspect across all system variants, as these
components are unchanged, and we only alter the
robot-concept classification. Again, we note that
these accuracy scores are extremely high, given
the repetitive nature of the language and preva-
lence of certain types of commands and feedback
assertions. For robot-concept classification, the
G2G expanded keyword approach (.97 accuracy)
does outperform the Abrams+ baseline keyword
method (.94 accuracy). Both keyword approaches
outperform the G2G classifier-based approaches:
one-hot vectorization achieves an accuracy of .90
and GloVe an accuracy of .84. Notably, higher
accuracy on the robot-concept classification task
does not necessarily translate to higher Smatch F-
scores overall. High component accuracy but lower
overall F-Score generally indicates that while the
system is correctly determining all of the informa-
tion being added to the Dialogue-AMR, it is not
always putting these pieces together correctly. In
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Conversion
Variant

Evaluation Domain A:
SCOUT test data

Evaluation Domain B:
Minecraft test data

Smatch
Robot

Concept
Smatch

Robot
Concept

P R F Accuracy P R F Accuracy
Abrams+ .81 .82 .82 .94 .71 .63 .67 .30
G2G-Keyword .82 .82 .82 .97 .72 .64 .68 .32
G2G-One-Hot .85 .82 .83 .90 .73 .62 .67 .20
G2G-GloVe .84 .81 .82 .84 .74 .62 .67 .24
Extended G2G-Keyword .82 .81 .82 .94 .73 .67 .70 .41
Extended G2G-One-Hot .85 .82 .83 .93 .77 .65 .71 .54
Extended G2G-GloVe .84 .81 .82 .89 .76 .65 .70 .45

Table 2: Summary of Smatch scores & Robot-Concept Relation classification accuracy for each variant conversion
system, including our G2G system before and after Minecraft domain extension, tested on SCOUT and Minecraft.

other words, the final step in the conversion sys-
tem, where slots are captured and changed from the
original Standard-AMR structure to the structure
of the Dialogue-AMR, is where some of the error
reflected in Smatch scores stems from.

5 Minecraft Domain Evaluation

In this section, we report on the Minecraft domain
performance of the NLU pipeline with the retrained
Standard-AMR parser, the Abrams+ conversion
system, and our updated G2G system variants prior
to any domain adaptation in order to determine how
vital domain extension really is in somewhat simi-
lar instruction-giving domains. Given that theoreti-
cally speech acts, tense and aspect are somewhat
consistent in language regardless of the domain, we
hypothesize that these features of our annotation
schema and the components of the conversion sys-
tem capturing them will perform reasonably well
on the new Minecraft dialogue domain. However,
the main actions or behaviors involved in the collab-
oration of interlocutors in the original search and
navigation domain are quite different from those of
building virtual structures from blocks in the new
Minecraft domain. We therefore expect that the
conversion system will fail to correctly map many
of the main action predicates in the Minecraft dia-
logues to an executable robot behavior. However,
we accept this as an interesting question of domain
extension for moving our robot to a new task: Is it
more efficient to expand a rule-based approach for
capturing these new behaviors, or to use a classifier-
based approach?

5.1 Minecraft Standard-AMR Parsing
We test the parser selected as the first pipeline com-
ponent (described in §4.1) on Minecraft data, scor-

ing the parser output on 100 sequential instances
of Minecraft dialogue against manually assigned
Standard-AMR annotations.5 The overall Smatch
F-score is .57, with a Precision of .63 and Recall
of .52. Thus, despite the potential similarity in the
two instruction-giving dialogue domains, it is clear
that the automatic parsing performance is signifi-
cantly worse for the Minecraft data than our orig-
inal domain (where the best Smatch F-score was
.93). Error analysis reveals some extremely compli-
cated language phenomena, including dimensions
and frequency expressions capturing, for example,
the repetition of a placement action: For the four
squares that come out from the middle blocks, add
two blue blocks on. Although this indicates that the
parser would benefit from retraining with Minecraft
data,6 in our immediate research we focus on do-
main extension of the conversion system in order
to explore how robust the conversion system might
be to noise in the parser input.

5.2 Minecraft Conversion to Dialogue-AMR

This evaluation compares the conversion system
output against manually assigned Dialogue-AMRs
for the same 100-instance, sequential subset of ut-
terances from the Minecraft corpus used as the
test set for the Standard-AMR parser (see §6.1 for
Dialogue-AMR annotation details); again, we use
gold-standard, manually assigned Standard-AMR
parses as input to the conversion system. Results
are summarized in Evaluation Domain B of Ta-

5The Minecraft AMR corpus includes AMRs for the loca-
tions of blocks (expressed as Cartesian coordinates) as each
movement takes place; because our focus is natural language
dialogue, we removed these instances from our test set.

6Bonn et al. (2020) report an F-score of .66 on a Minecraft
test set after retraining the Zhang et al. (2019) parser on
Minecraft data.
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ble 2. Focusing first on overall Smatch scores, our
updated system variant leveraging the expanded
keyword approach performs slightly better (.68 F-
score) than both the baseline Abrams+ (.67 F-score)
and the classifier-based approaches (.67 F-scores).
Although the scores have dropped about 15 points
from the original domain, they remain comparable
across variants.

When drilling down into the accuracy of the
individual components of the conversion system,
we find that robot concept classification yields the
lowest accuracy scores, with a range of .20-.32.
Among the variant approaches to robot-concept
classification explored, the expanded keyword ap-
proach achieves the highest accuracy. The speech
act and tense have the same accuracy scores across
all versions, .44 and .56, respectively, since these
classifiers are stable within the system variants. In
this evaluation, aspect varies slightly across ap-
proaches as it depends on combinations of speech
act and robot-concept relation slot values—its accu-
racy ranges from .25-.49, with the Abrams+ variant
obtaining the highest result. Thus, we see that our
hypothesis that speech act, tense, and aspect clas-
sification may be fairly robust to a new domain is
partially confirmed: robot-concept classification is
certainly the most challenging with the lowest accu-
racy, but the performance of all components is sig-
nificantly worse than the original domain, suggest-
ing more widespread differences in the language of
the two domains.

6 Domain Extension

Here, we describe the small amount of domain
extension done to tailor our G2G conversion system
to the Minecraft domain, beginning with extensions
of the annotation schema itself.

6.1 Extending Dialogue-AMR Schema

One expert Standard-AMR and Dialogue-AMR an-
notator provided manual Dialogue-AMR annota-
tions to a continuous 100-instance subset of the
Minecraft corpus to serve as a test set. This was
done by manually augmenting the Standard-AMR
release of the Minecraft corpus, maintaining all of
the Standard-AMR annotation choices. Addition-
ally, a separate, continuous 200-instance subset of
the data was annotated with speech acts and the
corresponding robot-concept relations of Dialogue-
AMR to serve as training data for the speech act

classifier and robot-concept relation classification.7

In providing the manual Dialogue-AMR anno-
tation of the Minecraft data, we noted several
changes and additions that needed to be made to
the annotation schema to account for novel con-
cepts arising in the collaborative building domain,
as well as novel dialogue phenomena. First, as ex-
pected, we added agent behaviors that would be
needed for this domain: BUILDING, represented
with the relation build-01 (e.g., What are we
building this time?), and PLACING, represented
with the relation move-01 (e.g., Please place two
red blocks on top of each side...).

Second, we noted novel dialogue phenomena
that we had not observed in the SCOUT data.
Speech acts were often nested in this data, such
that the content of one speech act was not a typical
agent behavior (e.g., a speech act of commanding
a ROTATION behavior), but instead another speech
act. For example, there were frequent requests
for evaluation, often after each building step was
completed: How’s this? and Is this good?8 As a
result, we had to shift our annotation schema and
conversion system in order to allow for speech act
relations to sit where we would normally expect
the robot-concept relation.

Finally, we noted frequent use of the verb need
as an indicator of a less direct command in the
Minecraft data: This will need to be placed as
far right as you can.... This was interpreted by
the interlocutor as a command, i.e., Place this as
far right as you can. Thus, the need relation that
roots the Standard-AMR ultimately mapped to the
command-SA relation of the Dialogue AMR. This
phenomenon has significant ramifications for the
conversion system, as it was generally assumed, for
the SCOUT data, that the utterance and Standard-
AMR provides propositional content cuing the
robot-concept relation, but we did not expect AMR
relations corresponding to the speech act in our

7Contact the first author for Minecraft Dialogue-AMR
annotations used for train/test.

8Following Bunt et al. (2012), Dialogue-AMR speech acts
are distinguished between Information Transfer Functions
and Action Discussion Functions. Thus, while syntactically
questions, cases such as How’s this? are not annotated using
the Dialogue-AMR Question speech act, which is reserved
for questions that obligate the addressee to introduce new in-
formation content into the conversation and demonstrate a
commitment to the answer assertion (Traum, 2003). In con-
trast, these cases obligate the addressee to evaluate the current
state of play while simultaneously providing feedback that
common conversational ground has been achieved with re-
spect to the desired structure. Indeed, common responses such
as Excellent, Builder do not fit with a question interpretation.

179



domain, although plausible (e.g., I command you
to move forward).

6.2 Extending Robot-Concept Classification
We added to our expanded keyword dictionary
to test the effectiveness of a rule-based approach
in domain extension. Only two additional con-
cepts were required, build-01 and move-01,
but these robot concepts are extremely prevalent
in the data. Additionally, in order to test how well
a classifier-based approach would capture new be-
haviors and extend the conversion system to a new
domain, we retrained the robot-concept classifier
on 166 new manually-annotated training instances
of robot concepts from the Minecraft domain. Do-
main extension also included retraining the speech
act classifier on 224 speech acts found in 200 in-
stances of manually annotated Minecraft data.

6.3 Domain-Extended G2G Evaluation
After domain extension, the G2G variant leveraging
the one-hot classifier (.71 F-score) very slightly
outperforms the keyword (.70 F-score) and GloVe
variants (.70 F-score) (again, comparing system
output against manually assigned Dialogue-AMRs
for the continuous, 100-instance Minecraft test set).
Results are summarized in the bottom three rows
of Evaluation Domain B of Table 2. The scores
remain comparable across all three variants, but
we do see improvement overall when comparing
against system variants prior to domain extension.

Turning to analysis of the accuracy of individual
components of the conversion system, the addi-
tional training instances improve speech act clas-
sification (from .44 prior to retraining to .57 after)
and robot-concept classification for the Minecraft
domain. Prior to domain extension, the expanded
keyword variant achieved the highest accuracy for
robot-concept classification (.32), but classifier-
based methods with more training data outper-
form even a domain-extended, data-driven key-
word approach, which achieves an accuracy of .41,
while one-hot vectorization achieves an accuracy
of .54 and GloVe .45. Error analysis reveals that
the keyword-based approach struggles to classify
robot concepts in this domain, in part, because of
language that contains vocatives (e.g. Excellent,
builder)–which triggers a top say-01 relation in
the Standard-AMR graph–and various uses of need,
which trigger a need-01 relation. As noted in the
discussion of domain extension of the annotation
schema (§6.1), both of these root relations do not

cue any domain robot concept, but rather provide
information about speech acts and speaker/listener
roles, which were consistently implicit in our orig-
inal domain. Thus, we are currently updating the
system to allow for certain relations in the Standard-
AMR (e.g., need-01) to cue for or map to partic-
ular speech acts (e.g., command-SA).

This demonstrates a weakness of the keyword-
based approach in general: unforeseen linguistic
phenomena such as vocatives can strongly affect
the accuracy of this approach, while the classi-
fier approach is more robust to these differences
since it considers all tokens in the utterance for
robot-concept relation prediction, thereby avoid-
ing mis-classification due to this kind of “noise” in
the data. When considering our earlier hypothesis
that the classifier-based approach to robot-concept
classification would be more efficient to extend to
a new domain than the keyword-based approach,
the results and error analysis here provide modest
support for this hypothesis. Both approaches are
similarly time-efficient as far as the initial exten-
sion efforts are concerned: the keyword approach
requires manual observation of the data and sub-
sequent selection and addition of keywords to the
dictionaries associated with certain robot-concept
relations, while the classifier approach requires
some additional manual annotation in the new do-
main. However, empirically the classifier-based
approach slightly outperforms the keyword-based
approach in the Minecraft domain, and extending
the keyword-based approach requires additional
changes in traversal of the graph in order to find
the appropriate concept to serve as the keyword
for matching, so the effort necessarily goes beyond
merely selecting and adding keywords.

Turning back to our original SCOUT test set
after Minecraft domain extension (results summa-
rized in the bottom three rows of Evaluation Do-
main A in Table 2), we find that tailoring the con-
version system to Minecraft and expanding the cov-
erage of language that the system can handle has
little negative effect on performance in our orig-
inal domain. We see comparable results for the
classifier-based model using one-hot vectorization,
maintaining an F-score of .83, which was also the
best-performing model for the original domain.

6.4 Full Automatic Pipeline Evaluation
In order to scale up to real-time use, the two-step
NLU pipeline will leverage the retrained automatic
Standard-AMR parser described in §3.1; however,
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up to this point we have reported conversion sys-
tem results using manually obtained, gold-standard
Standard-AMR parses in order to explore the va-
lidity of our conversion system approaches with-
out the noise from parsing. Table 3 summarizes
the performance of the overall best-performing
(across both Smatch scores and component accu-
racy) expanded keyword and one-hot vectorization
classifier G2G variants, after domain extension,
given Standard-AMR input from the parser. The
expanded keyword variant is the best-performing
model with automatic input, but the scores are
close. Although the Smatch F-score has dropped
from .71 (with gold-standard input) to .59, we still
find this to be very encouraging performance, given
the challenges of semantic parsing in a new domain.

Conversion
Variant SCOUT Minecraft

P R F P R F
Ext. G2G
Keyword

.75 .76 .75 .67 .53 .59

Ext. G2G
One-Hot

.83 .80 .81 .62 .52 .57

Table 3: Smatch scores for best-performing domain-
extended (ext.) G2G variants using automatically ob-
tained Standard-AMR input from retrained parser.

7 Related Work

This research is part of a growing body of work
in representing various levels of interpretation in
existing meaning representation frameworks, and
in AMR in particular. We briefly note especially
relevant work here. Bastianelli et al. (2014) present
their Human Robot Interaction Corpus (HuRIC)
following the same Penman Notation (Penman Nat-
ural Language Group, 1989) syntax of AMR, but
significantly altering AMR to use the sense distinc-
tions and semantic role labels of FrameNet (Fill-
more et al., 2012), thereby rendering the use of au-
tomatic parsers trained on AMR data challenging.
Shen (2018) presents a small corpus (266 instances)
of manually annotated AMRs for spoken language
to explore the validity of using AMR for spoken
language understanding, with promising results
but noting that additional data is needed. There
is also a neural AMR graph converter for abstrac-
tive summarization (producing summary graphs
from source graphs) (Liu et al., 2015); however,
neural approaches require substantial training data
in the form of annotated input and output graphs.
The current motivation for the multi-step approach

explored here is to handle a low resource problem,
as we lack sufficient data to experiment with em-
ploying a neural network.

8 Conclusions & Future Work
This paper evaluates and improves upon a two-step
NLU pipeline that gradually tames the variation
of language so that it can be understood and acted
upon by a robot with a limited repertoire of do-
main concepts and behaviors. After enumerating
the extensions needed for the annotation schema
itself and contributing a dataset of Dialogue-AMR
for the new Minecraft collaborative dialogue do-
main, we achieve promising results with roughly
200 instances of training data.

We have integrated our updated pipeline into a
software stack for a physical robot and are now per-
forming a series of experiments where we use the
same dialogue-management system, but vary the
NLU component in order to compare task success
with the two-step NLU pipeline against a baseline
NLU system with a simple syntactic parser. We
hypothesize that the NLU pipeline described here,
and the deeper semantics of Dialogue-AMR specif-
ically, will be especially advantageous for tracking
and grounding user utterances involving corefer-
ence (e.g., Go to the sign and send a picture of it.),
light verb constructions, which AMR represents
identically to parallel synthetic verbs (e.g., make a
left turn; turn left), negation (e.g., no, not the door
on the right, the left!), and complex, nested prepo-
sitions (e.g., move through the doorway in front
of you on the left)—all utterances where a simple
syntactic parse has been found to lack information
needed for interpretation of the intent and ground-
ing. The extrinsic evaluation will also provide an
opportunity to explore whether or not the conver-
sion system variant with the best overall Smatch
scores corresponds to the best real-world perfor-
mance, or if we should consider other metrics, such
as S2match (Opitz et al., 2020) and SemBleu (Song
and Gildea, 2019). As our results did not demon-
strate a clear “best” rule-based, keyword or classi-
fier approach to domain extension, we will continue
to experiment with all three variants and consider
which is the most time-efficient to extend, either by
adding to the keyword dictionary or adding annota-
tions. Overall, we are optimistic that the semantic
representation of Dialogue-AMR, which provides
a deeper understanding of both what a person said
and what they really meant in the conversational
context, will enhance human-robot collaboration.
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Abstract
“Episodic Logic: Unscoped Logical Form”
(EL-ULF) is a semantic representation cap-
turing predicate-argument structure as well
as more challenging aspects of language
within the Episodic Logic formalism. We
present the first learned approach for parsing
sentences into ULFs, using a growing set
of annotated examples. The results provide
a strong baseline for future improvement.
Our method learns a sequence-to-sequence
model for predicting the transition action
sequence within a modified cache transition
system. We evaluate the efficacy of type
grammar-based constraints, a word-to-symbol
lexicon, and transition system state fea-
tures in this task. Our system is available
at https://github.com/genelkim/

ulf-transition-parser. We also present
the first official annotated ULF dataset at
https://www.cs.rochester.edu/u/

gkim21/ulf/resources/.

1 Introduction

EL-ULF was recently introduced as a semantic
representation that accurately captures linguistic
semantic structure within an expressive logical for-
malism, while staying close to the surface language,
facilitating annotation of a dataset that can be used
to train a parser (Kim and Schubert, 2019). The
goal is to overcome the limitations of fragile rule-
based systems, such as the Episodic Logic (EL)
parser used for gloss axiomatization (Kim and
Schubert, 2016) and domain-specific ULF parsers
used for schema generation and dialogue sys-
tems (Lawley et al., 2019; Platonov et al., 2020).
EL’s rich model-theoretic semantics enables de-
ductive inference, uncertain inference, and natural
logic-like inference (Morbini and Schubert, 2009;
Schubert and Hwang, 2000; Schubert, 2014); and
the unscoped version, EL-ULF, supports Natural
Logic-like monotonic inferences (Kim et al., 2020)

(i.pro ((pres want.v)
(to (dance.v

(adv-a (in.p (my.d ((mod-n new.a)
(plur shoe.n)))))))))

Figure 1: An example ULF for the sentence, “I want to
dance in my new shoes”.

and inferences based on some classes of entail-
ments, presuppositions, and implicatures which are
common in discourse (Kim et al., 2019). The lack
of robust parsers have prevented large scale exper-
iments using these powerful representations. We
will refer to EL-ULF as simply ULF in the rest of
this paper.

In this paper we present the first system that
learns to parse ULFs of English sentences from
an annotated dataset, and provide the first official
release of the annotated ULF corpus, whereon our
system is trained. We evaluate the parser using
SEMBLEU (Song and Gildea, 2019) and a mod-
ified version of SMATCH (Cai and Knight, 2013),
establishing a baseline for future work.

An initial effort in learning a parser produc-
ing a representation as rich as ULF is bound to
face a data sparsity issue.1 Thus a major goal in
our choice of a transition-system-based parser has
been to reduce the search space of the model. We
investigate three additional methods of tackling
this issue: (1) constraining actions in the decod-
ing phase based on faithfulness to the ULF type
system, (2) using a lexicon to limit the possible
word-aligned symbols that the parser can generate,
and (3) defining learnable features of the transition
system state.

2 Unscoped Logical Form

Episodic Logic is an extension of first-order
logic (FOL) that closely matches the form and ex-

1The training set in our initial release is only 1,378 sen-
tences.
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pressivity of natural language, using reifying op-
erators to enrich the domain of basic individuals
and situations with propositions and kinds, keeping
the logic first-order. It also uses other type-shifters,
e.g., for mapping predicates to modifiers, and al-
lows for generalized quantifiers (Schubert, 2000).
ULF fully specifies the semantic type structure of
EL by marking the types of the atoms and all of
the predicate-argument relationships while leaving
operator scope, anaphora, and word sense unre-
solved (Kim and Schubert, 2019). ULF is the crit-
ical first step to parsing full-fledged EL formulas.
Types are marked on ULF atoms with a suffixed
tag resembling the part-of-speech (e.g., .v, .n, .pro,
.d for verbs, nouns, pronouns, and determiners, re-
spectively). Names are instead marked with pipes
(e.g. |John|) and a closed set of logical and macro
operators have unique types and are left without a
type marking. Each suffix denotes a set of possible
semantic denotations, e.g. .pro always denotes an
entity and .v denotes an n-ary predicate where n
can vary. The symbol without the suffix or pipes is
called the stem.

Type shifters in ULF maintain coherence of the
semantic type compositions. For example, the type
shifter adv-a maps a predicate into a verbal predi-
cate modifier as in the prepositional phrase “in my
new shoes” in Figure 1, as opposed to its predica-
tive use “A spider is in my new shoes”.

The syntactic structure is closely reflected in
ULF even under syntactic movement through the
use of rewriting macros which explicitly mark these
occurrences and upon expansion make the exact se-
mantic argument structure available. Also, further
resembling syntactic structure, ULFs are trees. The
operators in operator-argument relations of ULF
can be in first or second position, disambiguated
by the types of the participating expressions. This
further reduces the amount of word reordering be-
tween English and ULFs. The EL type system only
allows function application for combining types,
〈A,B〉, A → B, much like Montagovian seman-
tics (Montague, 1970), but without type-raising.

3 Background

Currently, there is semantic parsing research occur-
ring on multiple representational fronts, which is
showcased by the cross-framework meaning rep-
resentation parsing task (Oepen et al., 2019). The
key differentiating factor of ULF from other mean-
ing representations is the model-theoretic expres-

sive capacity. To highlight this, here are a few
limitations of notable representations: AMR (Ba-
narescu et al., 2013a) neglects issues such as ar-
ticles, tense, and nonintersective modification in
favor of a canonicalized form that abstracts away
from the surface structure; Minimal Recursion Se-
mantics (Copestake et al., 2005) captures meta-
level semantics for which inference systems can-
not be built directly based on model-theoretic no-
tions of truth and entailment; and extant seman-
tic parsers for DRSs generate FOL-equivalent LFs,
thus precludes proper treatment of phenomena such
as generalized quantifiers, modification, and reifica-
tion. Due to space limitations, we refer to Kim and
Schubert (2019) for an in-depth description and
motivation of ULF, including comparisons to other
representations. We also refer to Schubert (2015)
which places EL—the antecedent of ULF—in a
broad context.

Our ULF parser development draws inspiration
from the body of semantic parsing research on
graph-based formalism of natural language, in par-
ticular, the recent advances in AMR parsing (Peng
et al., 2018; Zhang et al., 2019a). The core or-
ganization of our parser is based on Peng et al.
(2018), which uses a sequence-to-sequence model
to predict the transition action sequence for a cache
transition system with transition system features
and hard attention alignment.

There are many transition-based parsers that
were developed for parsing meaning representa-
tions (Zhang et al., 2016; Buys and Blunsom, 2017;
Damonte et al., 2017; Hershcovich et al., 2017).
These are mainly based on what’s called an arc-
eager parsing method, termed by Abney and John-
son (1991). Arc-eager parsing greedily adds edges
between nodes before full constituents are formed,
which keeps the partial graph as connected as possi-
ble during the parsing process (Nivre, 2004). They
modify arc-eager parsing in various ways to gen-
eralize to the graph structures. Our transition sys-
tem can be considered a modification of bottom-
up arc-standard parsing due to restrictions on arc
formation. While this leads to a longer action se-
quence for parsing, the parser’s access to complete
constituents allows promotion-based symbol gener-
ation for unary operators such as type shifters and
standard bottom-up type analysis for constrained
parsing.
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Figure 2: State transition diagram of the node genera-
tive transition system. Nodes in the figure are phases
and edges are actions. An unlabeled edge means that
this state transition occurs no matter what action is
taken in that phase. The transition system starts in the
GEN phase.

4 Our Transition System

Our transition system is a modification of the cache
transition system (Gildea et al., 2018) which has
been shown to be effective in AMR parsing (Peng
et al., 2018). The distinctive aspect of our ver-
sion is that the transition system generates nodes
that are derived, but distinct, from the input se-
quence. We call it a node generative transition sys-
tem. This eliminates the two-stage parsing frame-
work of Peng et al. (2018). Our transition system
also restricts the parses to be bottom-up to enable
node generation and decoding constraints by the
available constituents since ULF has an bottom-up
compositional type system. The transition parser
configuration is

C = (σ, η, β,Gp) (1)

where σ is the stack, η is the cache, β is the buffer,
andGp is the partial graph. The parser is initialized
with ([],[$, . . . , $],[w1, . . . , wn],∅), that is an empty
stack, the cache with null values ($), the buffer with
the input sequence of words, where each word is a
token, lemma, POS tuple, wi = (ti, li, pi), and an
empty partial graph, Gp = (Vp, Ep), where Vp is
ordered. A vertex, vi = (si, ai) ∈ V , is a pair of
a ULF symbol si, and its alignment ai—the index
of the word from which si was produced. We will
refer to the leftmost element in β as wnext.

While the size of the cache is a hyperparameter
that can be set for the cache transition parser, we
restrict the cache size to 2 in order to keep the or-
acle simple despite the newly added actions. This
means that only tree structures can be parsed. In
describing the transition system, we differentiate

between phases and actions. Phases are classes
of states in the transition system and the actions
move between states. Figure 2 shows the full state
transition diagram and shows how the phases dic-
tate which actions can be taken and how actions
move between phases. Actions may take variables
to specify how to move into the next phase. Phases
also determine which features go into the deter-
mining the next action. We will write phases in
small caps (e.g. GEN) and actions in bold (e.g.
TokenGen) for clarity.

The GEN and PROMOTE phases are novel to
our transition system. The GEN phase generates
graph vertices that are transformations of the buffer
values. This allows us to put words of the input
sentence in β instead of a pre-computed ULF atom
sequence. The PROMOTE phase enables context-
sensitive symbol generation. It generates unaligned
symbols in the context of an existing constituent in
the partial graph. (Use of logical operators without
word alignments only makes sense with respect
to something for the operators to act on.) We now
describe each of the actions in the transition system.
The following are parser actions that were almost
directly inherited from the vanilla cache transition
parser.

• PushIndex(i) pushes (i, v) onto σ, where v is
the vertex currently at index i of η. Then it moves
the vertex generated by the prior GEN phase to
index i in η.

• Arc(i, d, l) forms an arc with label l in direction
d (i.e. left or right) between the vertex at index i
of the cache and the rightmost vertex in the cache.
The NoArc action is used if no arc is made.

• Pop pops (i, v) from σ where i is the index of η
which v came from. v is placed at index i of η
and shifts the appropriate elements to the right.

We introduce two sets, Sp and Ss, which define the
vocabulary of the two unaligned symbol generation
actions: PromoteSym and SymGen, respectively.
Sp consists of logical and macro operators that
do not align with English words. Ss consists of
symbols that could not be aligned in the training
set and are not members of Sp.

4.1 Promotion-based Symbol Generation
PROMOTE includes a subordinate PROMOTEARC

phase for modularizing the parsing decision. The
following parsing actions are in this phase.

• PromoteSym(sp) generates a promotion symbol,
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Stack Cache Buffer Edges Actions taken
[] [$, $] [Do, you, want, to, see, me, ?] ∅ —
[$0] [$, do.aux-s] [you, want, to, see, me, ?] ∅ Lemma(aux-s); Push(0)
[$0] [$, pres] [you, want, to, see, me, ?] E1 NoArc; PSym(pres); PArc(arg0)
[$0] [$, χ0] [you, want, to, see, me, ?] E2 NoArc; PSym(χ0); PArc(ι)
[$0, $0] [χ0, you.pro] [want, to, see, me, ?] E2 NoArc; NoP; Lemma(pro); Push(0)
[$0] [$, χ0] [want, to, see, me, ?] E3 Arc(0, R, arg0); NoP; Pop
[$0, $0] [χ0, want.v] [to, see, me, ?] E3 NoArc; NoP; Lemma(v); Push(0)
[$0, $0, χ0

0] [want.v, to] [see, me, ?] E3 NoArc; NoP; Lemma(∅); Push(0)
[$0, $0, χ0

0, want.v0] [to, see.v] [me, ?] E3 NoArc; NoP; Lemma(v); Push(0)
[$0, $0, χ0

0, want.v0, to0] [see.v, me.pro] [?] E3 NoArc; NoP; Token(pro); Push(0)
[$0, $0, χ0

0, want.v0] [to, see.v] [?] E4 Arc(0, R, arg0); NoP; Pop
[$0, $0, χ0

0] [want.v, to] [?] E5 Arc(0, R, arg0); NoP; Pop
[$0, $0] [χ0, want.v] [?] E6 Arc(0, R, arg0); NoP; Pop
[$0] [$, χ0] [?] E7 Arc(0, R, arg1); NoP; Pop
[$0] [$, χ1] [?] E8 NoArc; PSym(χ1); PArc(ι)
[$0, $0] [χ1, ?] [] E8 NoArc; NoP; Lemma(∅); Push(0)
[$0] [$, χ1] [] E9 Arc(0, R, arg0); NoP; Pop
[] [$, $] [] E9 NoArc; NoP; Pop

Figure 3: Example run of the transition system running on the sentence “Do you want to see me?” from
our parser. The left four columns show the parser configuration after taking the actions shown in the
rightmost column. We make the following modifications for brevity. When a WordGen action takes
place, it is always followed by one of Name, Lemma, or Token and then a Suffix(e) action. Thus we
omit the WordGen and Suffix actions and transfer the argument of Suffix to the Name, Lemma, or To-
ken action. “Promote” is abbreviated as “P” (e.g., PromoteSym as PSym) and PushIdx as Push. Stack
item indices (i, v) are written as vi instead. χ and ι stand for COMPLEX and INSTANCE which are
the special node and edge labels, respectively, for constructing non-atomic ULF operators in penman for-
mat. Edge labels arg0 and arg1 simply indicate the argument position in ULF. En = {ei | 0 ≤ i < n}
where e0 = (do.aux-s

arg0←−−− pres), e1 = (pres ι←− χ0), e2 = (χ0
arg0−−−→ you), e3 = (see.v

arg0−−−→ me.pro),

e4 = (to
arg0−−−→ see.v), e5 = (want.v

arg0−−−→ to), e6 = (χ0
arg0−−−→ want.v), e7 = (χ0

ι←− χ1), e8 = (χ1
arg0−−−→ ?).

sp ∈ Sp, appends the vertex (sp,NONE) to Vp,
and proceeds to the PROMOTEARC phase.

• NoPromote skips the PROMOTE phase and pro-
ceeds to the POP phase.

• PromoteArc(l) makes an arc from the last added
vertex, vp, to the vertex at the rightmost position
of the cache, vηr , by adding (vp, vηr , l) to Ep. vp
then takes the place of vηr in the cache and vηr
is no longer accessible by the transition system.
The system proceeds to the ARC phase.

4.2 Sequential Symbol Generation
We replace the Shift action with the GEN phase to
generate ULF atoms based on the tokenized text
input. This phase allows the parser to generate a
symbol using wnext as a foundation, or generate an
arbitrary symbol that is not aligned to any word
in β. GEN includes subordinate phases WORD-
GEN, LEMMAGEN, TOKENGEN, and NAMEGEN

for modularizing the decision process.

• WordGen proceeds to WORDGEN phase, in
which the following actions are available.
1. Name proceeds to the NAMEGEN phase.
2. Lemma proceeds to the LEMMAGEN phase.

3. Token proceeds to the TOKENGEN phase.
• Suffix(e) is the only action available in the

NAMEGEN, LEMMAGEN, and TOKENGEN

phases. It generates a symbol s consisting of
a stem and suffix extension e from wnext. In the
NAMEGEN phase, the stem is tnext with surround-
ing pipes; in the TOKENGEN phase, the stem is
tnext; and in the LEMMAGEN phase, the stem is
lnext. (s, i) where i is the index of wnext is added
to Vp and we move forward one word in β. The
system proceeds to the PUSH phase.

• SymGen(s) adds an unaligned symbol
(s,NONE) to Vp and proceeds to the PUSH

phase.
• SkipWord skips word in β and returns to the

GEN phase.
• MergeBuf takes wnext and merges it with the

word after itwnext+1. This is stored at the front of
the buffer as a pair (vβ, vβ+1). This forms a sin-
gle stem with a space delimiter in the NAMEGEN

phase and an underscore delimiter in the LEM-
MAGEN and TOKENGEN phases. The system
returns to the GEN phase. This is used to handle
multi-word expressions (e.g. “had better”).
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The transition system begins in the GEN phase.

4.3 Oracle Extraction Algorithm
In order to train a model of the parser actions, we
need to extract the desired action sequences from
gold graphs. We modify the oracle extraction al-
gorithm for the vanilla cache transition parser, de-
scribed by Gildea et al. (2018). The oracle starts
with a gold graphGg = (Vg, Eg) and maintains the
partial graphGp = (Vp, Ep) of the parsing process,
where Vg is sequenced by the preorder traversal of
Gg. The oracle maintains snext, the symbol in the
foremost vertex of Vg that has not yet been added to
Gp. The oracle begins with a transition system con-
figuration, C, initialized with the input sequence,
w1, ..., wn.

The oracle is also provided with an approximate
alignment, A = {(wi, vj) | 1 ≤ i ≤ n, 1 ≤ j ≤
m}, between the input sequence, wi:n, to the nodes
in the gold graph, Vg, |Vg| = m, which is generated
with a greedy matching algorithm. The matching
algorithm uses a manually-tuned similarity heuris-
tic built on the superficial similarity of English
words, POS, and word order to the stems, suffixes,
and preorder positions of the corresponding ULF
atoms. A complete description of the alignment
algorithm is in appendix B. This alignment is not
necessary to maintain correctness of the oracle, but
it is used to cut the losses when the input words be-
come out of sync with the gold graph vertex order.2

Steps 5-7 of the GEN phase uses the alignments
to identify whether the buffer or the vertex order
is ahead of the other and appropriately sync them
back together.

The oracle uses the following procedure, bro-
ken down by parsing phase, to extract the action
sequence to build the Gp = Gg with C and A.

• GEN phase: Let b = Stem(snext), e =
Suffix(snext), n = IsName(snext).3

1. If n and tnext = b, NameGen(e)
2. If not n and tnext =i b, TokenGen(e)
3. If not n and lnext =i b, LemmaGen(e)
4. MergeBuf if
n and Pre(Concat(tnext, “ ”, tnext+1), b) or

2When the words become out-of-sync with the gold graph
the oracle must rely on SymGen to generate the graph nodes.
Since SymGen requires selecting the correct value out the
entire vocabulary of ULF atoms, it is much more difficult to
predict correctly than NameGen, TokenGen, and LemmaGen
which require only selecting the correct type tag.

3= is string match, =i is case-insensitive string match, Pre
determines whether its first argument is a prefix of the second
and Prei is the case-insensitive counterpart.

not n and Prei(Concat(lnext, “ ”, lnext+1), b)
or
not n and Prei(Concat(tnext, “ ”, tnext+1), b)

5. If (wi, vnext) ∈ A for wi before wnext or
vnext ∈ Ss, then SymGen(vnext)

6. If (wnext, vj) ∈ A for vj which comes after
vnext or vj ∈ Vp, then SkipWord.

7. Otherwise, SymGen(vnext)
Step 5-7 allow the oracle to handle the generation
of symbols that are not in word order, by skip-
ping any words that come earlier than the symbol
order; and generating symbols that cannot be
aligned with SymGen for any reason.

• PUSH phase: The push phase of the vanilla
cache transition parser’s oracle—viz., choosing
the cache position whose closest edge into β is
farthest away—is extended to account not only
for direct edges, but also for paths that include
only unaligned-symbols.4

• ARC phase: The vanilla cache transition sys-
tem’s rule of generating the ARC action for
any edge, e ∈ Eg ∧ e /∈ Ep between the
rightmost cache position and the other posi-
tions, is extended to also require the child
vertex to be fully formed. That is, for
the vertex vchild, |descendants(vchild, Gg)| =
|descendants(vchild, Gp)|. This enforces bottom-
up parsing, which is necessary for both the
promotion-based symbol generation and type
composition constraint.

• PROMOTE phase: If the vertex in
the rightmost cache position, vηr , is
fully formed (|descendants(vηr , Gg)| =
|descendants(vηr , Gp)|) and has a parent node in
the PROMOTE lexicon (label(parent(vηr , Gg)) ∈
Sp), then the parser generates the action
sequence PromoteSym(parent(vr, Gg)), Pro-
moteArc(lp) where lp is the label for the
edge from the parent of vηr to vηr in Gg
(EdgeLabel(parent(vηr , Gg), vηr , Gg)).

5 Model

Our model has three basic components: (1) a word
sequence encoder, (2) a ULF atom sequence en-
coder, and (3) an action decoder, all of which are

4The motivation for this is that if only unaligned symbols
exist in the path, the full path can be made without changing
the relative status of any other node in the transition system.
Let v1 and v2 be the end points of the path. With v1 in the
cache and the word aligned to v2, wv2 = wnext, SymGen
and PROMOTE can generate all nodes in the path without
interacting with the rest of the transition system.
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Figure 4: The model consists of a sentence-encoding BiLSTM, a symbol-encoding LSTM, and an action-decoding
LSTM. New symbols generated in the GEN and PROMOTE phases of the transition system are appended to the
symbol sequence. The transition system supplies hard attention pointers that select the relevant word and symbol
embeddings. These are concatenated with the transition state feature vector and supplied as input to the action
decoder, which predicts the next action that updates the transition system.

LSTMs. During decoding, the transition system
configuration, C, is updated with decoded actions
and used to organize the action decoder inputs us-
ing the sequence encoders. The system models the
following probability

P (a1:q|w1:n) =

q∏

t=1

P (at|a1:t−1, w1:n; θ) (2)

where a1:q is the action sequence, w1:n is the input
sequence, and θ is the set of model parameters.
Figure 4 is a diagram of the full model structure.

5.1 Word and Symbol Sequence Encoders

The input word embedding sequence w1:n is en-
coded by a stacked bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997) with Lw layers. Each
word embedding sequence is a concatenation of em-
beddings of GloVe (Pennington et al., 2014), lem-
mas, part-of-speech (POS) and named entity (NER)
tags, RoBERTa (Liu et al., 2019), and features
learned by a character-level convolutional neural
network (CharCNN, Kim et al., 2016). As ULF
symbols are generated during the parsing process,
the symbol embedding sequence s1:m, which is
the concatenation of a symbol-level learned embed-
ding and the CharCNN feature vector over the sym-
bol string, is encoded by a stacked unidirectional
LSTM of Ls layers.

5.2 Hard Attention
Peng et al. (2018) found that for AMR parsing with
cache transition systems, a hard attention mecha-
nism, tracking the next buffer node position and
its aligned word, works better than a soft attention
mechanism for selecting the embedding used dur-
ing decoding. We take this idea and modify the
tracking mechanism to find the most relevant word,
wi, and symbol, sj , for each phase.

• ARC and PROMOTE*: The symbol sj in the right-
most cache position and aligned word wi.

• PUSH: The symbol sj generated in the previous
action and aligned word wi.

• Otherwise: The last generated symbol sj and the
word wi in the leftmost β position.

This selects the output sequences hLw
wi

and hLs
sj

from the encoders for the action decoder.

5.3 Transition State Features
Similar to Peng et al. (2018), we extract features
from the current transition state configuration, C,
to feed into the decoder as additional input in the
form of learned embeddings

ef (C) = [ef1(C); ef2(C); ...; efl(C)] (3)

where efk(C) (k = 1, ..., l) is the k-th feature em-
bedding, with l total features. Our features, which
are heavily inspired by Peng et al. (2018), are as
follows.
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• Phase: An indicator of the phase in the transition
system.

• POP, GEN features: Token features5 of the right-
most cache position and the leftmost buffer posi-
tion; the number of rightward dependency edges
from the cache position word and the first three
of their labels; and the number of outgoing ULF
arcs from the cache position and their first three
labels.

• ARC, PROMOTE features: For the two cache po-
sitions, their token features and the word, sym-
bol6, and dependency distance between them;
furthermore, their first three outgoing and single
incoming dependency arc labels and their first
two outgoing and single incoming ULF arc la-
bels.

• PROMOTEARC features: Same as the PROMOTE

features but for the rightmost cache position use
the node/symbol generated in the preceding Pro-
moteSym action.

• PUSH features: Token features for the leftmost
buffer position and all cache positions.

5.4 Action Encoder/Decoder
The action sequence is encoded by a stacked uni-
directional LSTM with La layers where the action
input embeddings, ha1:q are concatenations of the
word and symbol encodings.

hak = [hLw
wi

;hLs
sj ; ef (C)] (4)

The state features hLa
ak

are then decoded into pre-
diction weights with a linear transformation and
ReLU non-linearity.

6 Parsing

The model is trained on the cross-entropy loss of
the model probability (2) using the oracle action
sequence. Both training and decoding are limited
to a maximum action length of 800. For the training
set the oracle has an average action length of 134
actions and a maximum action length of 1477.

6.1 Constrained Decoding
We investigate two methods of constraining the
decoding process with prior knowledge of ULF to
overcome the challenge of using a small dataset.
These automatic methods filter out clearly incorrect

5The token features are the ULF symbol and the word,
lemma, POS, and NER tags of the aligned index of the input.

6Symbol distance is based on the order in which the sym-
bols are generated by the parser.

choices at the cost of some decoding speed and
further tailor the parser to ULFs.

ULF Lexicon To improve symbol generation,
we introduce a lexicon with possible ULF atoms
for each word. Nouns, verbs, adjectives, adverbs,
and preposition entries are automatically converted
from the Alvey lexicon (Carroll and Grover, 1989)
with some manual editing. Pronouns, determiners,
and conjunctions entries are extracted from Wik-
tionary7 category lists. Auxiliary verbs entries are
manually built from our ULF annotation guidelines.
When generating a word-aligned symbol the stem
is searched in the lexicon. If the string is present in
the lexicon, only corresponding symbols in the lex-
icon are allowed to be generated. Since the lexicon
is not completely comprehensive, this constraint
may lead to some additional errors.

Type Composition The type system constraint
adds a list of types, Tv, to accompany |Vp| (the
vertices of the partial graph), which stores the ULF
type of each vertex. When a vertex, v, is added
to Gp, its ULF type, tv is added to Tv. This ULF
type system is generalized with placeholders for
macros and each stage in processing them. When
the parser predicts an arc action during decoding,
the types source, ts, and target, tt nodes are run
through a type composition function. If the types
can compose, tc = (ts.tt), tc 6= ∅, the type of the
source node is replaced with tc. Otherwise, the
resulting C is not added to the search beam.

7 Experiments

We ran our experiments on a hand-annotated
dataset of ULFs totaling 1,738 sentences (1,378
train, 180 dev, 180 test). The dataset is a mixture of
sentences from crowd-sourced translations, news
text, a question dataset, and novels. The distri-
bution of sentences leans towards more questions,
requests, clause-taking verbs, and counterfactuals
because a portion of the dataset comes from the
dataset used by Kim et al. (2019) for generating
inferences from ULFs of those constructions.

The data is split by segmenting the dataset into
10 sentence segments and distributing them in a
round-robin fashion, with the training set receiving
eight chunks in each round. This splitting method
is designed to allow document-level topics to dis-
tribute into splits while limiting any performance
inflation of the dev and test results that can result

7https://en.wiktionary.org/
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when localized word-choice and grammatical pat-
terns are distributed into all splits.

Kim and Schubert (2019) found that interannota-
tor agreement (IA) on ULFs using the EL-SMATCH

metric (Kim and Schubert, 2016) is 0.79.8 We add
a second pass to further reduce variability in our
annotations.9 Further details about the dataset are
available in appendix A and the complete annota-
tion guidelines are available as part of the dataset.

ULF-AMR In order to use parsing and evalu-
ation methods developed for AMR parsing (Ba-
narescu et al., 2013a), we rewrite ULFs in penman
format (Kasper, 1989) by introducing a node for
each ULF atom and generating left-to-right arcs in
the order that they appear (:ARG0, :ARG1, etc.),
assuming the leftmost constituent is the parent. In
order to handle non-atomic operators in penman
format which only allows atomic nodes, we intro-
duce a COMPLEX node with an :INSTANCE edge
to mark the identity of the non-atomic operator.

Setup We evaluate the model with SEM-
BLEU (Song and Gildea, 2019), a metric for pars-
ing accuracy of AMRs (Banarescu et al., 2013b).
This metric extends BLEU (Papineni et al., 2002)
to node- and edge-labeled graphs. We also mea-
sure EL-SMATCH, a generalization of SMATCH to
graphs with non-atomic nodes, for analysis of the
model since it has F1, precision, and recall compo-
nents.

The tokens, lemmas, POS tags, NER tags, and
dependencies are all extracted using the Stanford
CoreNLP toolkit (Manning et al., 2014). In all
experiments the model was trained for 25 epochs.
Starting at the 12th epoch we measured the SEM-
BLEU performance on the dev split with beam
size 3. Hyperparameters were tuned manually on
the dev split performance of a smaller, prelimi-
nary version of the annotation corpus. We use
RoBERTa-Base embeddings with frozen parame-
ters, 300 dimensional GloVe embeddings, and 100
dimensional ti, li, pi, action, and symbol embed-
dings. The word encoder is 3 layers. The symbol
encoder and action decoder are 2 layers. Experi-
ments were run on a single NVIDIA Tesla K80 or
GeForce RTX 2070 GPU. Training the full model

8cf. AMR is reported to have about 0.8 IA using the
SMATCH metric (Tsialos, 2015)

9We did not measure IAA on our dataset and take the prior
report as an lower-end estimate given the similarity of our
annotations methods and our additional review phase. Our
annotation process was collaborative and result in a single
annotation per sentence so IAA cannot be measured.

Figure 5: Ablation tests with standard deviation error
bars of 5 runs of different random seeds.

takes about 6 hours. The full tables of results and
default parameters are available in appendix D.

7.1 Results

Ablations In our ablation tests, the model from
the training epoch with the highest dev set SEM-
BLEU score is evaluated on the test split with beam
size 3.10 The results are shown in Figure 5.

CharCNN and RoBERTa are the least important
components—to the point that we cannot conclude
that they are of any benefit to the model due to the
large overlap in the performance of models with
and without them. The GloVe, POS, and feature
embeddings are more important. The importance
of POS is not surprising given the tight correspon-
dence between POS tags and ULF type tags.

Model SEMBLEU EL-SMATCH

(Zhang et al., 2019a) 12.3 34.3
(Cai and Lam, 2020) 34.2 52.6
Our best model 47.4 59.8

Table 1: Comparison to AMR parsers.

Comparison to Baselines We compare our
parser performance against two AMR parsers with
minimal AMR-specific assumptions. The ma-
jor recent efforts by the research community in
AMR parsing make these parsers strong baselines.
Specifically, we compare against the sequence-to-
graph (STOG) parser (Zhang et al., 2019a) and Cai
and Lam’s (2020) graph-sequence iterative infer-
ence (GS) parser.11 The ULF dataset is prepro-
cessed for these parsers by stripping pipes from
names to support the use of a copy mechanism
and splitting node labels with spaces into multiple
nodes to make the labels compatible with their data

10Our initial experiments re-evaluated the top-5 choices
with a beam size of 10, but we found that the performance
consistently degraded and abandoned this step.

11We do not compare our model against the existing rule-
based ULF parsers since they are domain specific and cannot
handle the range of sentences that appear in our dataset.
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pipelines. Table 1 shows the results.12 The STOG
parser fares poorly on both metrics. A review of
the results revealed that the parser struggles with
node prediction in particular. This is likely the re-
sult of the dataset size not properly supporting the
parser’s latent alignment mechanism.13 The GS
parser performs better than the STOG parser by a
large margin, but is still far from our parser’s per-
formance. The GS parser also struggles with node
prediction, but is more successful in maintaining
the correct edges in spite of incorrect node labels.

Investigating the dev set results reveals that our
parser is quite successful in node generation, since
by design the node generation process reflects the
design of ULF atoms. Despite the theoretical capac-
ity to generate node labels without a corresponding
uttered word or phrase, our parser only does this
for common logical operators such as reifiers and
modifier constructors. The GS parser on the other
hand, is relatively successful on node labels with-
out uttered correspondences, correctly generating
the elided “you” in imperatives and the logical op-
erators ! and multi-sent which indicate imperatives
and multi-sentence annotations, respectively. Our
parser also manages to correctly generate a variety
of verb phrase constructions, but fails to recog-
nize reified infinitives as arguments of less frequent
clausal verbs such as “neglect”, “attach”, etc. (as
opposed to “have”, “tell”) and instead interprets
“to” as either an argument-marking prepositions or
reification of an already reified verb. Examples of
parses and a discussion of specific errors are omit-
ted here due to space constraints and provided in
appendix E.

Constrained Decoding When evaluating decod-
ing constraints, we select the model by re-running
the five best performing epochs with constraints.
When using the type composition constraint, we
additionally increase the beam size to 10 so that
the parser has backup options when its top choices
are filtered out. Table 2 presents these results. We
see a increase in precision for +Lex, but a greater
loss in recall. +Type reduces performance on all
metrics. Due to the bottom-up parsing procedure,
a filtering of choices can cascade into fragmented

12Our parser gets the exact ULF for 6 out of the 180 sen-
tences (3.3%). They were all yes-no questions which tend to
be a bit shorter than informative declarative sentences (e.g.

“Can’t you do something?”).
13The STOG parser is improved by (Zhang et al., 2019b)

with about 1 point of improvement on SMATCH. Unfortu-
nately, the code for this parser is not released to the public.

SEMBLEU EL-SMATCH

F1 Precision Recall

Full 47.4 59.8 60.7 59.0
+Lex 46.2 57.5 61.5 54.1
+Type 40.0 55.8 59.1 52.8

Table 2: Statistics of model performances with con-
straints added—the average of 5 runs.

parses. The outputs for an arbitrarily selected run
of the model has on average 2.9 fragments per sen-
tence when decoding with the type constraint and
1.4 without. This and the relative performance on
the precision metric suggest that constraints im-
prove individual parsing choices, but are too strict,
leading to fragmented parses.

Dependence on Length To investigate the per-
formance dependence on the problem size, we par-
tition the test set into quartiles by oracle action
length. The 0 seed of our full model has SEM-
BLEU scores of 52, 47, 48, and 31 on the quar-
tiles of increasing length. As expected, the parser
performs better on shorter tasks. The parser per-
formance is relatively stable until the last quartile.
This is likely due to a long-tail of sentence lengths
in our dataset. This last quartile includes sentences
with oracle action length ranging from 148 to 1474.

8 Conclusion

We presented the first annotated ULF dataset and
the first parser trained on such a dataset. We
showed that our parser is a strong baseline, out-
performing existing semantic parsers from a simi-
lar task. Surprisingly, our experiments showed that
even in this low-resource setting, constrained de-
coding with a lexicon or a type system does more
harm than good. However, the symbol generation
method and features designed for ULFs result in a
performance lead over using an AMR parser with
minimal representational assumptions.

We hope that releasing this dataset will spur
other efforts into improving ULF parsing. This
of course includes expanding the dataset, using our
comprehensive annotation guidelines and tools; but
we see many additional avenues of improvement.
The type grammar opens up many promising pos-
sibilities: sampling of silver data (in conjunction
with ULF to English generation (Kim et al., 2019)),
use as a weighted constraint, or direct incorporation
into a model to avoid the pitfalls we observed in
our simple approach to semantic type enforcement.
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A Dataset Details

We chose a variety of text sources for construct-
ing this dataset to reduce genre-effects and pro-
vide good coverage of all the phenomena we are
investigating. Some of these datasets include an-
notations, which we use only to identify sentence
and token boundaries. The dataset includes 1,738
sentences, with a mean, median, min, and max
sentence lengths of 10.275, 8, 2, and 128 words,
respectively.

A.1 Data Sources

• Tatoeba

The Tatoeba dataset14 consists of crowd-sourced
translations from a community-based educational
platform. People can request the translation of
a sentence from one language to another on the
website and other members will provide the trans-
lation. Due to this pedagogical structure, the sen-
tences are fluent, simple, and highly-varied. The
English portion downloaded on May 18, 2017
contains 687,274 sentences.

• Discourse Graphbank

The Discourse Graphbank (Wolf, 2005) is a
discourse annotation corpus created from 135
newswire and WSJ texts. We use the discourse
annotations to perform sentence delimiting. This
dataset is on the order of several thousand sen-
tences.

• Project Gutenberg

Project Gutenberg15 is an online repository of
texts with expired copyright. We downloaded the
top 100 most popular books from the 30 days
prior to February 26, 2018. We then ignored
books that have non-standard writing styles: po-
ems, plays, archaic texts, instructional books,
textbooks, and dictionaries. This collection totals
to 578,650 sentences.

• UIUC Question Classification

The UIUC Question Classification dataset (Li
and Roth, 2002) consists of questions from the
TREC question answering competition. It covers
a wide range of question structures on a wide
variety of topics, but focuses on factoid questions.
This dataset consists of 15,452 questions.

14https://tatoeba.org/eng/
15https://www.gutenberg.org

195



Most of the dataset is annotated by random selec-
tion of a single or some contiguous sequence of
sentences by annotators. However, part of the an-
notated dataset comes from inference experiments
run by Kim et al. (2019) regarding questions, re-
quests, counterfactuals, and clause-taking verbs.
Therefore, the dataset has a bias towards having
these phenomena at a higher frequency than ex-
pected from a random selection of English text.

A key issue regarding the dataset is its diffi-
culty. We primarily quantify this with the AMR
parser baseline, the sequence-to-graph (STOG)
parser (Zhang et al., 2019a), in the main text, which
performs quite poorly on this dataset. Its perfor-
mance indicates that the patterns in this dataset
are too varied for a modern parsing model to learn
without built in ULF-specific biases. Although,
part of this is due to the size of the dataset, if the
dataset consisted only of short and highly-similar
sentences, we would expect a modern neural model,
such as the AMR baseline, to be able to learn suc-
cessful parsing strategy for it.

This reflects the design of the dataset construc-
tion. Although the dataset indeed includes many
short sentences, especially from the Tatoeba and
UIUC Question Classification datasets, the sen-
tences cover a wide range of styles and topics. The
Tatoeba dataset is built from a crowd-sourced trans-
lation community, so the sentences are not limited
in genre and style and has a bias toward sentences
that give people trouble when learning a second lan-
guage. We consider this to be valuable for a parsing
dataset since, while the sentences from Tatoeba are
usually short, they vary widely in topic and tend
to focus on tricky phenomena that give language-
learners—and likely parsers—trouble. Sentences
from the Discourse Graphbank (news text) and
Project Gutenberg (novels) further widen the scope
of genres and styles in the dataset. This should
make it difficult for a parsing model to overfit to
dataset distribution. The dataset also has a consid-
erable representation of longer sentences (∼10%
of the dataset is >20 words) including dozens of
sentences exceeding 40 words, reaching up to 128
words.

A.2 Annotation Interface & Interannotator
Agreement

We use the same annotation interface as Kim and
Schubert (2019), which includes (1) syntax and
bracket highlighting, (2) a sanity checker based on

the underlying type grammar, and (3) uncertainty
marking to trigger a review by a second annotator.
The complete English-to-ULF annotation guideline
is attached as a supplementary document.

Kim and Schubert (2019) reports interannotator
agreement (IA) of ULF annotations using this an-
notation procedure. In summary, they found that
agreement among sentences that are marked as cer-
tain are 0.79 on average and can be up-to 0.88 when
we filter for well-trained annotators. For compari-
son, AMR annotations have been reported to have
annotator vs consensus IA of 0.83 for newswire
text and 0.79 for webtext using the smatch met-
ric (Tsialos, 2015).

In order to mitigate the issue of low agreement
of some annotators in the IA study, each annotation
in our dataset was reviewed by a second annotator
and corrected if necessary. There was an open dis-
cussion among annotators to clear up uncertainty
and handle tricky cases during both the original
annotation and the reviewing process so the actual
dataset annotations are more consistent than the
test of IA agreement (which had completely inde-
pendent annotations) would suggest.

A.3 Dataset Splits

The data split is done by segmenting the dataset
into 10 sentence segments and distributing them
in a round-robin fashion, with the training set re-
ceiving eight chunks in each round. This splitting
method is designed to allow document-level topics
to distribute into splits while limiting any perfor-
mance inflation of the dev and test results that can
result when localized word-choice and grammati-
cal patterns are distributed into all splits.

The Tatoeba dataset further exacerbates the issue
of localized word-choice and grammatical patterns
since multiple sentences using the same phrase
or grammatical construction often appear back-to-
back. We suspect that this is because the Tatoeba
dataset is ordered chronologically and users often
submit multiple similar sentences in order to help
understand a particular phrase or grammatical pat-
tern in a language that they are learning.

B Full ULF Alignment Details

The ULF-English alignment system takes into ac-
count the similarity of the English word to the ULF
atom without the type extension, the similarity of
the type extension with the POS tag, and the rela-
tive distance of the word and symbol in question.
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Given a sentence s = w1:n, which is tokenized,
t1:n, lemmatized, l1:n, and POS tagged, p1:n, a
set of symbols that are never aligned Su, and a
list of ULF atoms a1:m, which can be broken up
into the base stems, b1:m, and suffix extensions,
e1:m, in order of appearance in the formula (i.e.
DFS preorder traversal), the word/atom similarity
is defined using the following formulas.

Sim(w, a) = max(Olap(t, b),Olap(l, b))

+ 0.5 ∗ (Olap(p, e) + (1− |RL(w, n)− RL(a,m)|))

where token overlap, Olap, is defined as

Olap(x, y) =
2 ∗ |MaxSharedSubstr(x, y)|

|x|+ |y|

and relative location RL is defined as

RL(x, n) =
IndexOf(x)

n

Next, in order of Sim(w, a), we consider each
word-atom pair, (wi, ai), 1 ≤ i ≤ n until
Sim(w, a) < MinSim, where MinSim is set to 1.0,
based on cursory results. We further disregard any
alignments that include an atom which shouldn’t
be aligned (ai s.t. ai ∈ Su). We assume that
spans of words align to connected subgraphs, so
we cannot accept all word-atom pairs. An word-
atom pair, (wi, ai), is accepted into the set of token
alignments, At, if and only if the following condi-
tions are met:

1. wi has no alignments or ai is connected to an
atom, a′, that is already aligned to wi.

2. ai is not in any other alignment or wi is adja-
cent to another, w′ which is already aligned to
ai.

The token-level (word-atom) alignment, At, is
then converted to connected (span-subgraph) align-
ment, A. This is done with the following algorithm:

1. For every atom ai in one of the aligned pairs
ofAt, merge all of the words aligned to ai into
a single span, si. During the initial alignment,
we ensured that these words would form a
span.

2. Merge all overlapping spans into single spans
and collect the set of atoms that are aligned to
each of these spans into a subgraph.16 These
collected subgraphs will be connected because
we ensured that for any word the nodes that it
is aligned to forms a connected subgraph.

16This can be done inO(n logn) time by sorting the spans,
then doing a single pass of merging overlapping elements.

C RoBERTa Handling Details

Except for RoBERTa, all other embeddings are
fetched from their corresponding learned embed-
ding lookup tables. RoBERTa uses OpenAI GPT-
2 tokenizer for the input sequence and segments
words into subwords prior to generating embed-
dings, which means one input word may corre-
spond to multiple hidden states of RoBERTa. In
order to accurately use these hidden states to rep-
resent each word, we apply an average pooling
function to the outputs of RoBERTa according to
the alignments between the original and GPT-2
tokenized sequences.

D Full Tables

Tables of the full set of raw results and parame-
ters are presented in this section. Table 3 shows
the ablations on the model without decoding con-
straints. This is the basis of Figure 5 in the main
text. Table 4 shows the performance change with
the lexicon constraint and Table 5 shows the per-
formance change with the composition constraint.
These tables are the basis of Table 2 in the main
text. Our experiments with the lexicon constraint
were more extensive since the type constraint takes
considerably longer to run due to requiring a larger
beam size and more computational overhead. Ta-
ble 7 presents all of the model parameters in our
experiments.

E Parse Examples

Figure 6 shows six parse examples of our parser
and the GS parser in reference to the gold standard.
Generally, we find that our parser does much better
on node generation for nodes that correspond to an
input word. For example, the GS parser on example
1 uses (plur *s) for the word “speech” and iron.n
for the words “silver” and “silence”. This isn’t to
say that our parser doesn’t make mistakes. But the
mistakes are not as open-ended. For example, our
parser mistakenly annotates “silver” as a noun in
example 1 when in fact it should be an adjective
(compared against “golden”). The GS parser seems
to pick the closest word in its vocabulary, which
is generated from the training set and closed. This
leads to strange annotations like iron.n for the word
“silence”. If there is nothing close available, then
it can derail the entire parse. In example 4, the GS
parser is unable to find a node label for the word
“device” which derails the parse to generate (mod-n
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Ablation SEMBLEU EL-SMATCH
F1 Precision Recall

Dev Test Dev Test Dev Test Dev Test
Full 46.4± 1.4 47.4± 1.3 58.4± 0.7 59.8± 1.0 59.1± 1.1 60.7± 1.5 57.8± 0.5 59.0± 0.7
-RoBERTa 45.5± 2.4 47.2± 1.7 58.3± 1.4 59.3± 1.0 59.1± 1.6 60.5± 1.1 57.5± 1.2 58.3± 0.9
-CharCNN 46.4± 1.0 46.9± 0.7 58.8± 0.8 59.3± 0.4 59.4± 1.3 60.1± 0.5 58.1± 0.6 58.5± 0.5
-ef (C) Feats 47.0± 1.2 46.6± 1.2 58.6± 0.5 58.8± 1.1 60.4± 1.2 60.2± 1.1 56.9± 0.4 57.4± 1.2
-POS 43.8± 1.7 45.1± 1.2 56.9± 1.1 58.3± 1.1 56.8± 1.0 58.7± 1.1 56.9± 1.2 57.9± 1.2
-GloVe 43.2± 1.8 44.3± 1.2 56.6± 1.0 57.1± 0.9 56.9± 2.7 58.3± 2.2 56.4± 1.7 56.1± 2.2

Table 3: Ablation results without decoding constraints, mean and standard deviation of 5 runs.

Ablation SEMBLEU EL-SMATCH
F1 Precision Recall

Dev Test Dev Test Dev Test Dev Test
Full 47.3± 0.6 46.2± 0.3 56.3± 0.7 57.5± 0.8 60.2± 0.5 61.5± 1.2 52.9± 0.9 54.1± 1.5
∆x̄ -1.2 -2.3 +0.8 -4.9
-RoBERTa 46.6± 1.3 46.9± 0.6 56.1± 0.6 57.8± 0.4 60.0± 0.7 60.5± 0.9 52.6± 0.6 55.3± 0.5
-CharCNN 45.8± 2.3 45.5± 2.5 56.1± 1.4 56.9± 1.1 59.3± 2.4 59.6± 1.8 53.3± 1.1 54.5± 1.5
-ef (C) Feats 45.9± 1.5 45.6± 0.9 56.5± 0.6 57.0± 0.5 62.0± 0.8 61.4± 0.6 52.0± 1.1 53.3± 0.5
-POS 44.1± 2.0 44.5± 0.9 55.3± 0.2 56.6± 0.7 58.5± 2.2 60.4± 0.8 52.6± 2.3 53.2± 1.4
-GloVe 46.1± 1.1 45.4± 1.4 55.9± 0.9 57.0± 0.6 59.5± 1.5 60.3± 0.8 52.7± 1.0 54.0± 0.7

Table 4: Ablation results with the lexicon constraint, mean and standard deviation of 5 runs. ∆x̄ is the difference
in the mean score between the test set results of the model with the lexicon constraint and without, i.e. Table 3.
We only list this for the full model, but the pattern of higher precision but lower scores on other metrics generally
holds for the other variants as well.

Ablation SEMBLEU EL-SMATCH
F1 Precision Recall

Dev Test Dev Test Dev Test Dev Test
Full 38.3± 2.3 40.0± 1.4 54.2± 1.2 55.8± 1.2 57.6± 1.0 59.1± 1.2 51.1± 1.5 52.8± 1.4
∆x̄ -7.4 -4.0 -1.6 -6.2

Table 5: Ablation results with the type composition constraint, mean and standard deviation of 5 runs. ∆x̄ is the
difference in the mean score between the test set results of the model with the type constraint and without, i.e.
Table 3. We only ran the full model for this test because this constraint takes much longer to run.

Model Fragments/Sentence
α τ

Full 1.4 2.9
-CharCNN 1.1 3.5
-ef (C) Feats 1.4 3.9
-POS 1.5 3.2
x̄ 1.4 3.4

Table 6: Fragments per sentence on the test set decoding results for a subset of the ablated lexicon-constrained
models (Table 4). α is the original model and τ is with the type composition constraint.
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(mod-n man.n) (mod-n man.n iron.n) mod-n mod-n)
for the text span “device is attached firmly to the
ceiling”.

This isn’t to say that the GS parser always per-
forms worse than our parser. When it comes
to words that are elided ({you}.pro in exam-
ple 4), nodes generated from multiple words
(had better.aux-s in example 3), or logical sym-
bols unassociated with a particular word (multi-
sent in example 6), the GS parser consistently per-
forms better than our parser. Our parser has no
special mechanism for these handling these cases
and prefers to avoid generating node labels without
an anchoring word.

A common mistake by our parser seems to be
nested reifiers, which is not possible in the EL type
system (e.g. (to (ka come.v)) in example 5 and (to
(ka (show.v ..))) in example 6). Other common
mistakes that could be fixed by type coherence
enforcement is mistakenly shifting a term into a
modifier (e.g. (adv-a (to ...)) in example 6). In the
EL type system only predicates can be shifted into
modifiers.
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GloVe.840B.300d embeddings
dim 300
RoBERTa embeddings
source RoBERTa-Base
dim 768
POS tag embeddings
dim 100
Lemma embeddings
dim 100
CharCNN
num filters 100
ngram filter sizes [3]
Action embeddings
dim 100
Transition system feature embeddings
dim 25
Word encoder
hidden size 256
num layers 3
Symbol encoder
hidden size 128
num layers 2
Action decoder
hidden size 256
num layers 2
MLP decoder
hidden size 256
activation function ReLU
num layers 1
Optimizer
type ADAM
learning rate 0.001
max grad norm 5.0
dropout 0.33
num epochs 25
Beam size
without type composition filtering 3
with type composition filtering 10
Vocabulary
word encoder vocab size 9200
symbol encoder vocab size 7300
Batch size 32

Table 7: Default model parameters.
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1. “Speech is silver but silence is golden.”

Gold: (((k speech.n) ((pres be.v) silver.a)) but.cc ((k silence.n) ((pres be.v) golden.a)))

Ours: (((k speech.n) ((pres be.v) silver.n)) (k silence.n) ((pres be.v) golden.a))

GS: (((k (plur *s)) ((pres be.v) (= (k iron.n)))) but.cc ((k iron.n) ((pres be.v) =)))

2. “You neglected to tell me to buy bread.”

Gold: (you.pro ((past neglect.v) (to (tell.v me.pro (to (buy.v (k bread.n)))))))

Ours: (you.pro ((past neglect.v) (adv-e (to (tell.v me.pro (to (buy.v (k bread.n)))))))

GS: (you.pro ((past fail.v) (to (tell.v me.pro {ref}.pro))))

3. “You’d better knuckle down to work.”

Gold: (you.pro ((pres had better.aux-s) (knuckle.v down.adv-a (to work.v))))

Ours: (you.pro ((pres would.aux-s) (knuckle.v down.a (adv-a (to.p work.v)))))

GS: (you.pro ((pres had better.aux-s) (go.v (to.p-arg (k work.n)) (adv-a (to.p (ka work.v))))))

4. “Make sure that the device is attached firmly to the ceiling.”

Gold: ({you}.pro ((pres make.v) sure.a
(that ((the.d device.n)

((pres (pasv attach.v)) firmly.adv-a (to.p-arg (the.d ceiling.n)))))))

Ours: ( ((pres make.v) sure.a that.pro (tht
((the.d device.n) ((pres be.v) (k (n+preds attach.v (to.p-arg ceiling.n))))))))

GS: (({you}.pro ((pres make.v) (sure.a
(that (the.d (mod-n (mod-n man.n) (mod-n man.n iron.n) mod-n mod-n)))))) !)

5. “Can’t I persuade you to come?”

Gold: (((pres can.aux-v) not i.pro (persuade.v you.pro (to come.v)) ?)

Ours: (sub ((pres can.aux-v) not i.pro (persuade.v you.pro (to (ka come.v)) ?)))

GS: (((pres can.aux-v) not i.pro ( come.v (to come.v) you.pro)) ?)

6. “Look carefully. I’m going to show you how it’s done.”

Gold: (multi-sent (({you}.pro ((pres look.v) carefully.adv-a)) !)
(i.pro ((pres be-going-to.aux-v)

(show.v you.pro (ans-to (sub how.pq (it.pro ((pres (pasv do.v)) *h))))))))

Ours: ( ((pres look.v) carefully.adv-a)
(tht (i.pro ((pres be.v) (go.v

(adv-a (to (ka (show.v you.pro (sub how.pq (it.pro ((pres be.v) do.n ))))))))))))

GS: (multi-sent (({you}.pro ((pres be.v) you.pro fine.a)) !)
(i.pro ((pres be.aux-v) (go.v (to (do.v you.pro *h))))))

Figure 6: Several parse examples comparing behavior of our parser with the stronger baseline, the GS parser. For
each example, the top is the gold parse, the center is our parser, and the bottom is the GS (Cai and Lam, 2020)
parser. Errors are written in red. If something from the gold parse is omitted, a red highlighted block marks the
location.
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Abstract

What is the best way to learn embeddings for
entities, and what can be learned from them?
We consider this question for the case of liter-
ary characters. We address the highly challeng-
ing task of guessing, from a sentence in the
novel, which character is being talked about,
and we probe the embeddings to see what in-
formation they encode about their literary char-
acters. We find that when continuously trained,
entity embeddings do well at the masked entity
prediction task, and that they encode consider-
able information about the traits and character-
istics of the entities.

1 Introduction

Neural language models have led to huge improve-
ments across many tasks in the last few years (Pe-
ters et al., 2018; Devlin et al., 2019; Radford et al.,
2019).1 They compute embeddings for words and
word pieces. But when we describe the semantics
of a sentence, we talk about entities and events
and their relations, not words. And it is to be ex-
pected that more complex reasoning tasks would
eventually require representations at the semantic
level rather than the word level. Entities differ
from words in that they are persistent, localized,
and variable (within a given range). So, would it
be beneficial to compute embeddings of entities in
addition to embeddings of words for downstream
inference? And how should entity embeddings be
computed?

There has been a steady rise in work on entity
representations and how they can be combined
with language models, for example Li et al. (2016);
Bosselut et al. (2018); Rashkin et al. (2018); Louis
and Sutton (2018).In this paper, we add to the grow-
ing literature on neural representations of entities

1The [MASK] in the title is actually La Carconte, from the
Count of Monte Cristo by Alexandre Dumas.

by considering a particularly challenging case: the
representations of entities in very long texts, in
particular in novels. Intriguingly, Bruera (2019)
recently tested whether literary characters, when
represented through distributional vectors trained
on the first half of a novel, can be recognized in the
second half, and found the task to be near impossi-
ble. We take up that same task, but train character
embeddings in a masked character prediction task.
We ask the following questions. (a) Is it possible
to use literary character embeddings to do masked
character prediction, that is, to guess from a sen-
tence in a novel which character it mentions? (b)
If this task is doable, is it doable only locally, or
can we train on the first third of a novel and then
guess characters towards the end of the novel? (c)
What do the resulting embeddings tell us about the
literary characters when we probe them? (d) Can
the embeddings identify a literary character from a
short description of their personality?

We find that when continuously trained, entity
embeddings do well at the masked entity prediction
task, and that they encode considerable information
about the traits and characteristics of the entities.
Modeling semantics for natural language under-
standing is about modeling entities and events, not
words. So we view this work as an initial step in
the direction of entity modeling over time.

2 Related Work

Entities have been increasingly common subjects
within NLP research. There has been recent work
aimed at inducing both characteristics of entities,
such as personalities, physical and mental states,
and character traits, as well as distributed entity
representations, similar to lexical embeddings.

Masked prediction of literary characters]
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2.1 Modeling Personalities and
Characteristics

Psychologists have studied the relationship be-
tween personality traits and human behavior.
Within NLP, there have been recent attempts to
model this link computationally.

Bamman et al. (2013) explored entity modeling
by using Bayesian methods to induce moderately
fine-grained character archetypes/stereotypes from
film plot summaries. The authors utilized depen-
dency relations to identify, for each entity, the verbs
for which they were the agent, the verbs for which
they were the patient, and any modifiers attributed
to them. Bamman et al. successfully induced clus-
ters that could be manually aligned with tropes like
the jerk jock, the nerdy klutz, the villain, etc.

Plank and Hovy (2015) recently appealed to psy-
chological personality dimensions in relation to
linguistic behavior. They constructed a dataset
by crawling twitter for mentions of any of the
16 Myers-Briggs Type Indicators comprising four
personality dimensions (MBTI; Myers and Myers
2010), labeling tweets with author gender identity.
Plank and Hovy then train logistic regression mod-
els to predict each of the four dimensions from
user tweet data using tweet context features and
other features that are traditional for Twitter data
(e.g., counts of tweets, followers, favorites, etc.). In
all four dimensions, logistic regression classifiers
outperform majority baselines, supporting the no-
tion that linguistic behavior correlates with MBTI
designations.

Flekova and Gurevych (2015) similarly explored
personality traits, though they utilized the Five-
Factor Model of personality instead of MBTIs
(John et al., 1999). Here, authors collected ex-
traversion/intraversion ratings for approximately
300 literary characters, and explore three sources
of signal to predict the extraversion scores. The
first system aligns most closely with Plank and
Hovy’s work as it considers only character speech
(both style and content). Flekova and Gurevych
go slightly farther, however, as they also show that
character actions and behaviors as well as the de-
scriptions of characters given in narration carry
useful signal for extraversion prediction.

Rashkin et al. (2018) modeled the mental state
of characters in short stories, including motivations
for behaviors and emotional reactions to events.
The authors noted a substantial increase in perfor-
mance in mental state classification when entity-

specific contextual information was presented to
the classifier, suggesting that entity-specific context
may be useful to a wide array of downstream tasks.

Louis and Sutton (2018) further explored the
relation between character properties and actions
taken in online role-playing game data. In Dun-
geons and Dragons, a giant is more likely than
a fairy to wield a giant axe, but a fairy is more
likely to be agile or cast spells. Louis and Sutton
show that computational models can capture this
interaction by using character description informa-
tion in conjunction with action descriptions to train
action and character language models. When a for-
mal representation of a given character is included,
performance improves.

Bosselut et al. (2018) demonstrated dynamically
tracked cooking ingredients, identifying which in-
gredient entity was selected in any given recipe
step, and recognizing what changes in state they
underwent as a result of the action described in
the step. For example, these dynamic entity repre-
sentations enabled the model to determine that an
ingredient was clean after having been washed.

2.2 Entity Representations and Entity
Libraries

Recently, major work in NLP has begun to explic-
itly model entities for use in downstream tasks.
While still new (and limited in scope), much of
this work has relied upon the notion of an Entity
Library, a vocabulary of individuals which utilizes
consecutive mentions to construct distributed vec-
tor representations, though methods of learning
these representations have varied.

Entity representations have been shown to im-
prove the quality of generated text. In Ji et al.
(2017), researchers build a generative language
model (an RNN) which has access to an entity
library which contains continuous, dynamic repre-
sentations of each entity mentioned in the text. The
result is that the library explicitly groups coreferen-
tial mentions, and each generated mention affects
the subsequently generated text.

Tracking entity information has also been shown
to be useful for increasing the consistency of re-
sponses in dialogue agents (Li et al., 2016). Re-
searchers introduce a conversation model which
maintains a persona, defined as the character that
the artificial agent performs during conversational
interactions. The persona maintains elements of
identity such as background facts, linguistic behav-
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ior (dialect), and interaction style (personality) in
continuously updated distributed representations.
The model maintains the capability for the persona
to be adaptive, as the agent may need to present
different characteristics to different interlocutors
as interactions take place, but reduces the likeli-
hood of the model providing contradictory infor-
mation (i.e., maintaining these distributed represen-
tations prevents the model from claiming to live
in both Los Angeles, Madrid, and England in con-
secutive queries). Crucially, this desirable change
is achieved without the need for a structured on-
tology of properties, but instead through persona
embeddings that are learned jointly with word rep-
resentations.

Fevry et al. (2020) demonstrates that entity repre-
sentations trained only from text can capture more
declarative knowledge about those entities than a
similarly sized BERT. Researchers showed that
these representations are useful for a variety of
downstream tasks, including open domain question
answering, relation extraction, entity typing, and
generalized knowledge tasks.

Yamada et al. (2020) explore another entity
masking task in the context of transformer pre-
training. They train a large transformer on both
masked words and masked entities in Wikipedia
text. Here, however, each entity-in-context exists
as its own token, rather than a representation that is
aggregated over a sequence of mentions. Yamada
et al. test on entity typing, relation classification,
and named entity recognition.

Finally, Bruera (2019) introduces the data that
we will use to build our model (described in de-
tail below), and compares the ability to construct
computational embeddings for proper names with
that of common nouns. Researchers trained a dis-
tributional semantics model to create and store two
different representations for literary characters in
novels, each from a separate section of text from the
novel. The model is then asked to match the charac-
ters’ representations from one portion of text to the
representations computed from the other portion
of text, which the authors term the Doppelgänger
Task. Importantly, their results showed that the
ability to match these representations is much re-
duced in the case of proper names when compared
to common nouns. This insight serves as a major
motivation for the current work, where we follow
the hypothesis that entities can be represented in
a distributional fashion after all, though not with

Dataset Min Max Mean
OriginalNovels 6,770 568,531 118,184.7
WikiNovels 484 13,261 5,104.6

Table 1: Document length statistics for each Novel Afi-
cionados dataset.

the same training as with common nouns.2 We as-
sume that entity representations must be persistent,
continuously available, and dynamic.

3 Data

In the current paper, we present a model that is able
to construct entity representations for characters
in classic literary novels. Novels are a compelling
environment for this exploration as they feature
a relatively small number of entities that appear
frequently over a long document. To this end, we
turn to the Novel Aficionados dataset introduced
by Bruera (2019).

The dataset comprises 62 pieces of classic lit-
erature, represented as both their original texts
(deemed the OriginalNovels dataset; these texts are
distributed by Project Gutenberg, which maintains
a repository of free eBooks of works no longer pro-
tected by copyright), and their English Wikipedia
summaries (the WikiNovels dataset). In order to
have sufficient description of as many characters as
possible, we only utilize the corpus of original nov-
els in training our representations, as this corpus
yields significantly more mentions per character.
We utilize the Wikipedia summaries as a test set
to determine how well our entity representations
work outside the domain of the novels themselves.

The novels are distributed within the dataset
in both their original form and having been pre-
processed with BookNLP (Bamman et al., 2014).
BookNLP is a natural language processing pipeline
that extends from Stanford CoreNLP (Manning
et al., 2014) and is specifically aimed at scaling
to books and other long documents. BookNLP in-
cludes part of speech tagging, dependency parsing,
NER, and supersense tagging. Most critical to our
application, BookNLP provides quotation speaker
identification, pronominal coreference resolution,3

2While our work is inspired by Bruera (2019) and con-
ducted on the same data, we introduce a different task that is
not directly comparable to the Doppelgänger Task.

3Unfortunately, the texts are not distributed with more
general coreference resolution (outside of character aliases and
pronominal resolution). This means we are unable to include
nominal expressions as character mentions to be considered
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and character name clustering. This means that, in
addition to standard anaphoric coreference resolu-
tion, BookNLP can identify different proper names
as character aliases (i.e., Jane Fairfax, a character
from Jane Austen’s Emma, is referenced through-
out the text not only by her full name, but also Jane,
Miss Jane Fairfax, and Miss Fairfax; BookNLP is
able to recognize this and map all of these aliases
to a single, unique character ID). Concerning the
quality of the coreference resolution, Bamman et
al. report average accuracy of 82.7% in a 10-fold
cross-validation experiment on predicting the near-
est antecedent for a pronominal anaphor. While the
accuracy of character clustering was not evaluated,
manual inspection of the data revealed it to be very
reliable.

4 Modeling

Our hypothesis is that it is possible to represent
characters in a novel through an embedding in such
a way that it is possible for a model to recognize
who is who, or, as we call the task here, Is this
Me?. Bruera (2019) found that with an approach
that treated characters like common nouns, the re-
lated Doppelgänger Task was not feasible.4 We
hypothesize that if embeddings are learned to best
facilitate Is this Me? prediction, the task will be
feasible. We further hypothesize that the resulting
embeddings can be found to contain information
about the characters. In a way, our approach is sim-
ilar to recent contextualized language models like
BERT (Devlin et al., 2019) in that we, too, train on
a masked prediction task, and we, too, hope to find
the resulting embeddings to be useful beyond the
prediction task itself.

4.1 A model for the “Is this Me?” task

Our model keeps track of characters as they ap-
pear in a novel, and trains an embedding for each
character through the Is this Me? task, a masked
prediction task: Given a sentence of the novel with
a masked character mention, and given the cur-
rent embedding for character c, a classifier decides
whether this is a mention of c or not. This is a
binary task. The embedding for each character is
updated incrementally as the novel is read, and as
such, the entity embeddings are learned directly

by the model.
4Although related, the Is this Me? and Doppelgänger tasks

are truly different in nature. As such, we cannot compare
results on the Is this Me? task to results on the Doppelgänger
Task directly.

from the data. The classifier weights are updated
alongside the character embeddings.

Because the classifier weights are learned as the
model reads the novels, we read all novels in par-
allel. The classifier is trained on a binary masked
prediction task, where negative examples are drawn
from the same novel. (That is, a negative example
for Emma in the novel Emma might be Harriet,
but it would never be Heathcliff.) A sketch of the
model is shown in Figure 1.

Entity Library. The entity library, shown in blue
in Figure 1 is a collection of embeddings of literary
characters, each represented by a 300 dimensional
embedding learned incrementally throughout the
novel. Entity embeddings are randomly initialized
and passed through a projection layer (green in the
figure) before being received by the classifier.

Contextual Sentence and Target Mention Rep-
resentations. We utilize the base, uncased distri-
bution of BERT to compute contextualized sen-
tence representations of each target sentence,
shown in orange in Figure 1. Contextualized sen-
tence representations are truncated to a maximum
of 150 subword tokens.5 We do not fine tune BERT
on our data. All character mentions in a sentence
are masked. The input to the classifier is a target
representation of one of the masked entity men-
tions, using mix representations introduced in (Ten-
ney et al., 2019). The target mention representation
is computed directly from the contextualized sen-
tence representations obtained from BERT and is
a scalar mix of the layer activations using learned
scalars.

Is this Me? Binary Classifier. The classifier for
the binary Is this Me? task takes as input an en-
tity embedding, transformed through the projection
layer, along with a target mention embedding from
BERT as described above. The classifier consists
of a single, ReLU activation layer. We keep the
classifier this simple intentionally, as, to be suc-
cessful, we want the entity representations to do
the heavy lifting.

4.2 Model details

Training Data. We restrict our modeling to char-
acters that appear at least 10 times to ensure that

5This limit was determined by inspecting the length of
each sentence in the corpus in subword tokens and permits
nearly all sentences to remain untruncated.
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Karamazov
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Figure 1: Sketch of the model. The sentence is from Jane Austen’s ”Emma”. All characters are masked. In this
case, the first character is Knightley, the second – the target – is Emma. Blue: entity library. Red: Is this Me?
classifier.

there is enough information to train a representa-
tion.

As our intent is to induce entity representations
for each character, we must mask each character
mention. For each mention of any character pre-
dicted by BookNLP in each sentence in a novel, we
replace the mention with a single [MASK] token in
order to obscure the character’s identity from the
model. Multiword mentions are reduced to a single
[MASK] token in order to prevent the model from
being able to detect signal from mention length.
Masking is applied to any mention, even for char-
acters that appear fewer than 10 times.

For each sentence in a novel that contains at
least one character mention, we produce at least
two examples for the model: one positive example
from the gold data, and one hallucinated example
by randomly selecting a confound character from
the same novel. If a character is mentioned more
than one time in the same sentence, one mention
is randomly selected to be the target mention for
that character in that sentence. If a sentence talks
about more than one character, a single positive
example is generated for each character. Consider
this sentence from Jane Austen’s Emma:

Whenever [MASK]James goes over to
see [MASK]James’ daughter, you know,
[MASK]Miss Taylor will be hearing of us.

We first have to decide whether to first generate
examples for James or for Miss Taylor. We pick
one of the two at random, let us assume it is James.
We next randomly select one of the two mentions
of James to be the target mention. Let us say we
pick the first. The input to the model for the posi-

tive example is then the Tenney et al. (2019) mix
representation of the target mention concatenated
with the current entity representation of James. We
then construct a negative example by randomly se-
lecting a character other than James to serve as a
confound, following standard practice. If, for ex-
ample, we were to sample Isabella (Emma’s sister),
the input to the model for the negative example
from this mention would be the exact same mix
representation of the target mention concatenated
with the current entity embedding of the confound
character, Isabella. With positive and negative ex-
amples constructed for James’s mention, we then
turn to the remaining character, Miss Taylor, and
construct a positive and negative example for her
mention.

Note that restricting the possible set of con-
founds for a given character to characters in the
same novel, we have created a more difficult neg-
ative example than if we were to sample across
all novels. For example, telling the difference
between Elizabeth Bennet and Jane Bennet (both
from Austen’s Pride and Prejudice) is significantly
more difficult than telling the difference between
Elizabeth Bennet and the Cowardly Lion (from
Baum’s The Wonderful Wizard of Oz).

Training. All learned weights (the entity embed-
dings themselves, those in the projection layer, the
scalars guiding the target mention representation,
and those in the classifier) are updated with re-
spect to cross entropy loss, optimized with Adam
(Kingma and Ba, 2015) at a learning rate of 2e-05.
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5 Experiments

5.1 Is this Me?
We first address our questions (a) and (b) from
above: Is it possible to predict a masked mention
of a literary character from an entity embedding,
either within the same novel or in a summary of the
same novel? And does performance degrade if we
“skip ahead”, using a character embedding trained
on the beginning of a novel to predict a mention
near the end?

5.1.1 Continuous Training
We begin by allowing the model to train entity rep-
resentations (and all other learned weights) contin-
uously throughout each novel. This means that we
treat each example as a test example, and only al-
low the model to update based on its performance
on a given example after its prediction has been
made, as in a standard learning curve. As such,
although the model is updated after every example,
our performance statistics are computed over its
prediction made before the update operation (mean-
ing there is no performance computed over already-
seen examples). As Table 2 shows, the model does
well at this task, with overall accuracy across all
characters and all novels of 74.37%. Accuracy was
consistent across positive and negative examples.
Most learning happened quickly within the first
50,000 examples, though accuracy did continue to
increase through the entire run (Figure 2).

Figure 2: Is this Me? Continuous Training learning
curve.

As should be expected, overall accuracy at the
book level in this task is subject to frequency ef-
fects. Book-level accuracy exhibits strong posi-
tive correlation with the total number of examples
per novel (r = 0.584; p ≪ 0.01; Figure 3, left).
Interestingly, however, book-level accuracy also

Examples Correct Accuracy
Positive 196,154 149,505 76.22%
Negative 196,154 142,258 72.52%
Total 392,308 291,763 74.37%

Table 2: Is this Me? accuracy for continuously trained
entity representations.

increases with the number of characters modeled
per book (r = 0.500; p ≪ 0.01; Figure 3, right).
To see whether the model is affected by language
differences between older and more recent books,
we used linear regression to predict book-level ac-
curacy from novel publication date, finding very
low correlation (R2 = 0.008; p = 0.663).

Figure 3: Is this Me? Continuous Training - Book-
Level Accuracy. Accuracy within book (y-axis) is plot-
ted against the number of examples for that book (x-
axis).

At the character level, frequency effects were
not nearly as strong, except in cases where charac-
ters were mentioned very frequently (defined here
as characters with over 300 mentions). Across
all characters, testing showed moderate positive
correlation with mention frequency (r = 0.174;
p ≪ 0.01; Figure 4, left). Within frequently ap-
pearing characters, correlation with mention fre-
quency was much higher (r = 0.633; p ≪ 0.01;
Figure 4, right).

Figure 4: Is this Me? Continuous Training - Character-
Level Accuracy. Accuracy within character (y-axis) is
plotted against the number of examples for that charac-
ter (x-axis).
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5.1.2 Applicability to Novel Summaries
We also explored the extent to which the entity rep-
resentations after having been trained on the full
novel, could identify the same entities in short sum-
maries of the same novel. To that end, we used
the the WikiNovel summaries distributed with the
Novel Aficionados dataset. The summaries show a
strong domain shift compared to the novels. While
they frequently do contain proper, if succinct, de-
scriptions of the novel’s plot and the involvement
of major characters, they also exhibit significantly
different patterns of language. Wikipedia entries do
not just summarize the novels, they also frequently
include metadiscursive language, as in this sen-
tence from the WikiNovels summary of Austen’s
Emma:

This point of view appears both as some-
thing perceived by [emma woodhouse]
an external perspective on events and
characters that the reader encounters
as and when [emma woodhouse] recog-
nises it and as an independent discourse
appearing in the text alongside the dis-
course of the narrator and characters.

Because of this shift in domain, we see vastly
reduced performance in character prediction and
a heavy bias towards claiming the target mention
is not a given character when using the model
trained on the sentences from the novel. This is
shown in Table 3. We evaluated the model in two
settings. In the Pos. Only setting, all data points
were positives, such that the model would have
perfect accuracy by always saying yes. In the Pos.
& Neg. setting, we use the same negative example
generation technique as used in the model’s
training. While the model performs slightly better
than chance when negative examples are included,
it remains clear that future work should explore
ways to generalize the entity representations such
that they may be more informative across domain
boundaries.

Example Types Num. Examples Accuracy
Pos. Only 7,736 36.12%
Pos. & Neg. 15,573 56.13%

Table 3: Is this Me? accuracy for continuously trained
entity representations on WikiNovel summaries.

5.1.3 Non-Continuous Training

In §2 we noted that identifying masked charac-
ter mentions is a not trivial due to the nature of
narratives themselves. Literary plots are often con-
structed to force profound change in the behaviors,
beliefs, and characteristics of central characters.
This may be among the reasons that Bruera (2019)
reported such difficulty with the Doppelgänger task.
To see if distance in the novel affects our represen-
tations, we experimented with “skipping ahead” in
the novel in order to determine the impact on perfor-
mance when entities are not continuously updated.

Inspired by traditional character arcs, we split
each novel into three sections of equal length (de-
termined by number of sentences). The underly-
ing assumption is that, due to the structure of the
narrative, each character (especially main charac-
ters) will undergo some form of growth or change
in between each novel section, suggesting that the
learned entity representations should never be static
in order to encode the results of that growth. We
allowed a new Is this Me? classifier to learn repre-
sentations for all literary entities using only the first
third of the novels as training data, then froze the
entity embeddings, and evaluated classifier perfor-
mance against the middle and final thirds indepen-
dently. We hypothesized that the model would ex-
hibit a gradual decrease in performance as it moved
further away from the point in time at which the
entity representations were fixed, with the perfor-
mance on the middle third better than performance
toward the ends of the novels. Instead, we found a
fairly rapid decline in performance (Table 4). Per-
formance stays above chance, however, suggest-
ing there is a kernel of each representation that
is informative regardless. While this experiment
does not explicitly demonstrate character develop-
ment/change, the sharp decrease in performance
when entity representations are fixed implicitly sup-
ports the claim that such change is present. Captur-
ing that development directly, however, is another
very difficult task and well-worthy of being the
subject of future work.

Trained On Beginning Middle End
Beginning 68.50% 55.70% 57.15%

Beg. & Mid. 68.50% 63.24% 57.45%

Table 4: Is this Me? accuracy on novels split into thirds.
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5.2 Probing Entity Embeddings
We have found that, at least when entity embed-
dings are continuously trained, they can be used to
predict a masked mention in a novel with reason-
able accuracy. But are the resulting embeddings
useful beyond the masked entity prediction task?
To find this out, we turn to our questions (c) and
(d) from above, and see if we can predict charac-
ter gender from entity representation, and whether
the identity of a character can be predicted from a
description.

5.2.1 Predicting Gender from Literary
Character Representation

We used a simple logistic regression model to probe
the extent to which gender is encoded in the entity
representations obtained from the continuous train-
ing in §5.1.1. As we have no gold annotation of lit-
erary character gender, we utilize the BookNLP pre-
processing to look for gendered pronouns (she/he)
for each character as a form of distant supervi-
sion. Manual inspection shows this heuristic to be
very reliable after omitting characters for which
no pronominal coreference link is available and
characters who exhibit coreference chains featur-
ing both gendered pronouns. This left a total of
2,195 characters (1,533 male, 662 female) to be
considered for this experiment.

We learn a single weight for each embedding
dimension for a total of 300 weights. In each case,
we trained the classifiers on 80% of the characters
across all novels (1,756 characters), leaving a test
set of 439 characters. Each model was run four
times, and we present the mean performance statis-
tics in Table 5. Results were favorable across all
runs, suggesting the learned character representa-
tions do encapsulate some knowledge of literary
character gender.

µ Acc µ MSE µ F1
60.15% 0.3984 0.7208

Table 5: Model performance on predicting charac-
ter gender from entity embeddings: Accuracy, mean
squared error, and F1.

5.2.2 Character Descriptions
While the WikiNovels corpus is noisy and cluttered
with metadiscursive literary commentary, as noted
in §5.1.2, certain Wikipedia novel summaries do
contain detailed descriptions of major characters.
To better evaluate the ability of our learned entity

representations to generalize outside of the domain
of the novels on which they where trained, we man-
ually extracted a subset of sentences which more
readily pertained to our research question.

We isolated five novels which featured clean
character descriptions within their summaries: Jane
Austen’s Emma, Charles Dickens’s A Tale of Two
Cities and Great Expectations, Fyodor Dosto-
evsky’s The Brothers Karamazov, and Charlotte
Brontë’s Jane Eyre. From the character descrip-
tions within these summaries we generated a total
of 605 Is this Me?-style examples (positive and
negative).6 The pre-trained classifier exhibited per-
formance above chance (61.63% accuracy), and
a surprising ability to handle challenging out of
domain sentences. While the model successfully
predicted a high level description of Emma Wood-
house (Table 6; Row 1), it struggled with a simi-
lar description of Estella Havisham (Row 2). The
model was also able to identify a character based
on the description of a pivotal plot point (Row 3),
but unsurprisingly struggled with more critical de-
scriptions (Row 4).

6 Conclusion

In the ideal case, an entity embedding would con-
stitute a compact representation of a person, their
character traits and life story, and would allow for
inferences about that person, including story arcs
in which that person is likely to occur. What is the
best way to learn embeddings for entities, and what
can be learned from them? We have considered
this question for the case of literary characters. We
have trained entity embeddings through a masked
prediction task, reading a collection of novels from
begininng to end. We found that when trained con-
tinuously, the entity embeddings did well at the Is
this Me? task: Given a target entity embedding,
and given a sentence of the novel with a masked en-
tity mention, is this a mention of the target entity?
The Is this Me? task becomes much harder when
we “skip ahead”, training only on the first third of
a novel and then evaluating on the middle and end.
The task also becomes much harder when applied
to Wikipedia summaries of novels, which show a
marked domain difference from the novels them-
selves. Probing the entity embeddings that result
from the masked prediction task, we find that they
encode a good amount of information about the

6This set of examples may be found at
http://www.katrinerk.com/home/software-and-data.
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Novel Target Candidate Result Sentence
Emma Emma Emma + [MASK] the protagonist of the story is beauti-

ful high spirited intelligent and lightly spoiled
young woman from the landed gentry.

Great
Expecta-
tions

Estella Estella - She hates all men and plots to wreak twisted
revenge by teaching [MASK] to torment and
spurn men, including Pip who loves her.

A Tale
of Two
Cities

Miss
Pross

Miss
Pross

+ [MASK] permanently loses her hearing when
the fatal pistol shot goes off during her climac-
tic fight with Madame Defarge.

A Tale
of Two
Cities

Lucy
Manette

Lucy
Manette

- She is the golden thread after whom book the
second is named so called because [MASK]
holds her father and her family lives together
and because of her blond hair like her mother.

Table 6: Examples of the Is this Me? continuously trained classifier’s performance on out-of-domain masked
mentions found within the WikiNovels corpus. Non-target mentions have been de-masked for better readability.

entities. The gender of the literary character can in
many cases be recovered from the embedding, and
it is even often possible to identify a person from a
Wikipedia description of their characteristic traits.

Looking ahead, the training regime and trained
embeddings allow for many further analyses. We
would like to probe further into the “skipping ahead”
to better understand why it is so difficult. Intu-
itively, characters that undergo more development
across the length of a novel should be more diffi-
cult to predict. It is not clear to what extent this
is the case with the current model; this needs fur-
ther study. In addition, we would like to model
the change and development of characters more
explicitly, for example by representing them as a
trajectory over time rather than a single embedding.
It would also be beneficial to further explore the
ways in which character traits are implicitly present
within entity representations learned from the Is
this Me? task. While we attempted to probe this
superficially via the evaluation on out-of-domain
Wikipedia data, this data does not offer the anno-
tation that would be necessary to perform a more
in-depth analysis

We would also like to extend the model by in-
cluding additional relevant input. At the moment,
we essentially ask the model to bootstrap entity
representations from scratch, using only the con-
textualized sentence representations produced by
BERT and the current entity representations as in-
put. Other useful information such as semantic re-
lations (retrievable via dependency parse) may be
useful. We may also consider the kind of events and

modifiers that a given entity participates in to be
able to exploit patterns across character archetypes
(similar to Bamman et al. (2014)). We are also
looking to extend the model to directly model rela-
tions between characters as relations between entity
embeddings, to see whether this would help perfor-
mance and to see to what extent the interpersonal
relations of characters would be encoded in their
embeddings.

Overall, we find the results presented in the cur-
rent paper to be promising as a first step towards
natural language understanding systems that use
neural models of entities over time. As we have
outlined here, however, there is still much work to
be done.
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Abstract

Active learning has been shown to reduce an-
notation requirements for numerous natural
language processing tasks, including seman-
tic role labeling (SRL). SRL involves labeling
argument spans for potentially multiple predi-
cates in a sentence, which makes it challeng-
ing to aggregate the numerous decisions into
a single score for determining new instances
to annotate. In this paper, we apply two ways
of aggregating scores across multiple predi-
cates in order to choose query sentences with
two methods of estimating model certainty:
using the neural network’s outputs and us-
ing dropout-based Bayesian Active Learning
by Disagreement. We compare these meth-
ods with three passive baselines — random
sentence selection, random whole-document
selection, and selecting sentences with the
most predicates — and analyse the effect these
strategies have on the learning curve with re-
spect to reducing the number of annotated sen-
tences and predicates to achieve high perfor-
mance.

1 Introduction

The ability to identify the semantic elements of a
sentence (who did what to whom, where and when)
is crucial for machine understanding of natural lan-
guage and downstream tasks such as information
extraction (MacAvaney et al., 2017) and question-
answering systems (Yih et al., 2016). The process
of automatically identifying and classifying the
predicates in a sentence and the arguments that re-
late to them is called semantic role labeling (SRL).
The current state-of-the-art semantic role labeling
systems are based on supervised machine learning
and rely on large corpora in order to achieve good
performance. Large corpora have been created for
languages such as English (Weischedel et al., 2013),
but such resources are lacking in most other lan-
guages. Additionally, those corpora created may

still not translate well to other in-language domains,
due to sentence structure or domain-specific vocab-
ulary. Creation of additional annotated corpora
requires a significant amount of time and often the
hiring of domain experts, causing a bottleneck for
developing advanced NLP tools for other languages
and domains.

Active learning (AL) focuses on choosing only
the most informative and least repetitive instances
to have annotated, thereby reducing the total
needed annotation to train a supervised model,
without sacrificing performance. This is done by
iteratively re-training the model and assessing its
confidence in its predictions in order to choose addi-
tional data for annotation that would have maximal
impact on the learning rate.

Traditionally, practitioners use the model’s prob-
ability distributions for the annotation candidates to
quantify how informative a new training instance
would be for the model. However, state-of-the-
art SRL systems rely on deep learning, whose
predictive probabilities are not a reliable metric
of uncertainty. In lieu of this, Gal and Ghahra-
mani (2016) found that we can estimate model
confidence by calculating the rate of disagreement
of multiple Monte Carlo draws from a stochastic
model, accomplished by utilising dropout during
forward passes. Previous work (Siddhant and Lip-
ton, 2018)(Shen et al., 2017) has combined this
finding with Bayesian Active Learning by Disagree-
ment (Houlsby et al., 2011) as a way of selecting
informative instances for active learning for SRL
and other NLP tasks; hereafter referred to as DO-
BALD.

Semantic role labeling for a single sentence is a
complicated structural prediction, involving mul-
tiple predicates and varying spans. This complex-
ity makes identifying the training examples with
maximal impact more challenging. In this work,
we compare two ways of aggregating confidence
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scores for individual predicates into a unified score
to assess the usefulness of selecting a sentence for
active learning. We test these strategies with two
active learning approaches to calculating certainty
for a predicate instance: the model’s output proba-
bilities and a granular DO-BALD selection method.
Additionally, we compare the benefits of these AL
approaches with three baselines: random sentence
selection, random document selection, and select-
ing sentences with the most predicates.

We will discuss the practical workflow of SRL
annotation and the way this must be considered in
utilising active learning effectively to create new
datasets. Although the current standard data selec-
tion methodology for SRL corpora, which typically
involves selecting entire documents, leaves much
room for improvement by even passive strategies,
we will show that active learning can provide sig-
nificant reductions in annotation of both number
of sentences and number of predicates. We aim to
provide this comparison within the broader context
and understanding of SRL annotation in practice.

2 Background

Active learning begins with the selection of a clas-
sifier, a small pool of labeled training data (also
referred to as a seed set) for the classifier to initially
be trained on, and a large amount of unlabeled data.
AL is an iterative process where the classifier is
trained on the labeled data and then through some
query selection strategy, an instance or instances
are chosen from the unlabeled data for a human
annotator to provide a label for. Typically, they’re
chosen after the classifier attempts to predict labels
for the unlabeled data and provides feedback about
what instances may be the most informative. The
newly annotated data is then added to the pool of
labeled data that will be used to train the classifier
on the next iteration. This iteration continues until
some stopping criteria are met, such as the classi-
fier’s confidences about the remaining unlabeled
data exceeding a certain threshold, or simply until
funds or time are exhausted.

Proposition Bank (PropBank) (Palmer et al.,
2005) is verb-oriented semantic representation.
Predicates in text are assigned a roleset ID based
on the sense of the word, such as play.01 (to play
a game) or play.02 (to play a role). The roleset
determines the permissible semantic roles, or
arguments, for that predicate. The core arguments
are given generalised numbered labels, ARG0

Roleset id: give.01
transfer

Arg0 giver
Arg1 thing given
Arg2 entity given to

Table 1: PropBank roleset for give.01.

through ARG5. Typically an ARG0 is the agent
or experiencer, while ARG1 is typically the
patient or theme of the predicate. Additionally,
there are modifier arguments to incorporate other
semantically relevant information such as location
(ARGM-LOC) and direction (ARGM-DIR). The
following is an example of the arguments related
to the predicate ”give” according to the roleset in
Table 1:

[ARG0 She] had [Pred given] [ARG1 the answers]
[ARG2 to two low-ability geography classes].

Sentences may contain several predicates and
each predicate has its own arguments. Predicates
commonly consist of verbs, but also include nomi-
nalisations and predicative adjectives.

Many large corpora have been annotated in En-
glish, such as Ontonotes (Weischedel et al., 2013).
Although Ontonotes has since been retrofitted to
unify different parts of speech into the same role-
sets based on sense and given expanded nominali-
sations, light verb constructions, and other multi-
word expressions (O’Gorman et al., 2018), an ear-
lier version of it was released as the dataset for
the CoNLL-2012 shared task. This dataset is still
frequently used as an evaluation corpus for ex-
perimental SRL techniques. Additionally, there
are many domain-specific SRL corpora, such as
clinical records (Albright et al., 2013) and the
geosciences (Duerr et al., 2016). These domain-
specific annotations are necessary because the vo-
cabulary and sentence structure may differ too
much for models trained on more general text to
perform well.

Much of the text annotated with PropBank an-
notations was annotated using Jubilee (Choi et al.,
2010). The text is set up to be presented to annota-
tors in the order of the predicate’s lemma, enabling
annotators to concentrate on the differences be-
tween rolesets of particular lemmas and providing
efficiency through minimising context-switching.
With this methodology, annotation time can pri-
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marily be reduced by minimising the number of
predicates being annotated.

While this setup is typical of large-scale anno-
tation projects, it’s less feasible in the context of
active learning. If each iteration results in querying
annotators for only 100 sentences, there is little
benefit to splitting annotation tasks based on lem-
mas. The more practical approach is to annotate
on a sentence-by-sentence basis. In this case, re-
ducing predicates is still beneficial, but since the
cognitive burden of reading and understand the sen-
tence must be done anyway, reducing the number
of sentences is of high importance.

When new datasets are annotated, typically en-
tire documents are chosen. Annotation projects
frequently do several layers of annotation on the
same text, which may include NER, syntactic pars-
ing, SRL, coreference resolution, and event coref-
erence. In the case of SRL, this results in numerous
sentences with the same topic and vocabulary be-
ing used. The random selection of sentences used
as a baseline in active learning studies may be an
improvement over the selection criteria used in
practice since the distribution of it will result in a
more diverse dataset. For this reason, it’s important
when discussing how much annotation reduction
an AL technique provides by selecting individual
sentences to compare to the learning curve of ran-
dom selection, rather than the full dataset. Our
experiments include a whole-document selection
method to provide comparison.

3 Related Work

Active learning has been utilised with success in
numerous NLP tasks, such as named entity recogni-
tion (Shen et al., 2017), word sense disambiguation
(Zhu and Hovy, 2007), and sentiment classification
(Li et al., 2013). In recent years, active learning has
been applied to SRL. Since probabilities from off-
the-shelf NN models may sometimes be inaccessi-
ble, Wang et al. (2017) proposed working around
this by designing an additional neural model to
learn a strategy of selecting queries. Given an SRL
model’s predictions, this query model classifies in-
stances as requiring human annotation or not. Their
approach was a hybrid of active learning and self-
training. The self-training is enacted by accepting
the SRL model’s predicted labels into the train-
ing pool for future iterations when the sentence
was determined not to require human annotation.
This approach requires 31.5% less annotated data

to achieve comparable performance as training on
the entirety of the CoNLL-2009 dataset.

Koshorek et al. (2019) compared data selec-
tion policies while simulating active learning for
question-answer driven SRL (QA-SRL). QA-SRL
is a form of representing the meaning of a sentence
using question-answer pairs. Rather than annotat-
ing spans of text with argument names, such as
PropBank’s ARG0, annotators enumerate a list of
questions relating to the actions in a sentence, such
as who is performing an action and when is it hap-
pening, along with the corresponding answers from
the original text. This representation provides sim-
ilar coverage to PropBank, but can also represent
implicit arguments that aren’t directly represented
by the syntax.

The process of identifying spans that are argu-
ments of a predicate and the generation of questions
based on the arguments were treated as independent
tasks. To provide an approximate upper bound on
the learning curve, they simulated active learning
on the dataset, splitting the unlabeled candidates
into K subsets, and selecting the subset that im-
proved the model the most on the evaluation data.
Against this oracle policy, they compared the fol-
lowing selection strategies, sampling K random
subsets to choose from: selecting a random sub-
set, selecting the subset with the highest average
token count among sentences, and selecting the
subset that has the maximal average entropy over
the model’s predictions.

The uncertainty strategy performed worse than
random selection for argument span detection, and
was not tested for question generation. Selecting
the sentences with high token counts tended to im-
prove the F-score for argument span detection by
1-3% given an equal number of training instances
(and attaining 60% on the full dataset), while being
largely comparable to random selection for ques-
tion generation.

Active learning for SRL has also been applied in
combination with multi-task learning (Ikhwantri
et al., 2018), using a subset of PropBank roles
along with a new ”greet” role. The authors com-
pared single- and multi-task SRL, both with and
without active learning. Under multi-task learn-
ing the model jointly learns to identify semantic
roles as well as to classify tokens as entities such as
”Person” or ”Location”. They introduced a set of se-
mantic roles that accommodate conversational lan-
guage and annotated a small corpus of Indonesian
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chatbot data to provide training and testing data.
By selecting sentences using model uncertainty in
the single-task context, F-score was improved by
less than 1% compared to randomly selecting the
data.

Modern SRL systems utilise deep learning,
which poses a challenge to assessing the model’s
certainty in its predictions. The predictive proba-
bilities in the output layer cannot be reliably inter-
preted as a measure of model certainty. Gal and
Ghahramani (2016) proposed using dropout as a
Bayesian approximation for model certainty, esti-
mating it using the variation in multiple forward
passes.

This dropout principle was tested on numerous
NLP tasks by Siddhant and Lipton (2018), includ-
ing SRL. For their SRL experiments, they used a
neural SRL model based on the He et al. (2017)
model, with modifications to the decoding method
(instead using a CRF decoder) and increasing the
dropout rate from 0.2 to 0.25.

In comparison to the baseline of random se-
lection, they tested the classic uncertainty mea-
sure of using the output probabilities of the
model, normalised for sentence length, with two
Bayesian Active Learning by Disagreement meth-
ods for selecting additional instances: Monte Carlo
Dropout Disagreement (DO-BALD) and Bayes-by-
Backprop (BB-BALD). The DO-BALD method
applies dropout during multiple predictions of in-
stances in the unlabeled pool and selects instances
based on how many of those predictions disagree
on the most common label of the entire sequence.
This selection strategy is similar to the selection
method we propose in this paper, but with several
differences. The most significant difference is that
the authors treat agreement between predictions as
all-or-nothing, rather than allowing partial agree-
ment based on arguments. They also are using a
higher number of predictions (100 per sentence as
opposed to 5 per predicate) to calculate disagree-
ment between, which may be necessary in this all-
or-nothing approach. In contrast, we consider each
predicate-argument label sequence independently.

They tested their methods on both the CoNLL-
2005 and CoNLL-2012 datasets, which use Prop-
Bank annotation. While the Bayesian methods
were similar to the standard uncertainty selection
method in the case of SRL, these methods resulted
in approximately 2-3% increase for F-score com-
pared to random selection when training on the

same number of tokens. These results were much
more modest than results for other tasks such as
NER.

4 Data

We used two independent datasets for our experi-
ments: The English section of Ontonotes (version
5.0) (Weischedel et al., 2013) with the latest frame
updates (O’Gorman et al., 2018) and the colon can-
cer portion of THYME (Albright et al., 2013).

Ontonotes 5.0 consists of 1.5 million words
across multiple genres. The majority of this data is
sourced from news, but it also includes telephone
conversations, text from The Bible, and web data.
THYME is comprised of clinical notes and pathol-
ogy reports of colon and brain cancer patients. For
our experiments, we used only the colon cancer
portion. The data is split into training, validation,
and test subsets.

We simulated active learning on the training sub-
set of each corpus, dividing it into an initial seed
set and a set of sentences to select from. The ini-
tial seed sets for sentence-based experiments were
200 randomly chosen sentences. For the whole-
document baseline, the seed set is comprised either
of documents from multiple genres, totalling 200
sentences, in the case of Ontonotes; or a single
patient (consisting of two clinical notes and one
pathology report, totalling 195 sentences) in the
case of the THYME corpus.

In both cases, we utilised validation data to de-
termine early stopping. Due to the excessive com-
putational time required to predict the standard
validation sets for these corpora for every epoch
for every iteration, as well as the fact that a real-
world scenario would be unlikely to have such a
disproportionally large validation set to perform ac-
tive learning, we selected a subset of the validation
data for use. In the experiments involving selecting
individual sentences, we used the same randomly
chosen 250 sentences. In the case of the baselines
of choosing random documents, we used validation
datasets approximating 250 sentences, comprised
of whole documents.

Evaluation was performed on the standard test
subset for each respective corpus.

5 Model

We used AllenNLP’s (Gardner et al., 2018) imple-
mentation of a state-of-the-art BERT-based model
(Shi and Lin, 2019). Our training procedure for
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this model used 25 epochs or stopped early with a
patience of 5. Trained under the same experimen-
tal configuration on the full training subsets, this
model achieves an F-score of 83.82 and 83.48 on
the Ontonotes and THYME datasets respectively.

After training on the initial seed dataset, each
iteration of active learning selected batches of 100
sentences re-trained from scratch. In the case of
the whole-document baseline, for the creation of
each batch, we selected random documents until
the number of sentences selected met or exceeded
100.

6 Selection Methods

6.1 Model Output

We used the classic approach of selecting query
sentences based on the probability distribution over
labels from the model’s output. For each predicate
in a sentence, we summed the highest probability
for each token and then normalised by sentence
length. This results in a single confidence score for
the label sequence.

6.2 DO-BALD

The model output of neural networks are a poor es-
timate of confidence, due to their nonlinearity and
tendency to overfit and be overconfident in their pre-
dictions (Gal and Ghahramani, 2016)(Dong et al.,
2018).

Using Monte Carlo dropout as a Bayesian ap-
proximation of uncertainty, as proposed by Gal
and Ghahramani (2016), we applied a dropout rate
of 10% during the prediction stage. We employ
the Bayesian Active Learning by Disagreement
approach by predicting each candidate sentence
multiple times to select sentences based on how
often those predictions agree with each other.

The number of predictions used correspondingly
increases the time required to select data upon each
iteration. Gal and Ghahramani (2016) used be-
tween 1000 and 10 forward passes in their exper-
iments and Siddhant and Lipton (2018) used 100
per sentence when applying DO-BALD to SRL.
An ideal solution would minimise this variable for
efficiency with as little loss as possible in the ben-
efit gained by sampling the distribution. In our
experiments, we chose to perform 5 predictions per
predicate. Due to sentences containing multiple
predicates, this typically results in 10-15 predic-
tions per sentence.

Prediction 1 [ARG0 John Smith] [Pred bought] [ARG1 apples].
Prediction 2 [ARG0 John] Smith [Pred bought] [ARG1 apples].
Prediction 3 [ARG0 John Smith] [Pred bought] [ARG1 apples].
Prediction 4 [ARG0 John Smith] [Pred bought] [ARG1 apples].
Prediction 5 [ARG0 John] Smith [Pred bought] [ARG1 apples].

Table 2: An example of varying argument predictions
for a predicate, bought, by multiple forward-passes
with dropout.

From these predictions, agreement was calcu-
lated based on entire argument spans. For each
predicate in the sentence, we considered the percent
of predictions for each argument type that agreed
with the most frequent span choice for that type.
Referring to the example in Table 2, the most fre-
quently chosen span for ARG0 was ”John Smith”,
although two of the predictions chose only the par-
tial match of ”John”. In this case, since two out of
the five disagree with the most common prediction,
the argument ARG0 has a disagreement rate of 0.4.
The rate of disagreement was calculated for each
argument type present in the set of predictions and
then averaged to summarise the consensus for the
entire predicate-argument structure.

By examining the forward-pass predictions
predicate-by-predicate and argument-by-argument
to determine agreement, our approach is more gran-
ular than Siddhant and Lipton (2018)’s method of
determining disagreement from the mode of the
entirety of the sentence’s labels. Our strategy al-
lows for partial credit when the predictions are in
agreement about particular arguments.

6.3 Combining Predicate Scores
Since sentences often contain multiple predicates,
we must aggregate the scores into a single mea-
sure in order to rank sentences by their potential
informativeness. We propose two such ways of
combining the predicate scores, which we applied
to both the Output and DO-BALD methods of cal-
culating certainty of a single predicate-argument
structure:

• Average of Predicates (AP): The score for
all predicate-argument structures in a sentence
is averaged. This provides a balance between
the predicates in the sentence, but high con-
fidence for one predicate may diminish the
value of a more uncertain predicate.

• Lowest Scoring Predicate (LSP): The score
for a sentence is the lowest score of all the
predicate-argument structures present in the
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sentence. This strategy prioritises sentences
that contain a predicate that is most likely to
have a high impact on learning, although this
may allow selecting for sentences that require
annotating additional predicates that have al-
ready been learned well by the model.

In the case of DO-BALD, a sentence with two
predicates will have ten total forward-passes, five
for each predicate. In the following example,
a sentence contains one predicate that’s very
common and may likely already occur in the
dataset, come.01 (motion), and a second predicate
that’s less common, make it.14 (achieve or arrive
at).

[ARG0The governor] [ARGM-OutputD could]
[ARGM-NEG n’t] [Pred make it], so the lieutenant
governor came instead.

The governor could n’t make it, so [ARG1
the lieutenant governor] [Pred came] instead.

A plausible scenario is that the predictions of the
arguments for the rarer predicate ”make it” will be
in higher disagreement compared to the predictions
of the arguments for ”came”. In this case, the LSP
method will be more likely to select the sentence
than AP, since it will rank this sentence’s likely
informativeness based only on the disagreement
rate of ”make it”, whereas AP will average between
the two disagreement rates.

6.4 Baselines
We include three passive baseline measurements:

• Random Sentences (RandSent): Choose
random batches of sentences on each iteration
of active learning.

• Random Documents (RandDoc): Choose
random batches of entire documents, until the
chosen sentence batch size is reached.

• Most Predicates (MostPred) Choose
batches of sentences, selecting for those
with the highest number of predicates
present. Identification of predicates was done
automatically using AllenNLP.

7 Results

Out results are reported as a learning curve across
number of sentences (Figures 1, 3) and predicates

# sentences 300 600 900 1200 1500
Ontonotes

RandSent 55.48 64.32 71.00 72.02 74.95
RandDoc 61.26 64.27 70.20 72.31 73.59
MostPred 59.39 74.60 76.13 77.55 77.52
DO-BALD LSP 60.25 73.48 74.80 76.23 78.13
DO-BALD AP 62.26 63.92 66.28 69.83 67.29
Output LSP 61.91 70.29 71.08 73.27 74.87
Output AP 62.12 58.52 64.52 62.28 68.39

THYME
RandSent 64.53 72.07 74.23 75.67 76.88
RandDoc 49.32 64.23 67.11 73.62 75.21
MostPred 66.66 74.61 76.37 77.49 78.66
DO-BALD LSP 58.01 74.66 75.81 76.91 79.03
Output LSP 64.80 72.87 76.24 77.03 78.69

Table 3: F-score for number of sentences for each
query selection method: random sentences, random
documents, most predicates, DO-BALD (Lowest Scor-
ing Predicate and Average of Predicates), model output
(Lowest Scoring Predicate and Average of Predicates).
Sentence count is approximate for whole-document se-
lection.

Figure 1: Learning curve of F-score by number of sen-
tences in Ontonotes training data.

(Figures 2, 4) present in the training pool after each
iteration. Selected F-scores for the methods are
reported according to number of sentences (Table
3) and approximate number of predicates (Table 4)
in the training pool at various points.

7.1 Ontonotes

We can estimate the annotation savings gained by
the tested methods by examining the statistics re-
quired for each curve to reach a particular F-score.
For this purpose, we will choose 78% as a bench-
mark for a viable SRL model that can produce suf-
ficiently accurate results to feed into downstream
NLP applications.
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Approx. # predicates 1000 1500 2000 2500 3000
Ontonotes

RandSent 55.48 66.89 64.32 70.79 72.18
RandDoc 61.26 64.27 67.72 70.20 69.73
MostPred - - 59.39 - -
DO-BALD LSP 60.25 68.27 68.26 71.08 73.47
DO-BALD AP 62.43 66.61 69.67 70.12 70.53
Output LSP 61.91 68.83 70.29 71.03 72.28
Output AP 56.68 56.00 62.28 68.39 71.09

THYME
RandSent 66.47 72.06 72.25 76.28 75.67
RandDoc 64.23 67.11 73.32 75.35 76.23
MostPred - - 70.69 72.57 74.60
DO-BALD LSP 58.01 71.63 74.66 75.82 75.81
Output LSP 67.30 72.87 71.57 76.24 76.03

Table 4: F-score for approximate number of predicates
for each query selection method: random sentences,
random documents, most predicates, DO-BALD (Low-
est Scoring Predicate and Average of Predicates),
model output (Lowest Scoring Predicate and Average
of Predicates). MostPred takes too large of selections
to always be within range of these numbers.

Figure 2: Learning curve of F-score by number of pred-
icates in Ontonotes training data.

The passive selection of random sentences at-
tains this score after 3,000 sentences. The DO-
BALD LSP method and MostPred methods achieve
this score after 1,400 and 1,200 respectively, pro-
viding a 53%-60% reduction in data. Using the
model’s output with LSP provided a more slight,
but still significant, reduction of 10%. When se-
lecting whole documents, this performance was not
achieved until 4,126 sentences were in the training
pool. Both of the AP methods, which averaged the
predicates in the sentences, performed significantly
worse than the baseline.

On the other hand, the reduction in predicate
annotation offered by active learning was more
modest. The passive strategies of selecting ran-

Figure 3: Learning curve of F-score by number of sen-
tences in THYME training data.

dom sentences and documents required 9,333 and
11,598 predicates, respectively. DO-BALD LSP
required 7,673 predicates (18% fewer). The Most-
Pred strategy, which offered the best performance
on reducing sentences, didn’t achieve this until
11,460 predicates, almost comparable to random
whole-document selection. Output LSP provided a
negligible reduction, with 9,073 predicates.

The two selection methods that averaged the
predicates performed worse than the baselines by
sentences. One reason for this may be that the
presence of frequent, but easily learned, predicates
such as copulas inflating the average confidence of
the sentence.

In terms of assessing the impact of whole-
document selection, which is necessary for other
NLP tasks such as coreference, compared to sam-
pling individual sentences, the difference between
sentences (4,126 vs 3,000, respectively) and pred-
icates (11,598 vs. 9,333) required to reach our
benchmark was significant. Sampling individual
sentences reduces sentence annotation by 27% and
predicate annotation by 20% to reach our bench-
mark.

7.2 THYME
Due to the weak performance of the AP aggrega-
tion method on the Ontonotes dataset, we did not
perform those experiments on the THYME dataset.

As with our evaluation on the Ontonotes dataset,
we can consider the annotation requirements to
reach an F-score of 78.

The baseline sentence selection method obtains
this benchmark after 1,600 sentences. Consistent
with the results on the Ontonotes dataset, the DO-
BALD LSP and MostPred methods are the most
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Figure 4: Learning curve of F-score by number of pred-
icates in THYME training data.

efficient ways of selecting sentences, with both
requiring 60% fewer sentences to train a model
with a test F-score of 78. The Output LSP method
requires 18% fewer sentences.

With respect to predicates, once again we see the
baseline RandSent performance (4355 predicates)
significantly improved by DO-BALD LSP (20%
- 4355 predicates) and Output LSP (16% - 3666
predicates), but MostPred is a detriment (30% more
annotation - 5651 predicates).

8 Conclusions

Between the two proposed methods of aggregat-
ing predicate-argument structure scores into a sin-
gle value to represent a sentence, averaging across
them (AP) or only considering the weakest pred-
icate (LSP), our results show the latter to be sub-
stantially better.

Both selecting sentences for the most predicates
and selecting sentences with the predicate with the
lowest DO-BALD agreement offer a significant
53%-60% decrease in the number of sentences re-
quired to train the model to a viable performance
level. These findings are consistent for both the
broad, general Ontonotes corpus and the niche
colon cancer clinical note domain of the THYME
corpus.

We assessed the performance of these selection
strategies in terms of reducing both number of sen-
tences and number of predicates annotated. Typi-
cally, the SRL annotation process of a large annota-
tion project benefits most from a reduction of pred-
icates, due to presenting annotators with batches of
a specific predicate to annotate, thereby reducing
the cognitive load of switching between different

predicate frames. But in the case of projects at-
tempting to develop new corpora with significant
budget constraints that would most benefit from
an active learning approach, the piecemeal nature
of each annotation iteration makes this approach
less viable and likely necessitates presenting anno-
tators with the data sentence-by-sentence. In this
case, reducing the number of sentences will have a
more substantial impact than reducing the number
of predicates.

While both DO-BALD LSP and the simpler strat-
egy of selecting sentences with high predicate den-
sity provide significant reduction in sentence an-
notation, only DO-BALD LSP simultaneously re-
duced predicate annotation as well.

9 Future Work

Smaller batch sizes per iteration allow more effi-
cient selection of data since the model is updated
more frequently and we can reduce redundant infor-
mation content within the batch that would waste
annotation time. Using very small batches is not
tractable in tasks that require long model training
times. Koshorek et al. (2019) tested selection strate-
gies on randomly sampled batches of data, rather
than determining priority of individual instances,
but that waters down the benefits of using the selec-
tion heuristic. In the future, we plan to investigate
ways to balance syntactico-semantic redundancy
with the model-based selection techniques in or-
der to improve the learning rate for SRL, while
reducing training time for each iteration.

We chose to use a random 200 sentences as
our seed set, but the ideal amount and method of
selection for active learning for SRL remains an
open question. If too few sentences are chosen, or
they’re not sufficiently diverse, we may encounter
the missed class effect (Tomanek et al., 2009),
where the model becomes overconfident about in-
stances that greatly differ from what’s present in its
current training pool, and fails to select them for
annotation. On the other hand, selecting too large
of a seed set negates the benefits of active learning.
In future work we plan to explore unsupervised
methods of selecting a semantically diverse seed
set. Prior work (Dligach and Palmer, 2011) (Peter-
son et al., 2014) shows that language models may
offer an unsupervised way of selecting rare verb
instances and thus beneficial SRL instances.

219



Acknowledgments

We gratefully acknowledge the support of
DARPA AIDA FA8750-18-2-0016 (RAMFIS),
NIH: 5R01LM010090-09 THYME, Temporal Re-
lation Discovery for Clinical Text, and NSF ACI
1443085: DIBBS Porting Practical NLP and ML
Semantics from Biomedicine to the Earth, Ice and
Life Sciences. Any opinions, findings, and conclu-
sions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily
reflect the views of any government agency. Fi-
nally, we thank the anonymous IWCS reviewers
for their insightful comments and suggestions.

References
Daniel Albright, Arrick Lanfranchi, Anwen Fredriksen,

IV Styler, William F, Colin Warner, Jena D Hwang,
Jinho D Choi, Dmitriy Dligach, Rodney D Nielsen,
James Martin, Wayne Ward, Martha Palmer, and
Guergana K Savova. 2013. Towards comprehensive
syntactic and semantic annotations of the clinical
narrative. Journal of the American Medical Infor-
matics Association, 20(5):922–930.

Jinho Choi, Claire Bonial, and Martha Palmer. 2010.
Multilingual Propbank annotation tools: Corner-
stone and jubilee. In Proceedings of the NAACL
HLT 2010 Demonstration Session, pages 13–16, Los
Angeles, California. Association for Computational
Linguistics.

Dmitriy Dligach and Martha Palmer. 2011. Good seed
makes a good crop: Accelerating active learning
using language modeling. In Proceedings of the
49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 6–10, Portland, Oregon, USA. Associa-
tion for Computational Linguistics.

Li Dong, Chris Quirk, and Mirella Lapata. 2018. Confi-
dence modeling for neural semantic parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 743–753, Melbourne, Australia. As-
sociation for Computational Linguistics.

R. Duerr, A. Thessen, C. J. Jenkins, M. Palmer, S. My-
ers, and S. Ramdeen. 2016. The ClearEarth Project:
Preliminary Findings from Experiments in Applying
the CLEARTK NLP Pipeline and Annotation Tools
Developed for Biomedicine to the Earth Sciences.
In AGU Fall Meeting Abstracts, volume 2016, pages
IN11B–1625.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as
a bayesian approximation: Representing model un-
certainty in deep learning. In Proceedings of the
33rd International Conference on International Con-
ference on Machine Learning - Volume 48, ICML’16,
page 1050–1059. JMLR.org.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–
6, Melbourne, Australia. Association for Computa-
tional Linguistics.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and what’s next. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
473–483, Vancouver, Canada. Association for Com-
putational Linguistics.

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani,
and Máté Lengyel. 2011. Bayesian active learn-
ing for classification and preference learning. arXiv
preprint arXiv:1112.5745.

Fariz Ikhwantri, Samuel Louvan, Kemal Kurniawan,
Bagas Abisena, Valdi Rachman, Alfan Farizki
Wicaksono, and Rahmad Mahendra. 2018. Multi-
task active learning for neural semantic role labeling
on low resource conversational corpus. In Proceed-
ings of the Workshop on Deep Learning Approaches
for Low-Resource NLP, pages 43–50, Melbourne.
Association for Computational Linguistics.

Omri Koshorek, Gabriel Stanovsky, Yichu Zhou, Vivek
Srikumar, and Jonathan Berant. 2019. On the
limits of learning to actively learn semantic rep-
resentations. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 452–462, Hong Kong, China. Asso-
ciation for Computational Linguistics.

Shoushan Li, Yunxia Xue, Zhongqing Wang, and
Guodong Zhou. 2013. Active learning for cross-
domain sentiment classification. In Proceedings of
the Twenty-Third International Joint Conference on
Artificial Intelligence, IJCAI ’13, page 2127–2133.
AAAI Press.

Sean MacAvaney, Arman Cohan, and Nazli Goharian.
2017. GUIR at SemEval-2017 task 12: A frame-
work for cross-domain clinical temporal information
extraction. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 1024–1029, Vancouver, Canada. Association
for Computational Linguistics.

Tim O’Gorman, Sameer Pradhan, Martha Palmer, Ju-
lia Bonn, Katie Conger, and James Gung. 2018.
The new Propbank: Aligning Propbank with AMR
through POS unification. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An annotated cor-

220



pus of semantic roles. Computational Linguistics,
31(1):71–106.

Daniel Peterson, Martha Palmer, and Shumin Wu. 2014.
Focusing annotation for semantic role labeling. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
Reykjavik, Iceland. European Language Resources
Association (ELRA).

Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov
Kronrod, and Animashree Anandkumar. 2017.
Deep active learning for named entity recognition.
In Proceedings of the 2nd Workshop on Representa-
tion Learning for NLP, pages 252–256, Vancouver,
Canada. Association for Computational Linguistics.

Peng Shi and Jimmy Lin. 2019. Simple BERT mod-
els for relation extraction and semantic role labeling.
arXiv preprint arXiv:1904.05255.

Aditya Siddhant and Zachary C. Lipton. 2018. Deep
Bayesian active learning for natural language pro-
cessing: Results of a large-scale empirical study.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2904–2909, Brussels, Belgium. Association
for Computational Linguistics.

Katrin Tomanek, Florian Laws, Udo Hahn, and Hin-
rich Schütze. 2009. On proper unit selection in
active learning: Co-selection effects for named en-
tity recognition. In Proceedings of the NAACL HLT
2009 Workshop on Active Learning for Natural Lan-
guage Processing, pages 9–17, Boulder, Colorado.
Association for Computational Linguistics.

Chenguang Wang, Laura Chiticariu, and Yunyao Li.
2017. Active learning for black-box semantic role
labeling with neural factors. In Proceedings of the
Twenty-Sixth International Joint Conference on Arti-
ficial Intelligence, IJCAI-17, pages 2908–2914.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Ni-
anwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, Mohammed El-Bachouti, Robert Belvin,
and Ann Houston. 2013. OntoNotes Release 5.0.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206, Berlin,
Germany. Association for Computational Linguis-
tics.

Jingbo Zhu and Eduard Hovy. 2007. Active learn-
ing for word sense disambiguation with methods for
addressing the class imbalance problem. In Pro-
ceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 783–790, Prague, Czech Republic.
Association for Computational Linguistics.

221



Proceedings of the 14th International Conference on Computational Semantics, pages 222–227
June 17–18, 2021. ©2021 Association for Computational Linguistics

SemLink 2: Chasing Lexical Resources

Kevin Stowe1, Jenette Preciado2, Kathryn Conger3, Susan Brown3,
Ghazaleh Kazeminejad3, James Gung3, Martha Palmer3

1Ubiquitous Knowledge Processing Lab (UKP Lab), Department of Computer Science
Technical University of Darmstadt
2SoundHound, Boulder, Colorado
3University of Colorado, Boulder

1stowe@ukp.informatik.tu-darmstadt.de
2jenette.preciado@gmail.com

3{firstname.lastname}@colorado.edu

Abstract

The SemLink resource provides mappings be-
tween a variety of lexical semantic ontologies,
each with their strengths and weaknesses. To
take advantage of these differences, the ability
to move between resources is essential. This
work describes advances made to improve the
usability of the SemLink resource: the auto-
matic addition of new instances and mappings,
manual corrections, sense-based vectors and
collocation information, and architecture built
to automatically update the resource when
versions of the underlying resources change.
These updates improve coverage, provide new
tools to leverage the capabilities of these re-
sources, and facilitate seamless updates, ensur-
ing the consistency and applicability of these
mappings in the future.1

1 Introduction

Hand-crafted lexical resources remain an impor-
tant factor in natural language processing research,
as they can offer linguistic insights that are cur-
rently not captured even by modern deep learn-
ing techniques. SemLink is a connecting point
between a number of different lexical semantic
resources, providing mappings between different
word senses and semantic roles, as well as a cor-
pus of annotation (Palmer, 2009). SemLink has a
variety of applications, from performing linguis-
tic analysis of its component parts and their rela-
tions (Reisinger et al., 2015), extracting thematic
role hierarchies (Kuznetsov and Gurevych, 2018),
probing of linguistic formalisms (Kuznetsov and
Gurevych, 2020), and computational methods for
automatic extraction, improvement, and classifica-
tion of computational lexical resources (Kawahara
et al., 2014; Peterson et al., 2016, 2020).

1https://github.com/cu-clear/semlink

SemLink incorporates four different lexical re-
sources: PropBank (Palmer and Kingsbury, 2005),
VerbNet (Kipper-Schuler, 2005), FrameNet (Baker
and Lowe, 1998), and WordNet via the OntoNotes
sense groupings (Weischedel et al., 2011).2 Each
resource has different goals and benefits: WordNet
has the greatest coverage, with very fine-grained
word senses grouped into small “synonym sets”.
These are linked to each other with semantic re-
lations like hyponymy and troponymy. PropBank
defines the argument roles for its verb and even-
tive noun senses, information not available in WN.
FrameNet groups verbs, eventive nouns and some
adjectives into semantic frames, with fine-grained
argument roles defined for each frame. These
frames are linked by various relations, such as “in-
herited by” and “used by”. VerbNet groups verbs
into more or less semantically coherent classes
based on shared syntactic alternations. This re-
source uses fairly coarse-grained argument roles
and provides a list of typical syntactic patterns that
the verbs of a class prefer. In addition, VN provides
a semantic representation for each syntactic frame,
using the class’s argument roles in a first-order-
logic representation that incorporates Generative
Lexicon subevent structure.

Semlink provides a bridge between these re-
sources, allowing users to take advantage of their
different features and strengths. For example, the
mappings between the semantic role labels allow
users to accurately convert annotations done with
PB roles to VN roles and combine their respective
data sets into a much larger corpus of training and
test data.

The goal of SemLink is to link senses between
resources, maximizing the effectiveness of each.
It is composed of two primary assets: mappings

2For the remainder of this work, we will refer to each by
its acronym: PB, VN, FN, and ON, respectively.
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between resources, and a corpus of annotated in-
stances. These are verbs in context that receive
a PB roleset annotation, and VN class tag, a FN
frame tag, and a sense tag based on the ON group-
ings.

The problem we address here is the constantly
changing nature of these resources. They are evolv-
ing: new versions incorporate new semantics, new
senses, better lexical coverage, and more consistent
formatting. This makes it difficult to provide static
links between them. SemLink has seen previous up-
dates (Bonial et al., 2013) that improve consistency,
but since that time many of the resources it links
have undergone significant overhauls. Our work
updates SemLink via four distinct contributions:

1. Automatic and manual updates to SemLink
mappings based on new resource versions

2. Automatic addition of SemLink annotation
instances, nearly doubling its size

3. Addition of sense embeddings and sub-
ject/object information

4. Release of software for automatic updates

2 Resources

A brief description of each resource in SemLink
follows, along with the changes in each that have
been implemented since the previous update.

2.1 PropBank
The previous version of SemLink incorporated PB
annotation in the form of roleset mappings to VN
classes and FN frames. It also contains gold an-
notation over sections of the Wall Street Journal
corpus, with verbs annotated with their PB role-
set. Each verb’s arguments are annotated with their
correct PB argument relations. These PB rolesets,
mappings, and annotations remain core elements
of SemLink, and we have expanded and updated
each component for SemLink 2.0.

2.2 VerbNet
SemLink incorporates VN as an intermediary be-
tween the coarse-grained PB and fine-grained FN.
Mapping files are provided that link PB rolesets
to VN senses, which are then in turn linked to FN
frames. The previous version of SemLink was built
upon VN 3.2: this resource has since been updated
to a new version (3.3), with substantial changes
in class membership, thematic roles (Bonial et al.,
2011), and semantics (Brown et al., 2018, 2019).
We have incorporated these changes into SemLink

2.0 automatically where possible and manually
where necessary.

2.3 FrameNet
The previous version of SemLink was built upon
FN version 1.5; since then FN has released a new
version (1.7), and this led to many consistency er-
rors across resources. SemLink 2.0 provides man-
ual updates to match the newest version of FN, as
well as other consistency improvements.

2.4 OntoNotes Sense Groupings
The SemLink resource focuses less on these group-
ings than on PB, VN, and FN: it only includes ON
as annotations on the provided instances. The ON
resource has remained consistent since the release
of the previous SemLink version, and thus the in-
stance annotations remain valid.

3 Improvements and Additions

SemLink incorporates these resources via mapping
files (for PB, VN, and FN) and predicate instance
annotations (including all four resources). We will
now overview each of these artifacts, highlighting
the updates in our new release and the tools and
practices used to generate these updates.

3.1 PB to VN mappings
The previous version of SemLink contains two
files comprising the mappings from PB to VN: a
mapping file that links PB rolesets to VN senses,
and a mapping file linking PB arguments (ARG0,
ARG1, etc) to VN thematic roles (Agent, Patient,
etc). These files contain a growing number of inac-
curacies as the resources have been updated, partic-
ularly with PB’s update to unified frame files and
VN’s update to the version 3.3.

To deal with these constant updates, we’ve im-
proved the system that automatically generates
these mapping files based on ground-truth map-
pings present in PB. The PB frame files contain
links from each roleset to possible VN classes: this
allowed us to generate a large number of accurate
mappings based purely on the information present
in PB. The main update to this architecture is the
development of VN class matching. We can now
find if verbs have moved between classes, allowing
the automated updater to find more valid instances.
This system incorporates soft class matching for
when verbs moved between VN subclasses, as well
as exploiting available WordNet mappings in VN
to identify if a verb moved to a new class.
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The mappings generated by this system are not
exhaustive: the ever-changing nature of the two
projects makes it impossible to have all possible
mappings. One of the primary goals of SemLink
is to ensure that the most consistent possible map-
pings between resources is available, and our up-
date helps to foster this consistency by making
available our software for updating and evaluating
the accuracy of these mappings. This is done by
automatically generating mappings from PB to VN
based on PB frame files, combining them with the
previous version of manual mappings, and check-
ing both of these mappings for consistency.

This process produces an update mapping re-
source from PB to VN. While these mappings don’t
eliminate the need for some manual annotation, as
substantive changes can require new mappings to
be added or deleted, it does allow the resource to
be consistently and automatically updated while
preserving only valid mappings.

3.2 VN to FN mappings

SemLink contains similar mapping files from VN
to FN: one mapping from VN senses to FN frames,
and one mapping from VN thematic roles to FN’s
typically more specific frame elements. As with
PB and VN, FN has seen a significant update (to
version 1.7) since the previous SemLink release,
and these mappings files have become outdated.

Unlike PB, neither VN nor FN implicitly keeps
track of mappings to the other resource: the only
linking between them is in SemLink’s mapping
files. Therefore, for these files, we employed a
semi-automated system to identify incorrect map-
pings and make updates. We run a script to iden-
tify whether VN class/role and FN frame/frame
elements are valid. This is done by checking if
the classes, roles, frames and frame elements still
exist in the current version of the resource, and
then checking if the roles and frame elements are
still valid for the given classes and frames. We then
pass them to annotators if there are errors. This was
done for all of the mappings in the previous version,
yielding 2,387 valid mappings, 160 of which came
from manual re-annotation. These mappings were
then compiled to form the new VN to FN mapping
file for SemLink 2.0.

For both PB to VN and VN to FN mappings,
we employed automatic procedures that allowed
us to update outdated SemLink instances to match
the current resources. However, these updates are

Previous Version SemLink 2.0
Resource Count Count Added Coverage

PB 75k 148k 73k .99
VN 75k 97k 22k .65
FN 37k 42k 5k .28
ON 28k 48k 21k .33

Total 75k 149k 74k +98%

Table 1: Summary of Annotation Updates to SemLink

necessarily not comprehensive: we only updated
instances for which we could identify automatic
mappings between old and new. If the resources
changed in unpredictable ways (ie. a sense tag
changed itself changed meanings), these mappings
may still be inconsistent. We therefore include for
each instance in SemLink 2.0 and indicator for each
mapping whether it was derived from an automatic
procedure or manually annotated.

3.3 Annotations
The second artifact produced for SemLink is a set
of annotations. These consist of predicates anno-
tated with PB frames, VN senses, FN frames, ON
groupings, and each resource’s representation of
the predicates’ arguments. An example of an anno-
tation instance is shown in Figure 1.

3.3.1 Updates to Previous Annotations
All instances underwent an automatic update pro-
cess based on our revision of mapping resources.
The sense tags for each resource are validated, and
automatically updated via mappings if errors are
found. This process is repeated for role arguments.

This was done for the 74,920 instances available
with the previous SemLink. In order to keep the
resource as large and as flexible as possible, as long
as an instance had a PB roleset, we didn’t remove
instances with invalid mappings: rather, we kept
these instances and left the additional information
(VN, FN, etc) as ”None”. This allows us to main-
tain the size of the resource and while preserving
only the accurate annotations.

3.3.2 New Annotations
In addition to updating the previous annotations,
we were also able to leverage additional annota-
tion projects to expand the scope of the SemLink
resource. We gathered 72,822 additional instances
from the OntoNotes 5.0 release annotated with the
unified PB rolesets (Weischedel et al., 2011), and
employed our updated mapping files to automati-
cally attribute VN and FN information to them. We
also collected 5,300 instances that were manually
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Figure 1: SemLink annotation instance for the verb ”ringing” in the above sentence.

annotated with VN classes (Palmer et al., 2017),
and extracted PB and FN information from these
based on mapping files.

Similar to the updates above, we automatically
check these instances to determine if their anno-
tations were valid (the class, sense, or frame still
exists) in the modern versions of each resource.
and then added them to SemLink’s annotation cor-
pus. A summary of the update to the annotations is
shown in Table 1.

From this summary we can see substantial im-
provements to the dataset across all resources, with
the greatest impact coming from the new annota-
tions. However, as we automatically add instances
based on PB and VN annotation, they often lack
mappings to the other resources. This, combined
with the fact that some VN and FN annotations
were removed due to inconsistency with the lat-
est versions, leads to a decrease in the percent of
instances tagged with each particular resource, de-
spite the increase in total annotations.

3.4 VN Tools

In order to ensure the applicability of these map-
pings and lexical resources, we include two addi-
tional components: sense embeddings and common
arguments. These are based on VN, as it directly
links to PB and FN.

3.4.1 VN Embeddings

We train embeddings based on VN in a style sim-
ilar to that of (Sikos and Padó, 2018). We tag a
corpus of 4.5m sentences from Wikipedia with a
VN class tagger (Palmer et al., 2017). We then
learn embeddings for both VN classes and spe-
cific VN senses by modifying the resulting corpora.
First, to generate generic VN class embeddings,
we replace the verb directly with its labeled class.
This allows the embedding model to learn a rep-
resentation that generalizes over all instances of a
particular VN class, and provides an abstraction
away from the individual lexical items. Second,
to generate sense-specific word embeddings, we

concatenate the class information along with the
verb. This yields more specific embeddings that
concretely reflect contextual usages of the given
verb. The resulting sentences can then be fed to
a lexical embedding algorithm of choice: here we
use GloVe (Pennington et al., 2014) and Word2Vec
(Mikolov et al., 2013) embeddings of size 100.

These embeddings have proven an effective ad-
dition to traditional embeddings for classification
tasks, and even have advantages over contextual
embeddings. Stowe (2019) show that incorpo-
rating VN-based sense embeddings into LSTM-
based metaphor detection improves results over
using ELMo embeddings alone, despite the fact
that the contextualized ELMo embeddings should
independently capture sense information (Peters
et al., 2018).3

These methods for learning embeddings are
broadly applicable to any lexical resource, and are
adaptable to changing versions; the embeddings
provided are trained using VN 3.3, and as we pro-
vide links from VN to PB and FN, we further be-
lieve that the accompanying embeddings can be
directly linked to these two resources.

3.4.2 VN Common Arguments
In addition to embeddings, we also collect argu-
ment information based on VN class tagging. We
collect for each class the most frequent subjects and
objects of verbs tagged with that class. This is done
by tagging the above Wikipedia corpus with VN
classes, then using a dependency parser to extract
subject and object information (Chen and Manning,
2014). This automated procedure does inherently
introduce noise, but it allows us to form a general
idea of kind of arguments that typify the semantic
roles and to better understand the syntactic and col-
locational properties of verb classes. Practitioners
who are researching verb classes can use these to
better understand from a quantitative perspective
what kinds of subjects and objects are likely to ap-

3Note that these results are from embeddings trained on
VN version 3.2; they have since been updated to version 3.3
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pear with given verb classes, further facilitating
research into lexical semantics.

3.5 Software

In order to manage these updates, we’ve built a
substantial number of infrastructure components
to support the interaction between these resources.
This includes interfaces to each resource, to Sem-
Link, and tools for making automatic updates based
on different versions. The SemLink scripts have
the flexibility to use and compare various different
versions of each resource; this allows us to quickly
update SemLink to new versions.

This software will be released along with the new
version via GitHub, with the hope that the commu-
nity can maintain and improve its functionality as
necessary, and to allow researchers to be able to eas-
ily interact with both the resources linked and the
SemLink resource itself. Critically, this resource
will mitigate the damage of future changes to each
individual resource, as SemLink can painlessly be
updated to accommodate new versions.

4 Conclusions and Future Work

Our updates to SemLink consist of four main com-
ponents. (1) We update SemLink data to match
the current versions of each resource through auto-
matic and manual methods. (2) We add annotations
to improve the coverage of the resource. (3) We
add sense embeddings and argument information.
(4) We provide automatic tools to allow the Sem-
Link resource to be consistently updated. As these
lexical resources are always changing, these tools
are necessary for the resource to remain viable, and
while the process of linking semantic resources can
likely never be fully automated, these tools can
assist in this process. This work then comes with
two artifacts: the new SemLink resource (mapping
files and annotations) as well as architecture for
updating and managing SemLink.

The coverage is by no means complete and many
lexical items in each resource contain no viable
mappings. Manual annotation of links between
resources is essential for the success of the Sem-
Link resource: while we can automatically filter
out inaccurate mappings when resources change,
this leaves blind spots where we have incomplete
mappings, and manual annotation is currently the
most accurate way to cover these gaps.

Another direction of future work is evaluating
the usefulness of these linked resources. While

there have been evaluations comparing the three
semantic role labelling frameworks provided via
PB, VN, and FN (Hartmann et al., 2017), a full-
scale evaluation of the links between them is yet
to be done, and may provide valuable insight not
only into how to best improve SemLink, but also
into how these kinds of linked resources can be
best employed. While modern NLP focuses largely
around end-to-end models that implicitly capture
semantic relations, there is still a role for hand-
curated lexical resources to play, and we believe
SemLink can be an effective resource for those
studying computational lexical semantics, word
sense disambiguation and semantic role labelling,
and other tasks requiring linked lexical resources.
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Abstract

In this paper, we measure variation in fram-
ing as a function of foregrounding and back-
grounding in a co-referential corpus with a
range of temporal distance. In one type of
experiment, frame-annotated corpora grouped
under event types were contrasted, resulting in
a ranking of frames with typicality rates. In
contrasting between publication dates, a differ-
ent ranking of frames emerged for documents
that are close to or far from the event instance.
In the second type of analysis, we trained a di-
agnostic classifier with frame occurrences in
order to let it differentiate documents based on
their temporal distance class (close to or far
from the event instance). The classifier per-
forms above chance and outperforms models
with words.

1 Introduction

To understand streams of news and blogs in terms
of the ways in which events can be framed, we need
to model how these streams develop over time in
relation to the common ground that is created. The
common ground between interlocutors plays an es-
sential role in how they refer to real-world event in-
stances.1 Following pragmatic theory (Grice, 1975;
Horn, 1998; Clark et al., 1977), when this com-
mon ground is low, the speaker, in an attempt to
be cooperative, needs to be as informative as possi-
ble, using detailed and marked descriptions of the
main event instance. When the common ground
is high, the speaker can optimally use less marked
expressions and hence background the main event
instance in order to foreground related events with
a higher informative value (see also the ground-
ing principles of Grimes (2015). The less marked
expression then implicates prior knowledge of the
event instance, which has become unnecessary to

1In this paper we use the term event instance for event
instances of a specific event type, e.g., an instance of shooting

explicate. This is shown in the next two examples
that report on instances of the same event type at
different points in time (the-day-before versus a-
week-ago). In example (1a), reference to the event
instance is marked by using multiple indefinite ex-
pressions of different syntactic categories in refer-
ence to subevents: a shooting in which a man died.
In example (1b), reference to the event instance
is restricted to one definite expression last week’s
murder, which presupposes the event instance as
shared knowledge and implicates its details. The
rest of the text in the example focuses on other
events.

(1) a. One man died in a shooting early
Thursday morning in southwest Hous-
ton. 2

b. One of the four suspects wanted in last
week’s murder of Keith Thompson was
arrested Wednesday morning at a home
in Springfield, according to the Jack-
sonville Sheriff’s Office. 3

Given this theory about variation in referential
expressions, we can expect that, from the onset of
an unexpected real-world event instance (e.g., a
shootout), the constantly developing narrative of
related events (e.g. pursuits, arrests, trials) will en-
force these mechanics of foregrounding and back-
grounding based on growing mutual knowledge. In
other words, the common ground determines the
extent to which the speaker is able to background
(i.e., use minimal expressions or implicatures) the
main event in order to foreground related subjects.

2https://www.chron.com/houston/articl
e/Shooting-levaes-man-dead-in-SW-Houst
on-6688587.php, published on the same day as the event
instance.

3http://www.news4jax.com/news/crime/1-
arrest-in-westside-murder, published a week after
the event instance.
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Suppose we want to test these principles empir-
ically by examining references in a large dataset,
e.g., a referentially grounded corpus. This requires
a large collection of documents all referencing sin-
gle event instances, with a large spread of tempo-
ral distance between the publication dates and the
event instance date. However, most of the available
co-referential corpora hardly contain multiple ref-
erence texts for the same event instance, let alone
with a strong range of publication dates (Ilievski
et al., 2016; Postma et al., 2016).

In this paper, we propose to overcome the data
sparsity by merging data of event instances of the
same event type to study foregrounding and back-
grounding phenomena. We assume that it takes
approximately the same amount of time for infor-
mation, on for instance shooting events, to become
common ground between members of a society.
Furthermore, such a specific event type activates
a coherent set of conceptual properties typically
used in reference (Vossen et al., 2020; Morris and
Murphy, 1990). Yet, this use of reference might de-
pend on mutual knowledge. Based on the discussed
pragmatic principles, we claim that both referential
expressions and their meanings vary across docu-
ments with different temporal distances to event
instances: over time, relevant information about
the event instance is left implicit as a means to
background reference to the event instance and
foreground reference to novel information.

In order to find evidence for our claim, we use
FrameNet (Fillmore et al., 2003) as a proxy to char-
acterize event semantics. Our prediction is that
those frames typically associated with an event
type, called typical frames, will also show a dif-
ferent foregrounding and backgrounding distribu-
tion as a function of the increased common ground.
We expect that subevents of the event instance are
foregrounded in texts with little temporal distance,
whereas related disjoint events are expected to be
foregrounded in texts with large temporal distance.
This difference should be reflected by their frames.

To test this hypothesis, we applied a method
based on Grootendorst (2020) to learn frame typi-
cality rates for event types from a large collection
of news reports that were processed with an au-
tomatic frame-labeler (Swayamdipta et al., 2017).
Furthermore, we trained a Linear Support Vector
Machine classifier to distinguish between referen-
tial texts with close temporal distance and further
temporal distance on the basis of the typical frames

evoked by the texts. We contrast this classifier
against models trained on words. We provide ev-
idence that frame distributions are learned by the
classifier to perform the task, whereas this is lesser
the case for word based models. Our analysis of
the results shows that the typical frames evoked
in texts with a short temporal distance are back-
grounded in texts of larger temporal distance by
means of implicature.

The main contributions of our work are:

• We present HDD (Historical Distance Data),
an extensive corpus of reference texts for
event instances grouped under event types,
with a large spread of temporal distance to the
event instance;

• We derive a ranking of typical frames cross-
event types;

• We show that frames are more informative
than their predicates in training a Linear Sup-
port Vector to predict the temporal distance
class given a document;

• We show that when contrasting frames for an
event type between temporal distance classes,
the top ranked frames reflect foregrounded
topics.

Our results will help future systems in detecting
events in texts and their framing but also help the
computational modeling of pragmatics and impli-
catures.

This paper is structured as follows. We first
describe relevant past work in Section 2. We then
introduce our methodology in Section 3. Section 4
provides the results of our experiments, which we
discuss in Section 5. We conclude in Section 6.

2 Background

In this section, we discuss previous work that has
been done with respect to event foregrounding, (2.1
FrameNet (2.2), temporal distance (2.3) and event
corpora (2.4).

2.1 Event foregrounding

Different studies have focused on the recognition
and characterization of foregrounded events. On
the sentence level, foregrounded events show high
probability of appearing in main clauses, being ac-
tively voiced and having a high transitivity (Kay
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and Aylett, 1996; Decker, 1985). These observa-
tions are applied by Upadhyay et al. (2016) to iden-
tify the most significant event in a news article.

On the discourse level, it has been observed that
normalized frequencies of co-referential event men-
tions play an important role in detecting the cen-
tral event of a document (Filatova and Hatzivas-
siloglou, 2004a,b). According to Choubey et al.
(2018), another crucial factor is the scope of the
chain of co-referential mentions throughout the
document. These mentions foreground subevents
in reference to the central event. The discussed
examples in Choubey et al. (2018) show that back-
grounded events scarcely occur throughout the
document, supporting the reader in grounding the
foregrounded central event in a commonly known
prior event. In line with their proposal, both
died and shooting in (1a) form a chain of fore-
grounded subevents that make reference to the cen-
tral event of the document. In (1b), arrested is the
foregrounded central event, but murder is a back-
grounded event.

In this paper, we propose that the mentions that
foreground the central event instance also activate
a coherent set of FrameNet frames typically used
in reference to the event type. In analyzing HDD,
we find that this set of typical frames is different
for documents written long after the event instance,
as an effect of backgrounding that event instance
and foregrounding related disjoint events.

2.2 Frames as implicatures

We use FrameNet as a proxy to characterize event
semantics in this paper.4 FrameNet is a lexi-
cographic project anchored in the paradigm of
frame semantics (Fillmore et al., 2003; Fillmore
and Baker, 2010; Baker et al., 2003). Its lexical
database consists of over 1200 semantic frames.
Each frame is considered a schematic representa-
tion of a situation involving semantic roles, and
is assumed to be evoked by a lexical unit, i.e., a
lemma in one of its senses. Each frame exhibits an
inventory of lexical units. Below, (1) is extended
with FrameNet annotations.

(2) a. One man DEATH�died in a
KILLING�shooting [...]

b. One of the four SUSPI-
CION�suspects wanted in last

4https://framenet.icsi.berkeley.edu/f
ndrupal/

week’s KILLING�murder of Keith
Thompson was ARREST�arrested [...]

With respect to inferential relations between
frames, literature largely focuses on different types
of frame-to-frame relations, i.e., asymmetric rela-
tions between two frames. The FrameNet database
registers frame-to-frame relations between the
frames to form a network. For example, the Pre-
cedes relation specifies a sequential order between
two frames, e.g., ARREST shows a Precedes rela-
tion to ARRAIGNMENT (Ruppenhofer et al., 2010).
Thus, when ARRAIGNMENT is evoked in a doc-
ument, we can infer ARREST as an implicature.
Frames connected through Precedes relations form
a coherent set in which any frame implicates the
“preceding” frames. The output of our experiment
can be used as input for FrameNet to form more of
these cohesive sets of frames with temporal rela-
tions.

2.3 Temporal Distance

The effect of the temporal distance between a ref-
erence text’s publication date and the event date
on variation in reference has been explored in a
few studies.5 Staliūnaitė et al. (2018) focus on
co-reference to entities in the New York Times An-
notated Corpus (Sandhaus, 2008), which contains
articles spanning 20 years. They show that as a
function of common knowledge, references to the
same entity become definite, of shorter length, i.e.,
less marked, and with less use of appositives.

Cybulska and Vossen (2010) carried out a statisti-
cal analysis on a corpus of reference texts concern-
ing the Srebrenica Massacre. The corpus consisted
of 52 news articles (evenly distributed over two
news journals) published within a time range of
10 days after the event, and 26 “historical” texts
published years later. They created a word-based
frequency distribution of references. They showed
a strong discrepancy in type-token ratio between
the two conditions of temporal distance: the sub-
corpus written close to the event shows a higher
number of word types than the sub-corpus written
years later. The authors conclude that difference
in temporal distance correlates with variation in
language use. Short temporal distance leads to
more variation in descriptions, due to focus on sub-

5On discourse level, referential variation as an effect of
common ground has been studied more intensively. See
Yoshida (2011); Markert et al. (2012); Del Tredici and
Fernández (2018).
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events, while longer distance leads to less variation
in descriptions due to focus on the main event.

Our research aims to contribute to Cybulska and
Vossen (2010) in the following ways. Our HDD
is restricted to news articles under the assumption
that variation in reference can also be observed
within genres. Hence, the potential confounding
variable of variation between text genres in their
study is eliminated. Second, HDD covers reference
texts of multiple event instances of a single event
type. Third, we use FrameNet to measure variation
in typically evoked frames on top of expressions.
Finally, the dimension of temporal distance in our
experiments ranges to 30 days after the event in-
stances, instead of years.

2.4 Event corpora

In event co-reference research of the last decade,
the corpus datasets show a small number of docu-
ments referencing events. Vossen et al. (2018) pro-
vide an overview of the nine governing text corpora
(e.g., OntoNotes (Pradhan et al., 2007), ECB (Be-
jan and Harabagiu, 2010), ACE2005 (Peng et al.,
2016)) and observed that their sum consists of less
than four thousand documents. The number of
mentions of events is small within documents (10
mentions per document on average) and only a sub-
set of the corpora contains cross-document event
co-reference. Also more recent attempts to manu-
ally create annotations for all sentences in articles
did not cover a high number of documents (Cybul-
ska and Vossen, 2014; Song et al., 2015; O’Gorman
et al., 2016).

Since we need a substantial amount of event re-
ports of the same event type for our experiment,
we used the Multilingual Wiki Extraction Platform
(MWEP) (Vossen et al., 2020) to obtain a large cor-
pus of referentially grounded news texts. MWEP
follows the data-to-text method and takes event
types as input to query Wikidata (Vrandečić and
Krötzsch, 2014) for event instances. For the ob-
tained event instances, MWEP crawls the corre-
sponding Wikipedia pages and their primary ref-
erence texts. These pages are processed by NLP
systems, resulting in a corpus of multilayered lin-
guistic annotation files.

3 Methodology

In this section, we describe the methodology used
for both the between-event type and within-event

type experiments.6 This includes the resources,
(3.1), data processing (3.2), contrastive analysis
(3.3, hypotheses (3.4) and evaluation (3.5).

3.1 Resources

The model used to describe our data relies on three
main concepts: event type, incident, and reference
text. Let E be a set of event types, let I be a set of
real-world event instances, and let R denote a reg-
istry of reference texts. Each real-world instance
Li ∈ I is an instance of one or more event types.
Also, there can be reference texts that refer to a
particular real-world instance Li. For example, the
reference text Significance of Orlando gunman call-
ing 911 during standoff 7 refers to the real-world
event instance Orlando nightclub shooting8, which
is an instance of several event types according to
Wikidata, including mass shooting9 and mass mur-
der.10 Based on Wikidata, the incident date can be
obtained.

Commonly, our pointer to a reference text is an
URL. We apply the following steps to locate, re-
trieve, and process the reference text. First, we
make use of the Internet archive Wayback Ma-
chine11. Please note that this step is not successful
for all URLs. Second, we apply news-please (Ham-
borg et al., 2017) to crawl the reference text as well
as the publication date. Third, we process the text
using spaCy (Honnibal et al., 2020) for sentence
splitting, tokenization, lemmatization, and depen-
dency parsing. Finally, we apply Open-SESAME
(Swayamdipta et al., 2017), which was retrained in
order to be used. The collection process results in a
document with annotations for various NLP tasks,
including frame identification, and the publishing
date of the document is typically known.

We make use of two routes to obtain data for
HDD according to our model. We apply MWEP on
three Wikidata event types: presidential election
(Q858439), storm (Q81054), and music festival
(Q868557). The second source is a Kaggle dataset
called Gun Violence Data (Ko, 2018), which con-

6the code is available at https://github.com/clt
l/HDDanalysis.

7https://www.cbsnews.com/news/orlando
-shooting-investigation-gunman-omar-mate
en-911-call/

8https://www.wikidata.org/wiki/Q24561
572

9https://www.wikidata.org/wiki/Q21480
300

10https://www.wikidata.org/wiki/Q750215
11https://web.archive.org/
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tains approximately 260,000 real-world instances
regarding the event type gun violence, containing
links between reference text URLs and the real-
world instances. The four event types are selected
due to their differentiation of conceptual proper-
ties, which makes them suitable for a contrastive
analysis. The descriptive statistics of applying our
retrieval and processing software are shown in Ta-
ble 1.

For each of the four selected event types, Ta-
ble 1 presents the descriptive statistics. MWEP
is capable of generating data for various different
event types. However, the number of incidents and
reference texts are limited, while the number of
reference texts per incident is relatively high. The
gun violence dataset, on the other hand, provides
a high number of incidents for one specific event
type, i.e., gun violence, but the number of texts per
incident is relatively low.

Finally, we compute the temporal distance,
which we define as the number of days between the
incident date and the publishing date of a reference
texts that makes reference to it. We visualize the
distribution of temporal distance for the event type
gun violence (Q5618454) for those reference texts
for which we were able to obtain a publishing date,
see Figure 1.
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Figure 1: The distribution of the temporal distance is
shown for the reference texts that are published within
25 days of the incident, which holds for approximately
90% of the reference texts for the event type gun vio-
lence (Q5618454)

Figure 1 visualizes the distribution of tem-
poral distance for the event type gun violence
(Q5618454). Most texts are published at the day
of the incident. As time passes, the number of doc-
uments written about an incident decreases. Still,
more than 10,000 are written after 25 days have
passed.

3.2 Processing the corpus

We chose to train our diagnostic classifier on the
gun violence data, since this subcorpus of HDD
shares the largest volume of texts. The following
steps were taken to preprocess the data for training.
First, a subset of 6,290 documents containing less
than 10 annotated frames were removed. These
are most likely documents whose URLs were not
successfully retrieved by the Wayback Machine,
resulting in raw text of error messages, cookies etc.
We also removed a subset of 16,237 documents
for which news-please was not able to retrieve the
publication date.

Next, we specified two temporal distance classes:
“day 0” and “day 8-30”. The remainder of docu-
ments were categorized into those classes accord-
ing their publication date. After this step, day 0 cov-
ers 38,930 documents and day 8-30 covers 6,291
documents. We chose to train a Linear Support
Vector model with both this unbalanced variant and
a balanced variant in which the documents of day
0 are reduced to a randomized set of equal size as
day 8-30.

Per document, both the frequencies of the frames
and of their predicates were extracted and sep-
arately implemented as features in a data frame.
A column was added with the temporal distance
classes as labels. Each data frame was split into a
training set (80%), a development set (10%) and
a test set (10%). We ended up with data frames
for both predicates and frames in a balanced and
unbalanced corpus condition (4 experiments).

For each experiment, LinearSVC from Scikit
Learn (Pedregosa et al., 2011) was used to train
a Linear Support Vector with both the features of
the experiment and the temporal distance classes
as labels. This diagnostic classifier was applied to
the test set and evaluated as a multi-class task per
experiment.

3.3 Typical frame detection

The HDD corpus was first used for a contrastive
analysis between event types and between temporal
distance classes of gun violence. The aim was to
derive typical frames, i.e., frames that are typically
evoked in reference to a certain event type. The
following steps were taken to process the data. We
selected the data for the event types presidential
election, storm and music festival, from which a
total set of 57 documents containing less than 10 an-
notated frames were removed. From the event type
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event type # Li # of Ri Avg # of Ri per Li

presidential election (Q858439) 111 408 3.7
storm (Q81054) 60 256 4.3
music festival (Q868557) 13 205 15.8
gun violence (Q5618454) 103,090 123,659 1.2

Table 1: Descriptive statistics regarding the key data concepts of the data forming HDD, used for the experiments.
The first three rows originate from using MWEP to obtain data, whereas Gun Violence Data (Ko, 2018) is used
for the data of the last row. The first column indicates the event types and the Wikidata identifier of the event
type. The second column, Li, indicates the number of real-world incidents that belong to the event type. The third
column, Ri, presents the total number of reference texts, each referring to one of the real-world incidents. Finally,
the average number of reference texts per real-world event instance are shown.

gun violence, we used the documents for which the
publication date could not be retrieved. Next, the
corpus was randomly sampled by equalizing the
volume of texts to the smallest collection (N=191),
resulting in an equal amount of reference texts per
event type.

For the analysis between event types, all frame
annotations were extracted from the documents and
compiled per event type. Next, we apply an FFICF
metric (a derivative of C-TFIDF), where FF stands
for the frame frequency in a subcorpus, and ICF
is the inverse collection frequency (Vossen et al.,
2020). This results in an FFICF score (henceforth
typicality score) per frame per event type.

C-TFIDF was designed by Grootendorst (2020)
with the purpose of determining the topic of a word
cluster based on the set of highest scoring words.
We have the advantage that, due to the data-to-text
approach, the documents in HDD are already clus-
tered based on predefined topics, i.e., event types. It
follows that if we apply C-TFIDF to our corpus, we
merely have to validate the highest scoring frames.
Adapted to collections of frames, the mathematical
model reads as follows:

FF − ICFi =
ti
fi
× log m∑n

j tj
(1)

where the frequency of each frame t is extracted for
each event type i and divided by the total number
of frames of that event type. Then, the total number
of documents m across event types is divided by
the total frequency of the frame t across event types
n.

We applied this metric to our sampled subset of
HDD and ranked the typicality scores per event
type. Furthermore, we performed a similar FFICF
procedure between the temporal distance classes of
gun violence.

3.4 Hypotheses

1. FFICF between event types
We expect the frames with high typicality scores
to differ between event types. The frames with the
lowest typicality scores may be similar across event
types, being a-typical.
2. FFICF between temporal distance classes
We expect the frames with high typicality scores
to differ between texts from the same event type
gun violence but from different temporal distance
classes due to foregrounding and backgrounding.
3. Training and testing the Linear SVM
We expect the diagnostic classifier to perform
above chance in predicting the temporal distance
class given a document, when the texts are repre-
sented by the typically evoked frames. With frame
frequencies as features, the model will outperform
word based models.

3.5 Evaluation

In order to validate the outcome of the contrastive
analysis between temporal distance classes, we pre-
sented two annotators with frames from the sub-
corpus of gun violence for which the publication
dates could not be retrieved. Frames with three
or less occurrences across this subcorpus were fil-
tered out. For each of the remaining 282 frames,
the annotators were asked to provide a binary judg-
ment about whether it is typical in reference to an
incident of gun violence at day 0. We utilized the
notion narrative container (NC) from Pustejovsky
and Stubbs (2011), i.e., the scope between the on-
set of the event instance and the document creation
time, to estimate the possible subevents that have
a high chance of being referred to in a document
on day 0. The annotators had to judge whether
each frame is part of the NC. We used Cohen’s
kappa (Cohen, 1960) to obtain a measure of inter-
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annotator-agreement. We expect that the frames
annotated as part of the NC of day 0, also occur in
the top rank of FFICF scores for this class, whereas
frames annotated as falling outside of the NC occur
in the top rank of FFICF scores for day 8-30.

We evaluated the output of the diagnostic classi-
fier in a multi-class classification report with pre-
cision, recall and F1-score in addition to accuracy,
macro average and weighted average.

4 Results

For the contrastive analysis between event types,
Table 2, shows the top and bottom ranked FFICF
scores for the event types gun violence and music
festival. The top ranked frames differentiate be-
tween event types and appear to reflect their typical
properties. In contrast, the bottom ranked frames
are the same for both types and reflect generic event
properties.

For the contrastive analysis between temporal
distance classes, Table 3 shows the top and bot-
tom ranked FFICF scores between the two tem-
poral distance classes of the event type gun vio-
lence. LAW ENFORCEMENT AGENCY, KILLING

and CATASTROPHE, which were in the top ranking
in Table 2, ended in the bottom ranking here. Fur-
thermore, except for two frames, the top ranking
of both classes in Table 3 is occupied by different
frames.

The annotators show a Cohen’s kappa of .48,
which is moderate. However, their judgments on
the frames in the top and bottom ranking of FFICF
ratings in Table 3 show a rather high agreement
(20 out of 26 frames, 77%). Half of the top ranked
frames in day 0 are annotated as part of the NC
of day 0, and almost all top ranked frames at day
8-30 are annotated as not belonging to that same
NC. Note that the three frames that are both in
the top ranking of scores between event types and
at the bottom ranking of scores between temporal
distance classes, are also annotated as part of the
NC.

Table 4 displays the evaluation report of the ex-
periments with the Linear SVM classifier. In the
unbalanced conditions, the accuracy is above 0.85,
but biased towards the performance for day 0. The
model performed below chance in predicting day
8-30. For frames, the performance in this class is
higher than for predicates. In the balanced con-
ditions, the performance decreases for day 0, but
increases for day 8-30. For predicates, the model

performs around and above chance, with higher
recall for day 0 and lower recall for day 8-30. For
frames, the F1 is above 0.75, with consistent preci-
sion and recall.

5 Discussion

In Table 3, we find that SHOOT PROJECTILES and
JUDGMENT COMMUNICATION remain in the top
ranking, each in a different class. All other frames
in the top ranking are typically used in reference
to the events of their respective class. Many of
those frames can be considered typical for gun vi-
olence (e.g., EXPERIENCE BODILY HARM, JUDI-
CIAL BODY), but their evocation is subjected to the
temporal distance class. The frames on day 0 refer
to subevents of the central event instance, while the
frames on day 8-30 refer to related disjoint events,
as is generally validated by the annotators. We in-
terpret this variation as an effect of foregrounding
and backgrounding. Most typical frames on day
0 are backgrounded in day 8-30 due to the high
common ground. They are pragmatically impli-
cated in order to foreground the frames of day 8-30,
which carry the highest informative value, but are
not typically used in reference to the central event
instance of day 0.

Recall that in order to implicate shared knowl-
edge, one uses minimal or less marked expressions.
Thus, if the typical frames of day 0 have become
shared knowledge in day 8-30, then the writer op-
timally uses short and definite expressions to im-
plicate them. Such expressions then evoke a strong
typical frame, an anchor frame, that is sufficient to
both refer to the event type and implicate the typ-
ical frames as shared knowledge. Such an anchor
frame should show a high typicality score for the
event type, but a low score across temporal distance
classes, due to its frequent usage. KILLING and
CATASTROPHE in Table 2 and Table 3 meet both
requirements and refer to the main event instance.
These might behave as anchor frames on day 8-30,
backgrounding the main event instance and impli-
cating the typical frames of day 0 as shared knowl-
edge. This is demonstrated in (1b), where KILLING

is evoked in the backgrounded noun phrase.
Finally, the results of the diagnostic classifier in

Table 4 show that frame occurrences are more in-
formative for the model than predicate occurrences.
The above-chance performance of the model in the
balanced/frames condition shows that it is capable
to learn temporal patterns, just by paying attention
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rank music festival gun violence

1 PERFORMING ARTS (1) ARREST (1)
2 SOCIAL EVENT (.990) LAW ENFORCEMENT AGENCY (.991)
3 CREATE PHYSICAL ARTWORK (.984) WEAPON (.980)
4 PARTICIPATION (.975) HIT TARGET (.977)
5 ORIGIN (.967) SHOOT PROJECTILES (.952)
6 COMMERCE SELL (.965) KILLING (.946)
7 LOCALE BY EVENT (.965) JUDGMENT COMMUNICATION (.929)
8 EXPERTISE (.964) SCRUTINY (.926)
9 COMPETITION (.964) LOCATING (.919)
10 MANUFACTURING (.960) CATASTROPHE (.919)
... ... ...
714 PEOPLE (.862) CARDINAL NUMBERS (.777)
715 LOCATIVE RELATION (.840) POLITICAL LOCALES (.765)
716 CARDINAL NUMBERS (.804) LOCATIVE RELATION (.763)
717 LEADERSHIP (.757) LEADERSHIP (.629)
718 POLITICAL LOCALES (.631) PEOPLE (.601)
719 STATEMENT (.568) STATEMENT (.040)
720 CALENDRIC UNIT (0) CALENDRIC UNIT (0)

Table 2: The top 10 highest ranked frames (FFICF score) and the 7 bottom ranked frames for the event types music
festival (Q868557) and gun violence (Q5618454). The scores were remodeled from (-1,1) to (0,1)

rank day 0 day 8-30

1 STATE OF ENTITY (.007566) [D] JUDICIAL BODY (.007431) [N]
2 EXPERIENCE BODILY HARM (.006752) [Y] DOCUMENTS (.007431) [N]
3 CAUSE HARM (.006729) [Y] JUDGMENT COMMUNICATION (.006781) [N]
4 EVENT (.006607) [Y] THEFT (.006538) [D]
5 MEDICAL CONDITIONS (.006393) [Y] INTOXICANTS (.006307) [N]
6 TAKING TIME (.006317) [N] BAIL DECISION (.00623) [N]
7 SHOOT PROJECTILES (.006266) [Y] ORDINAL NUMBERS (.006139) [N]
8 DIRECTION (.006037) [D] CATEGORIZATION (.005915) [N]
9 RESPONSE (.006009) [N] EVIDENCE (.005842) [N]
10 INFORMATION (.006006) [D] UNATTRIBUTED INFORMATION (.005827) [N]
... ... ...
710 KILLING (-.00196) [Y] KILLING (-.00229) [Y]
711 VEHICLE (-.00299) [D] VEHICLE (-.00302) [D]
712 LEADERSHIP (-.00422) [D] CATASTROPHE (-.00421) [Y]
713 ROADWAYS (-.00552) [N] LEADERSHIP (-.00421) [D]
714 CATASTROPHE (-.005763) [Y] ROADWAYS (-.00457) [N]
715 AWARENESS (-.00763) [N] AWARENESS (-.00656) [N]
716 BUILDINGS (-.0093) [Y] BUILDINGS (-.0072) [Y]
717 LAW ENFORCEMENT AGENCY (-.01465) [Y] LAW ENFORCEMENT AGENCY (-.01063) [Y]
718 PEOPLE (-.0379) [Y] PEOPLE (-.03166)[Y]
719 CALENDRIC UNIT (-.06463) [Y] CALENDRIC UNIT (-.05501) [Y]
720 STATEMENT (-.09892) [N] STATEMENT (-.08964) [N]

Table 3: The top 10 highest ranked frames (FFICF score)[annotators’ score: Y = yes, N = no, D = disagreement]
and the 11 bottom ranked frames for the classes “day 0” and “day 8-30” within the event type gun violence. The
scores range between -1 and 1.

235



precision recall F1 support

1. predicates/unbalanced
day 0 0.861 0.998 0.925 3896
day 8-30 0.357 0.008 0.016 630
Accuracy 0.860 4526
macro avg 0.609 0.503 0.470 4526
weighted avg 0.791 0.860 0.798 4526
2. frames/unbalanced
day 0 0.891 0.974 0.931 3896
day 8-30 0.627 0.267 0.374 630
Accuracy 0.880 4526
macro avg 0.759 0.620 0.653 4526
weighted avg 0.855 0.876 0.854 4526
3. predicates/balanced
day 0 0.562 0.676 0.614 630
day 8-30 0.594 0.473 0.527 630
Accuracy 0.575 1260
macro avg 0.578 0.575 0.570 1260
weighted avg 0.578 0.575 0.570 1260
4. frames/balanced
day 0 0.746 0.789 0.767 630
day 8-30 0.776 0.732 0.753 630
Accuracy 0.760 1260
macro avg 0.761 0.760 0.760 1260
weighted avg 0.761 0.760 0.760 1260

Table 4: Classification reports providing, precision, re-
call, F1 and support for the performance of the Lin-
ear SVM on the test sets of four different experiments:
1. predicate frequencies/unbalanced corpus; 2. pred-
icate frequencies/balanced corpus; 3. frame frequen-
cies/unbalanced corpus; 4. frame frequencies/balanced
corpus. Accuracy, macro average and weighted aver-
age are also provided per condition.

to frame occurrences.
We performed a model analysis to derive a

ranking of the most important frames that the
model used as margins to derive the hyperplane.
The top 5 reads: TEMPORAL SUBREGION, BE-
COMING SILENT, SELF MOTION, STORE and EN-
FORCING. None of these frames get a high typ-
icality score in Table 3. Although the typical
frames in the FFICF analysis show strong effects
of foregrounding and backgrounding, idiosyncratic
generic frames in the data seem more informa-
tive for the model in finding the most optimal
separating hyperplane. TEMPORAL SUBREGION

might be a strong generic contender across event
types due to its inherent temporal properties.12

BECOMING SILENT13, SELF MOTION14 and EN-
FORCING15 might show a significant frequency in
a specific class in reference to the main event in-
stance or subevents.

We assume that the results of our analysis can
be generalized over unpredicted event types. From

12Examples of lexical units: later.a, earlier.a, early.a.
13Examples of lexical units: quiet.v, silence.v
14Examples of lexical units: walk.v, run.v, rush.v
15Examples of lexical units: enforcement.n, enforce.v

the onset, the common ground increases over time,
affecting the pragmatic principles of foregrounding
and backgrounding. Thus, if we would be able to
obtain enough texts for the event type storm, we
would expect the variation in framing between tem-
poral classes to only occur with this event type as
well. Since presidential election and music festival
are rather anticipated events, the common ground
at day 0 is at maximum height and build up from
texts in preceding days. Thus, for these event types,
temporal distance classes should be determined
from preceding days up until the event itself.

6 Conclusion

In this paper, we measured variation in framing as
a function of pragmatic foregrounding and back-
grounding. We hypothesized that difference in
common ground determine the extent to which the
writer is able to background frames typically used
in reference to the main event instance. We pre-
sented HDD, a corpus consisting of reference texts
grouped under event types and enriched with publi-
cation dates. HDD was used to both perform FFICF
between event types and between temporal distance
classes, and train a diagnostic classifier. The former
resulted in a ranking of typical frames per event
type and between classes. The Linear SVM to a
large extent was able to differentiate documents of
different temporal distance classes. Frames turned
out to be more informative than their predicates
in training the model. Yet, The diagnostic classi-
fier prefers idiosynchratic frames for learning the
hyperplane.

In future work, we extend our experiments to
more event types and we want to learn the specific
frame-to-frame relations from the typical frames
for event types. We expect to learn subevent rela-
tions from texts with short temporal distance and
(causal) sequence relations from typical frames in
texts with larger temporal distance.
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Abstract
Adjectives such as heavy (as in heavy rain)
and windy (as in windy day) provide possi-
ble values for the attributes intensity and
climate, respectively. The attributes them-
selves are not overtly realized and are in this
sense implicit. While these attributes can
be easily inferred by humans, their automatic
classification poses a challenging task for com-
putational models. We present the following
contributions: (1) We gain new insights into
the attribute selection task for German. More
specifically, we develop computational mod-
els for this task that are able to generalize to
unseen data. Moreover, we show that classi-
fication accuracy depends, inter alia, on the
degree of polysemy of the lexemes involved,
on the generalization potential of the train-
ing data and on the degree of semantic trans-
parency of the adjective-noun pairs in question.
(2) We provide the first resource for compu-
tational and linguistic experiments with Ger-
man adjective-noun pairs that can be used for
attribute selection and related tasks. In order
to safeguard against unwelcome memorization
effects, we present an automatic data augmen-
tation method based on a lexical resource that
can increase the size of the training data to a
large extent.

1 Introduction

There is ample evidence that humans decompose
the meaning of objects and events into a set of pro-
totypical semantic relations and their values. These
relations, referred to in different frameworks as
attributes (Barsalou, 1992), frame elements (Fill-
more, 1982), thematic relations (Gruber, 1965), or
thematic roles (Jackendoff, 1972), serve as an effec-
tive means to cluster classes of objects and events
by degrees of semantic similarity. For example,
thematic roles such as buyer and seller help
distinguish among different participants in a finan-
cial transaction, and adjectives, such as young and

∗denotes equal contribution

old, group individuals into different equivalence
classes for the relation age. Likewise, adjectives
such as heavy (as in heavy rain) and windy (as
in windy day) provide possible values for the at-
tributes intensity and climate, respectively.
The attributes themselves are not overtly realized
and are in this sense implicit. While these attributes
can be easily inferred by humans, their automatic
classification poses a challenging task for compu-
tational models, as shown in the recent study by
Shwartz and Dagan (2019) for English data. Com-
pared to automatic role assignment for verbal argu-
ments, attribute selection for adjective-noun pairs
has received relatively little attention in computa-
tional semantics.

Attribute selection is highly relevant in differ-
ent NLP tasks, such as information retrieval, topic
modelling, and sentiment analysis. Consider a sen-
timent analysis task. If there is positive/negative
sentiment expressed about something or someone,
it is useful to know what triggers that sentiment.
This requires from a system the ability to generalize
over specific adjectives to more abstract attributes:

(1) I {like/don’t like} her siblings. They are

a. {bright/stupid} people.
Attribute: intelligence

b. {friendly/rude} people.
Attribute: behaviour

For polysemous adjectives, the attribute selec-
tion task can be viewed as a coarse-grained word
sense disambiguation. For instance, the adjec-
tive bright in example (1a) may acquire differ-
ent meanings when it combines with different
nouns, e.g. bright room, where the attribute is
not intelligence, but perception.

In this paper, we frame the attribute selection
task as a multiclass classification problem. We con-
duct experiments on the German dataset GerCo
(Strakatova et al., 2020) of adjective-noun phrases.
To the best of our knowledge, this is the first at-
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tribute analysis for German. Our main contribu-
tions are the following: (1) We gain new insights
into the attribute selection task for German. More
specifically, we develop computational models for
this task that are able to generalize to unseen data.
Moreover, we show that classification accuracy de-
pends, inter alia, on the degree of polysemy of the
lexemes involved, on the generalization potential
of the training data and on the degree of semantic
transparency of the adjective-noun pairs in question.
(2) We provide the first resource for computational
and linguistic experiments with German adjective-
noun pairs that can be used for attribute selection
and related tasks. In order to safeguard against
unwelcome memorization effects, we present an
automatic data augmentation method based on a
lexical resource that can increase the size of the
training data to a large extent.

This paper is structured as follows. We discuss
related work in section 2. Section 3 describes the
dataset in more detail. In section 4, we present
the experiments and their results. Finally, we draw
conclusions and give directions for future work in
section 5.

2 Related work

Earlier studies of attribute selection focus primarily
on English data. Hartung (2015) and Hartung et al.
(2017) investigate the attributes in AN phrases and
create a dataset for English adjective-noun phrases
and their corresponding attributes based on the En-
glish WordNet. Hartung et al. (2017) try to model
the task of selecting underlying attributes such as
age for a phrase such as old car with representa-
tion learning: they experiment with different com-
position models to construct a single vector for
the adjective-noun combination from the embed-
dings of the adjective and the noun. This composed
vector is then used as a proxy for the underlying
attribute, e.g. age and ranked with possible alterna-
tive values for other candidate attributes. Shwartz
and Dagan (2019) evaluate different types of word
embeddings on a number of lexical semantics tasks,
including attribute selection and probe their abil-
ity to model lexical composition. For that purpose
they reformulate the task of attribute selection into
a binary classification: given an adjective-noun pair
and an attribute, the classifiers predict whether the
target attribute is selected for the pair in question.
Their findings on the English dataset reveal that
this task remains a challenge for all embedding

types, though contextualized embeddings clearly
outperform static embeddings.

Our work differs this from previous work in sev-
eral aspects: we create the first dataset for the anno-
tation of attributes in adjective-noun pairs for Ger-
man. The taxonomy of 16 attributes is not as fine-
grained as in Hartung (2015), who distinguishes
between 254 attribute labels. Our more compact
label set is thus more coarse-grained and more suit-
able for automatic modeling. We test the automatic
models in a multiclass-classification setup with the
adjective and noun embedding as input.

Unlike previous work on attribute selection, we
take into account whether the semantics of an
adjective-noun pair is transparent or not. Since the
GerCo dataset contains both collocations and free
phrases, we can partition the data accordingly and
can compare the results obtained by a given classi-
fier for the two classes. In earlier work (Strakatova
et al., 2020), we report on binary classifiers for col-
locational and free adjective-noun pairs, which did
not include prediction of the target attributes. In
the present paper, the relevant attributes are taken
into account. Therefore, our research contributes
to a growing number of studies of semantic trans-
parency, which up to now have focused on multi-
word expressions and nominal compounds (Reddy
et al., 2011; Bell and Schäfer, 2013; Jana et al.,
2019; Shwartz and Dagan, 2019) in particular, and
extends this body of literature to the empirical do-
main of adjective-noun pairs. Our ability to distin-
guish between free phrases and collocations, allows
us to test the finding of Espinosa Anke et al. (2019),
who show that semantic relations in collocations
are more difficult to predict in comparison to other
types of relations such as hyponymy, meronymy,
etc.

In sum, previous studies confirm that (i) reveal-
ing lexical relations in compounds and AN phrases
is a challenge in NLP and (ii) relations found
in collocations are more difficult to predict than
other types of lexical relations. We combine these
two findings in our study and model the lexical-
semantic relations, which we call attributes, for
both collocations and free phrases.

3 Data

In our experiments, we use the German dataset of
adjective-noun phrases GerCo (Strakatova et al.,
2020) which we annotate with additional seman-
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tic information.1 This dataset is suitable for our
study due to several reasons: (1) it contains highly
polysemous adjectives; (2) half of the dataset is
represented by collocations; (3) it is based on a
lexical resource – the German wordnet GermaNet
(Hamp and Feldweg, 1997; Henrich and Hinrichs,
2010) which can assist us in augmenting the data
and obtaining attribute information about it.

The original GerCo dataset contains 3,652 AN
phrases manually annotated as “collocations” and
“free phrases”. The distinction between the two
types is based on the transparency of the adjective
in the phrase that is operationalized as literality
(Reddy et al., 2011). For instance, in the phrase
grober Sand ‘coarse sand’, the adjective has its
literal sense of “rough in texture” – it is annotated
as free phrase. In the phrase grober Fehler ‘gross
mistake’, the meaning of the adjective is shifted: it
does not describe texture in combination with the
noun Fehler ‘mistake’, but refers to its intensity.

The adjectives in GerCo have been chosen on the
basis of the semantic classes that they are assigned
to in GermaNet. The advantage of GermaNet as
a lexical resource is that, in contrast to the En-
glish WordNet, it models adjectives in a hierarchi-
cal manner similarly to nouns and verbs. From each
of the 16 semantic classes for German adjectives,
three adjectives have been selected. Each adjec-
tive is paired with the most frequent co-occurring
nouns, thus all adjective-noun pairs in the dataset
have a strong association.2 In the present study, we
excluded two relational adjectives from the data:
barock ‘baroque’ and steinig ‘stony’. Out of the re-
maining 46 adjectives, 44 have at least two senses
(Strakatova et al., 2020). The top nodes of the
GermaNet hierarchy of adjectives represent the 16
semantic classes and the direct hyponyms of the
top nodes represent more fine-grained classes of
adjectives.3 Figure 1 shows a part of the taxonomy
for one sense of adjectives tief ‘deep’ and salzig
‘salty’. The top nodes are used as attribute labels to
annotate the data (see section 3.1).

We make use of this hierarchical structure for
adjectives in GermaNet in two ways: extracting at-
tribute information (subsection 3.1) and automatic
augmentation of the dataset (subsection 3.2).

1The dataset, the splits and the code for running the mod-
els on the data are available at https://github.com/
Blubberli/IWCS-attributes.git

2Based on the logDice score (Rychly, 2008); 75% of the
data has a logDice > 4.14.

3Based on the semantic classification of German adjectives
proposed by Hundsnurscher and Splett (1982).

perception

sound

deep

...

...

taste

salty

Figure 1: A part of the taxonomy of adjectives in Ger-
maNet for tief ‘deep’ and salzig ‘salty’. The top node
is used as attribute label to annotate the GerCo dataset

3.1 Gold standard

For the present study, we add two layers of seman-
tic annotation to the GerCo dataset: (1) by manual
annotation: word sense IDs in GermaNet for all
the adjectives and nouns in the dataset; (2) by auto-
matic annotation: attributes for all the phrases.

Manual annotation. Manual annotation has
been performed by two advanced students of com-
putational linguistics with a solid background in
lexical semantics and lexicography. Each adjective
and noun from the GerCo dataset has been dis-
ambiguated and annotated with the corresponding
sense IDs in GermaNet. We need these annotations
for two reasons: to obtain attribute information
about the phrases and to augment the data automat-
ically.

Automatic annotation. To add the attribute an-
notations, we made use of the hierarchical structure
of adjectives in GermaNet. Based on the manually
annotated sense IDs of the adjectives, we assign an
attribute label to each phrase automatically. For in-
stance, tief ‘deep/low’ in tiefe Stimme ‘deep voice’
has been annotated with the sense “having a low
pitch”. The top node in the hierarchy for this sense
is perception (see figure 1) – the phrase is as-
signed this label as an attribute. In tiefe Liebe ‘deep
love’, the adjective is annotated with a different
sense – “very strong, intense”, the attribute label
for this sense is intensity. Table 1 provides an
overview of all the 16 labels with examples from
the dataset (codenamed GerCo+).

Collocations. Half of the GerCo+ dataset is rep-
resented by collocations. Their distribution, how-
ever, is not balanced for each attribute. It con-
curs with the previous observations in literature
that certain meanings tend to be expressed colloca-
tionally and certain meanings are usually found in
free phrases. For instance, intensity is usually
expressed in collocations whereas color in free
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attribute example
behaviour frecher Bursche ‘rude guy’
body blindes Kind ‘blind child’
climate windiger Tag ‘windy day’
evaluation herrliches Wetter ‘wonderful weather’
feeling bitteres Lachen ‘bitter laugh’
intensity leichter Regen ‘light rain’
location tiefer See ‘deep lake’
manner wilder Tanz ‘wild dance’
intelligence schlauer Junge ‘smart boy’
motion starres Gesicht ‘rigid face’
quantity karger Lohn ‘meager salary’
perception schwarzer Rock ‘black skirt’
relation sicherer Tod ‘certain death’
society reiche Verwandten ‘rich relatives’
substance grober Sand ‘coarse sand’
time alter Freund ‘old friend’

Table 1: Attributes in the GerCo+ dataset.

phrases (van der Wouden, 1997). Figure 2 shows
the frequency distribution of collocations and free
phrases in GerCo+. Four labels (intensity,
relation, manner, feeling) are repre-
sented to a large extent by collocations, for
perception, substance, on the other hand,
the number of free phrases is very high. We expect
collocations to be more challenging for the models.

Additional adjectives. The number of distinct
adjectives in the original GerCo dataset is small.
For some attributes (e.g. evaluation), very few
adjectives are available. To be able to test each
attribute for at least three distinct adjectives, we
added 8 adjectives. We manually combined them
with suitable nouns from the original dataset and
annotated the phrases with the corresponding at-
tributes. The adjectives in the final dataset can
select between one and six different attributes (see
figure 3). Most of the adjectives can select more
than one attribute: this ambiguity is expected to
pose another challenge for the automatic modelling.

3.2 Automatic augmentation
Lexical memorization is the tendency of a classi-
fier to memorize the relations between words it has
seen in training and corresponding labels (Levy
et al., 2015). The generalisation ability of classi-
fiers and the phenomenon of lexical memorization
in classifying lexical inference relations and rela-
tions in noun compounds have been investigated by
Levy et al. (2015); Dima (2016); Shwartz and Wa-
terson (2018). Since the GerCo+ dataset is rather

small, the danger of the classifier falling into the
trap of lexical memorization effects needs to be
safeguarded against. We therefore propose an au-
tomatic data augmentation to be able to create dif-
ferent training and test splits: either with modifier
overlap, with head overlap or no overlap. We also
expect a larger dataset to have positive effects on
the precision of the machine-learning models. In
order to increase the amount of training data, we
perform automatic data augmentation relying on
lexical and conceptual relations in GermaNet.

In GermaNet, senses of words are grouped into
sets of synonyms (synsets). Synsets are connected
to each other via conceptual relations, the main
type of such relations is hyponymy/hypernymy as
in pie→pastry→baked goods. Apart from that,
some lexical units are interlinked via lexical rela-
tions, such as synonymy and antonymy. Attributes
are expected to carry over to adjectives and nouns
linked in GermaNet via lexical and conceptual re-
lations. Knowing the sense IDs of all the words in
the dataset, we therefore only have to extract the
semantically related adjectives and nouns to gen-
erate new phrases. The new phrases are annotated
automatically with the attribute from the original
phrase. For instance, the original dataset contains
the phrase tiefer Ton ‘low-pitched sound’ (colloca-
tion) with the attribute perception. Both words
are provided with the corresponding sense IDs from
GermaNet. The antonym of tief in this sense is
hoch ‘high-pitched’ and a co-hyponym of Ton is
Pfeifen ‘whistle’. This results in a new phrase ho-
hes Pfeifen ‘high-pitched whistle’ with the attribute
perception.

Further phrases can be extracted via the adjec-
tival top nodes in GermaNet: by combining non-
ambiguous adjectives under those nodes with nouns
that can select the corresponding attribute. Select-
ing only non-ambiguous adjectives, i.e. only ad-
jectives that select a single possible attribute en-
sures that the resulting phrases is annotated with
the correct attribute. For example, a new phrase for
the attribute perception can be constructed by
combining the adjective salzig ‘salty’ which can
only express this attribute with other nouns that can
have perception, e.g. Suppe ‘soup’. We create
two augmented datasets:

1. small Augment only the adjectives by adding
synonyms, antonyms, direct hypernyms, all
hyponyms and co-hyponyms

2. large Augment the adjectives and nouns by
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Figure 2: Distribution of free phrases and collocations in the GerCo+ dataset for each attribute.

Figure 3: Distribution of the number of different at-
tributes per adjective.

adding synonyms, antonyms, direct hyper-
nyms, all hyponyms and co-hyponyms. Aug-
ment the attributes by combining all non-
ambiguous hyponyms with suitable nouns.

In order to eliminate nonsensical phrases, the
automatically created AN phrases are filtered by
their bigram frequencies (>3) in a large corpus
consisting of several German treebanks.4

Automatically augmented data is expected to
be noisy to some extent. To estimate the amount
of noise, we randomly extract 100 examples from
each augmented dataset and manually assess the

4TüBa-D/DP (de Kok and Pütz, 2019) and the corpus DE-
COW16AX (Schäfer, 2015; Schäfer and Bildhauer, 2012)

examples and the corresponding attributes. This
study of random samples shows that around 20% of
the automatically gained data is labeled incorrectly.
Table 2 gives an overview of the data.

data size adj nn correct
gold standard 3,093 46 2,030 -
small 21,498 1,980 2,538 80%
large 232,389 4,630 36,659 79%

Table 2: Data overview: the amount of phrases, unique
adjectives, unique nouns and the amount of correct
phrases in the random sample extracted from each aug-
mented dataset and evaluated manually.

3.3 Dataset splits

We create two test set ups: mixed and balanced. In
the mixed setting, we test all the attributes and all
the adjectives from the gold standard dataset. In the
balanced setting, we use a subset of seven attributes
with a balanced distribution of collocations and
free phrases to compare the performance on the
two types of phrases. The balanced attributes are
climate, quantity, time, society,
location, behaviour, evaluation.

The models are trained on the two automatically
augmented datasets: small and large.

We create three splits of validation/test data from
the gold standard GerCo+ dataset. Each test set con-
tains roughly 700 phrases. To investigate the role of
lexical memorization in the attribute selection task,
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we create different lexical settings in the training
data: (1) No overlap The validation/test and train-
ing have distinct vocabulary. (2) Modifier overlap
The validation/test and training share modifiers (ad-
jectives). (3) Head overlap The validation/test and
training share heads (nouns).

4 Automatic classification

In the following experiment, we investigate to what
extent attribute-selection can be computationally
modeled. For that purpose, we use the data de-
scribed in section 3.3 and train a simple neural
network to predict one of the 16 possible attributes
given the adjective and noun as input.

4.1 Modelling
We train a feed-forward non-linear classifier with
one hidden layer. For each adjective-noun phrase,
we extract the embedding for each constituent and
apply a linear transformation to the concatenated in-
put embeddings, followed by a ReLU non-linearity.

We experiment with two different embedding
types:

• fastText (Bojanowski et al., 2017) non-
contextualized German word embeddings
with subwords trained on Common Crawl
(Grave et al., 2018).

• BERT (Devlin et al., 2019) contextualized
embeddings produced by a bidirectional trans-
former trained on Wikipedia, the EU Book-
shop corpus, Open Subtitles, CommonCrawl,
ParaCrawl and News Crawl.5 We treat the
adjective-noun phrase as the context sentence,
thus the embedding of the adjective is only
contextualized given the noun (and the other
way around respectively).

The size of the hidden layer corresponds to the
embedding dimension of one constituent (300 for
fastText, 768 for BERT), the output layer has size
16 which corresponds to the number of different
attributes.

We optimize the cross-entropy loss with Adam
and use class weights, with higher weights for the
less frequent attributes because the distribution of
the attributes is imbalanced. As BERT comes with
12 layers, we learn a scalar-weighted combination
of them. We always apply a dropout of 0.8. As
the best model, we pick the one that achieves the

5https://github.com/dbmdz/berts

best macro F1 score on the validation set after not
improving for 5 epochs.

We use two baselines: We train each model with
either using only the adjective or only the noun
embedding as input. For the contextualized em-
beddings, we use the respective embedding after
contextualization.

Note that our goal was not to find the best model
for the task but to investigate how well a simple
model can generalize for the task if it has been
trained on a sufficient amount of data.

4.2 Results and Evaluation

(i) Generalization One of the research questions
we want to answer with the experiment is in which
way the automatic models can learn abstractions
only on the basis of semantically related adjective-
noun pairs. If the model has seen phrases like black
limousine and yellow truck in training, is it able
to learn the abstract attribute perception and
predict correctly for test phrases, such as red car?
In the best case, although the model has neither
seen red nor car in the training set, it can arrive at
the correct solution via lexical similarities: it has
learned that colors express perception when
combined with e.g. artifacts.

As mentioned in Section 3.2, , it has been shown
for other tasks in lexical semantics that the abstrac-
tion ability of automatic models in supervised learn-
ing is diminished if constituents of the phrase in
the test set have already occurred in training. It
may then be easier for the model to memorize the
most frequent or only class label for specific words
to solve the task. We investigate to what extent
that phenomenon applies to attribute selection. Es-
pecially for adjectives that occur with only one
attribute, this effect would be expected. This phe-
nomenon could have a particularly negative effect
for ambiguous adjectives: In the worst case, lexical
memorization overwrites the less frequent sense as
only the most dominant attribute is predicted.

Table 3 shows the results for both embedding
types for the different training data and the ad-
jective and noun baseline. We report the average
macro F1 score for all attributes, so each attribute
is scored equally, regardless of the number of test
instances.

First, it becomes clear that both models are ca-
pable of abstracting to some degree with fastText
outperforming BERT by 6%. It is particularly inter-
esting that there is hardly any difference between
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the small and the large data set, although the large
data set contains ten times more training instances.
This demonstrates that it is not the size of the train-
ing data alone that matters for the generalization
ability of the models. A sufficient lexical variety
is much more important. This variety seems to be
covered in the smaller training data set, such that
an increase in size does not have a large effect on
the general result. It is also evident that a partial
overlap of adjectives and nouns leads to a signifi-
cant improvement especially for BERT. This effect
is similar on the smaller data set for modifier and
head overlap, on the larger one a modifier overlap
brings more advantages. The number of unique
nouns is much higher in this data set, so it is less
likely that lexical memorization can occur with the
head overlap.

The results for the adjectives and noun baseline
illustrate that while it is necessary to have both
constituents as input for the models with fastText
embeddings, the contextualization of the BERT em-
beddings is sufficient to convey almost the same
information via one of the two contextualized vec-
tors. In both cases the adjective baseline is stronger,
indicating that the adjective plays a more important
role for the task than the noun.

(ii) Attributes Figure 4 and Figure 5 show
the performance for each attribute on the large
dataset, for no overlap, modifier overlap and
head overlap. The attributes time, climate,
perception and evaluation can be learned
particularly well without overlap. A possible ex-
planation is that adjectives and nouns selecting
these attributes have a high semantic similarity.
For example, adjectives selecting time are more
similar to each other than adjectives selecting
intensity. For such attributes, the generaliza-
tion is more difficult. For instance, manner and
intensity are not easy to predict despite a high
amount of training data (14,084 and 8,714 training
instances). Attributes that benefit most from lexi-
cal overlap are body, feeling, behavior,
and motion.

(iii) Polysemy With respect to lexical memoriza-
tion, the findings here are mixed. While across-the-
board improvements for each attribute with modi-
fier or head overlap indicate that this phenomenon
takes place, the partial overlap does not automat-
ically lead to predicting the attribute for the poly-
semous adjectives that has the highest frequency
in the training data. Table 4 depicts how many of

all the possible attributes for the ambiguous ad-
jectives in the test set are covered. We sum the
number of correctly recognized attributes for each
adjective. Out of the total of 144, roughly two
thirds are recognized by the models for each setup,
the number is even higher for the modifier overlap.
For instance, in the case of the adjective zart ’ten-
der’, substance, intensity and manner
were recognized without overlap, while body was
additionally recognized with the modifier overlap.
Table 5 shows the average accuracy for adjectives
with different degrees of ambiguity regarding their
possible attributes. A lower degree of ambiguity
leads to better results. For a higher degree of am-
biguity the modifier overlap brings significant im-
provements so the models can learn to better distin-
guish the different senses for the adjectives based
on the training data. It is also worth noting that
there is a considerable jump in accuracy when we
compare adjectives that co-occur with four or more
attributes with those that select at most three at-
tributes.

training data fastText BERT
small

both adj noun both adj noun

no overlap 0.50 0.42 0.29 0.44 0.44 0,33

modifier overlap 0.66 0.45 0.38 0.61 0.61 0.49

head overlap 0.67 0.45 0.46 0.61 0.59 0.56

large
no overlap 0.53 0.45 0.24 0.45 0.41 0.38

modifier overlap 0.68 0.49 0.26 0.71 0.68 0.62

head overlap 0.60 0.47 0.31 0.57 0.53 0.52

Table 3: Average Macro F1 Score over all attributes for
each training set. The results are presented for train-
ing on the adjective and noun (both), and for the two
baselines: trained only on adjectives (adj) and only on
nouns (noun)

training set no overlap modifier overlap head overlap
fastText 97 105 99
BERT 95 105 99

Table 4: Number of correctly predicted senses of poly-
semous adjectives for each embedding type and each
training setup trained on the large dataset; the total
number of different senses in the test data: 144.

(iv) Transparency To investigate the difference
in the performance between collocations and free
phrases, we use a smaller balanced test set (de-
scribed in Section 3.3). Table 6 presents the results
as the average of the Macro F1 scores of all 7 at-
tributes in the test set.
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Figure 4: General Macro F1 for each attribute for fastText – each training set

Figure 5: General Macro F1 for each attribute for BERT – each training set

no. attr fastText BERT
no mod. head no mod. head

6 0.40 0.47 0.45 0.34 0.60 0.37
5 0.29 0.48 0.41 0.26 0.57 0.35
4 0.33 0.56 0.48 0.32 0.60 0.51
3 0.70 0.75 0.70 0.58 0.78 0.69
2 0.61 0.72 0.71 0.48 0.78 0.60
1 0.80 0.93 0.84 0.77 0.95 0.80

Table 5: Average accuracy for all adjectives with a spe-
cific number of possible attributes (no. attr) for the
setup with no overlap (no), modifier overlap (mod) and
head overlap (head).

Overall, there is a consistent difference between
collocations and free phrases across all training
data: free phrases are more accurately predicted
in all cases. Contextualized embeddings were ex-

pected to yield better results for collocations be-
cause they are dynamically conditioned on the local
context. Therefore, adjective and noun are repre-
sented by different vectors for different phrases.
However, the model with BERT embeddings is
worse if no lexical overlap is present. One reason
for this may be that the contextualization of BERT
does not give an advantage for a word-based task.
It is more difficult to find regularities because the
similarities between words could become blurred
due to contextualization.

Although the performance for collocations is
worse than for free phrases in general, for some
attributes, the models are successful. This finding
confirms the hypothesis that there are regularities
also for collocations in spite of the general assump-
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tion of their idiosyncrasy. For instance, the attribute
climate has a high F1 score for collocations in
all experimental settings (between 0.67 and 0.87).
It indicates that meaning shifts of the adjectives
selecting this attribute are regular. Another exam-
ple of such a regular meaning shift is provided by
the polysemous adjective süß ‘sweet’. In its literal
meaning, it refers to the attribute perception as
in süße Torte/Tee ‘sweet cake/tea’. However, süß
can also refer to the attribute evaluation when
it is combined for instance with nouns from the
semantic field ‘person’, as in süßes Kind ’sweet
child’.

By contrast, other collocations are highly lexical-
ized. These cases are hard to classify and remain a
challenge. For instance, the models fail to predict
the attribute evaluation for examples such as
helle Zukunft ‘bright future’.

training data fastText BERT
free phrase collocation free phrase collocation

small
no overlap 0.66 0.53 0.59 0.44
modifier overlap 0.74 0.57 0.67 0.59
head overlap 0.80 0.73 0.73 0.67

large
no overlap 0.73 0.61 0.62 0.58
modifier overlap 0.84 0.73 0.87 0.72
head overlap 0.75 0.61 0.67 0.63

Table 6: Average Macro F1 score for the balanced set in
terms of collocations and free phrases for each training
set.

5 Conclusion and future work

In this paper we present a study on attribute se-
lection in German adjective-noun phrases. Experi-
ments in different training settings with and with-
out lexical overlap show that it is possible to learn
attribute selection patterns based on semantically
related adjectives and nouns: abstract attributes
such as perception, time, or society can
be learned and predicted for new, unseen data.

The results of the experiments with different
lexical overlap settings are in line with previous re-
search: partial lexical overlap leads to better results
on this task. However, this is not only due to lexical
memorization. The models are still able to decide
which attribute to select for an ambiguous adjective
in the test set if it appears in training with all its
possible meanings, based on the nouns combined
with.

The experiments confirm that attributes are more
difficult to predict for collocations than for free
phrases. However, not all types of collocations are

equally difficult. Attributes can be learned correctly
for collocations when the meaning shift occurs sys-
tematically. Strongly lexicalized collocations can-
not benefit from these regularities.

As future work it would be interesting to investi-
gate attribute-selection in other languages, e.g., in
Russian. Compounding in Russian is not as produc-
tive as in German and the function of compounds
is often taken over by adjective-noun phrases, so a
higher degree of lexicalization would be expected.
This could result in an even greater difference be-
tween collocations and free phrases. Secondly, it
would be interesting to investigate how using a
full sentence as context impacts the results, espe-
cially in ambiguous cases. For instance, the phrase
stürmischer Tag ‘stormy day’ can either express
the attribute climate when the adjective is used
in its literal sense or the attribute manner when
stormy = chaotic. For such phrases, disambigua-
tion is only possible in context. Finally, it would
be useful if a model could learn a general intuition
about whether a phrase is a collocation or a free
phrase and which attributes are selected by an ad-
jective in its literal and collocational senses.
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