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Abstract

Social media has emerged as a key channel for
seeking information. Online users spend sev-
eral hours reading, posting, and searching for
news on microblogging platforms daily. How-
ever, this could act as a double-edged sword
especially when not all information online is
reliable. Moreover, the inherently unmoder-
ated nature of social media renders identify-
ing unverified information ever more challeng-
ing. Most of the existing approaches for ru-
mor tracking are not scalable because of their
dependency on a significant amount of labeled
data. In this work, we investigate this problem
from different angles. We design an Active-
Transfer Learning (ATL) strategy to identify
rumors with a limited amount of annotated
data. We go beyond that and investigate the
impact of leveraging various machine learning
approaches in addition to different contextual
representations. We discuss the impact of mul-
tiple classifiers on a limited amount of anno-
tated data followed by an interactive approach
to gradually update the models by adding the
least certain samples (LCS) from the pool of
unlabeled data. Our proposed Active Learn-
ing (AL) strategy achieves faster convergence
in terms of the F-score while requiring fewer
annotated samples (42% of the whole dataset
for the best model).

1 Introduction

Rumor detection in social networks is the task
of identifying if a post’s remark is unverifi-
able. This detection can help stop the spread of
misinformation/dis-information that could poten-
tially cause harm and distress. When a rumor about
a subject emerges, there are thousands of posts
shared about that subject. Ahsan (2019) show that
having abundant in-domain labeled data can sig-
nificantly impact the accuracy of the rumor de-
tection model on Tweets by more than 30% im-
provement. This also points to the impact of out-
of-domain/topic training on rumor detection per-

formance. However in a real world scenarios for
rumor detection, in domain human-annotated data
is typically missing in early stages of rumor prop-
agation, resulting in mediocre accuracy levels for
such models. A viable solution for this problem
would ideally be a framework that yields decent
accuracy despite the absence of in-domain manu-
ally annotated training data. To this end, this paper
proposes a semi-supervised framework based ATL
for rumor detection in social media, specifically
for Twitter data. There are three main variables
for the proposed framework: the representation of
the Tweets, the estimator, and the Active Learning
strategy. Other experimental variables will be dis-
cussed in the following sections. As we evaluate
all the different variables, we observe that Tweet-
BERT, linear regression and least confidence strat-
egy yield comparable results as non-Active Learn-
ing methods yet with a fraction of human-annotated
data needed in non-Active Learning based meth-
ods. Further for robustness of our proposed models,
we experiment with using an exploration method
by choosing some random queries in each loop
to prevent the model from overfitting. We also
reach an approximation of the minimum labeled
data needed for a decent classification in this task
with the proposed method.

2 Related Work

Qazvinian et al. (2011) ran experiments to exam-
ine the effect of in-domain labeled data on rumor
detection accuracy. They conducted learning curve
experiments injecting their training models with la-
beled data, going from 400 to almost 2000 training
examples. The experiments exhibit rapid perfor-
mance improvement plateauing at an accuracy of
80%. Hamidian and Diab (2016) introduced the
Tweet Latent Vector (TLV) feature, which is a 100-
d vector that was created by a mixing Twitter fea-
tures and network-specific features such as Hash-
tags, URL, Re-Tweets, and Content features such
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as POS and content n-grams, as well as pragmatic
features representing Named Entities, Sentiment.
In 2019 ACL RumorEval shared task on rumor de-
tection and verification, Derczynski et al. (2017)
used a subset of the PHEME dataset in two sub-
task to identify the stance of comments as well as
measure the veracity of the subset of rumor posts.
The best models for this task utilized contextual-
ized word embedding such as BERT. Additionally,
the models used were mostly deep neural networks
with the exception of the best performing model
(Li et al., 2019), which was an ensemble of Sup-
port Vector Machine, Random Forrest and Logistic
Regression. Bhattacharjee et al. (2017) proposed a
simple, yet efficient, learning method for fake news
detection in a weakly supervised scenario. The
proposed method in this work improved generaliza-
tion ability through interactive human participation
by annotating a small amount of relevant samples
that provide the most insightful information on
the data. Their model was based on GloVe word
embeddings and a CNN-based embedding model
on the character level with fully connected layers
for classification. They evaluated their models on
the KDnugget’s Fake News dataset1, Liar Dataset,
(Wang, 2017) and Harvard Dataverse Twitter Col-
lection. Hasan et al. (2020) proposed an Active
Learning framework for fake news detection based
on entropy sampling. In this approach, by using
just 4% to 28% of available training data, the model
achieves a comparable performance to supervised
learning with all available labeled training data.
Inspired by this latter work, despite inherent differ-
ences in the task at hand (rumor detection vs. fake
news detection), we believe that similar principles
would hold for rumor detection. Accordingly, we
propose a novel method for rumor detection that
will reduce the need for human annotation in this
task.

3 Problem Definition and Approach

3.1 Problem Definition
We cast the problem of rumor detection as a binary
classification task. Tweets are classified as either
rumors or non-rumor. We propose a human in the
loop annotation strategy. When Tweets about a
subject start spreading, and it is not clear whether
it is a rumor, the proposed human-in-loop frame-
work gradually trains a classification model specific
for the emerged Tweet’s subject. We propose a

1https://github.com/lutzhamel/fake-news

framework combining Active Learning with Trans-
fer Learning. In each iteration of the proposed
ATL pipeline, a batch of unlabeled Tweets that are
the most informative for the model are passed to a
human for annotation (similar to an Oracle in the
Active Learning literature). This loop continues
until the annotation budget is exhausted.

3.2 Active Learning
In this work, we leverage the most common Ac-
tive Learning scenario that is the unlabeled pool
scenario. This approach is also the most similar to
real-life problems. In this scenario, there is a large
pool of unlabeled data. The model is at first trained
on a small subset of pre-annotated data. Then the
framework queries for a batch of unlabeled data to
be labeled by a human (oracle) and added to the
train set on each iteration. Since annotation may
be expensive or time-consuming, it is preferable to
run this process as few times as possible. The sam-
ple queries are chosen among unused unlabelled
data based on their score, and the scoring function
is called the strategy in the Active Learning liter-
ature. This step is repeated until the annotation
budget is exhausted. The algorithm is described in
Algorithm1.

Various strategies are proposed in the literature
for data selection in an Active Learning pipeline.
Selection based on prediction uncertainty is the
most popular approach, which is also applied in
this work.

Least Confidence (LC) Least Confidence (LC)
is a strategy based on prediction uncertainty. LC
tries to find data samples that the model is not
certain about, as a proxy for the model having trou-
ble classifying that data. Certainty is measured as
confidence in most likely label as defined in the
equation 1 by max(y). y is probabilities predicted
by the model given x as input and score(x) is the
uncertainty measure.

score(x) = 1−max(y) (1)

Query by Committee (QBC) In Query by Com-
mittee (QBC) strategy, instead of measuring the un-
certainty of a single model, we train an ensemble of
models. For a given sample, disagreement between
models is taken as a measure of uncertainty. There
are also two special cases of QBC: bagging (BAG)
and boosting (BOOST). In BOOST, we bootstrap
random samples with replacement from the avail-
able initial data for the committee members. In
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Algorithm 1: Pool-based Active Learning
Input: Di, Dp, Dte, batch size, strategy,

estimator, annotation budget
Output: Model, metrics
Di Initial data;
Dp Pool data;
Dte Test data;
Instantiate Dtr as empty, Train data;
Instantiate model;
Add Di to Dtr;
model = estimator.train(Dtr);
while annotation budget is not over do

Dq = Query(Dp, batch size, strategy,
model);

Remove Dq from Dp;
Annotate Dq;
Add Dq to Dtr;
train model on Dtr from scratch;
Compute and save metrics;

end

BAG, we perform bootstrapping for both initial
and train data.

Ranked Batch (Batch-LC) We also use the
Ranked Batch strategy (Batch-LC) as proposed in
Cardoso et al. (2017) which uses a scoring function
as in Equation 2 to find a ranked list of query data.

score = α(1−Φ(x,Xlabeled))+(1−α)U(x) (2)

In Equation 2, Xlabeled is the labeled dataset, U(x)
is the uncertainty of predictions for x, and Φ is a
similarity function, for instance, cosine similarity.
This latter function measures how well the feature
space is explored near x. α is also computed by
Equation 3.

α =
|Xunlabeled|

|Xlabeled|+ |Xunlabeled|
(3)

After score computation for each sample, the
highest scoring sample is removed, and scores are
recalculated until the desired number of examples
are available to send for the query.

Epsilon-Greedy (EG) In order to find a balance
between exploration and exploitation, we use a
method inspired by ε-greedy (EG) strategy in Rein-
forcement Learning. We implement this approach
in two ways: inter-batch and intra-batch. Inter-
batch EG (EG-inter) selects query data at each itera-
tion randomly with probability ε otherwise chooses

the data based on LC (1−ε). Intra-batch (EG-Intra)
dedicates ε% of query data to RND and 1− ε% of
that to LC. We use ε = 0.2 (20% in EG-intra) in
our experiments.2

3.3 Cross Topic Transfer

Data from other domains can be beneficial to im-
prove performance on the target domain. Therefore,
we design another type of experiment in which
Tweets from other topics are considered in the
initial feed to the model (zero shot). The model
queries the pooled data at each iteration from the
target topic. This is the setting that usually ap-
pears in real-world problems. There are datasets
from previous topics that can not generalize well to
the target topic, However, by choosing a minimum
number of data through Active Learning, the model
can adapt to the target domain.

4 Experimental Setup

We compare each experiment with Least Confi-
dence (LC) and random strategy (RND) leveraging
different representations, and learning algorithms.
In random strategy, data samples are chosen uni-
formly random at each iteration. To mitigate the
effect of randomness in both strategies, training
algorithms and data splits, for each experiment, we
randomly split the dataset into two sections, first
one for initial and pool data and the second one as
test data. We do this 5 times, and average the re-
sults (in a cross validation type evaluation strategy).
For each of these 5 runs, the splits are the same
among different experiments.

At each iteration, Multi-Layer Perceptron (MLP)
is retrained on the batch of data annotated in the cur-
rent iteration since training from scratch would be
computationally expensive. However, other models
are trained from scratch on data that was obtained
in the current and previous iterations. In all ex-
periments, we train the models on 20 randomly
chosen samples as the initial dataset and query for
50 samples at each iteration, i.e. batch size = 50.

After examining all the models and representa-
tion settings with LC and RND strategy, the best
setting is utilized for further experiments lever-
aging other sampling strategies such as Query
batched committee (QBC), Epsilon-Greedy (EG),
and Ranked Batch (Batch-LC).

2Values have been determined empirically on a tuning set.
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4.1 Representation

We use SOTA representations for this task, such as
BERT (Devlin et al., 2019) and TweetBERT (Qudar
and Mago, 2020). TweetBERT, a domain-specific
BERT based language model trained specifically
on social media data. TweetBERT was trained on
about 680 million Tweets . We also use earlier
representations such as GloVe (Pennington et al.,
2014). For each sentence, we average the GloVe
vector representation of all tokens in the sentence
and use it as the input to the models. We use Twit-
ter GloVe, which is consistent with the domain of
our work. Twitter GloVe was trained over by 2B
Tweets, 27B tokens, and 1.2M vocab. A dimension-
ality of 200 was determined empirically to yield
best results.3 The representations are frozen during
training.

4.2 Model

We also examine different models that have been
mainly used for short text classification tasks,
namely, MLP (Hinton, 1990), Support Vector Ma-
chines (SVM) (Platt et al., 1999), Random Forests
(RF) (Breiman, 2001), Logistic Regression (LR)
(Cramer, 2002), Ada boosted decision trees (Ada)
(Freund and Schapire, 1997), K-Nearest Neigh-
bors (KNN) (Fix, 1985), Gaussian Process Classi-
fier (GP) (Rasmussen, 2003), Linear Discriminant
Analysis (LDA) (Cohen et al., 2003), and Quadratic
Discriminant Analysis (QDA) (Tharwat, 2016).

We used Radial Basis Function (RBF) kernel for
SVM with inverse regularization term C = 1. For
Random Forest, we used 100 estimators and a max
depth of 1000 with the Gini criterion. For Logistic
Regression, we used l2 penalty and LBFGS (Liu
and Nocedal, 1989) solver with a maximum of
100 iterations. For Ada boosted decision tree, we
used an ensemble of 50 trees with SAMME.R real
boosting (Freund and Schapire, 1997). The MLP
had a hidden layer of size 128 and a drop-out layer
after the hidden layer with p = 0.3 and it was
trained by adam optimizer (Kingma and Ba, 2015).
We use two KNN models: one with 5 neighbors
(KNN5) and the other with 3 neighbors (KNN3).
GP is used with an RBF kernel and optimized with
the L-BFGS-B (Byrd et al., 1995) algorithm. An
SVD solver was used for both LDA and QDA.

3To select the right GloVe dimension, we experimented
with all 4 sizes of GloVe 25, 50, 100 and 200, the latter yielded
the best results across the board.

Machine Learning Tools There are some tools
and libraries used to build the experimental
pipeline. MLP was implemented in Tensorflow4

and for other models (RF, SVM, LR, Ada, KNN,
GP, LDA and QDA) we used Scikit-Learn (Pe-
dregosa et al., 2011) package. Active Learning
workflows were developed using modAL (Danka
and Horvath, 2018) framework.

4.3 Data

The PHEME dataset is curated from highly
retweeted Tweets associated with newsworthy
events (Zubiaga et al., 2016). It includes five cases
of breaking news: Ferguson unrest, Ottawa shoot-
ing, Sydney Siege, Charlie Hebdo shooting, and
Germanwings plane crash. It also includes four
specific rumors: Prince to play in Toronto, Gurlitt
collection, Putin missing, and Michael Essien con-
tracted Ebola. This dataset consists of 6425 Tweets
comprising 2402 rumors, and 4023 non-rumors. In
this study, we work on Charlie Hebdo, Ferguson,
and Sydney Siege since they have the highest num-
ber of annotated Tweets in the dataset (more than
1000 Tweets each). In topics with a small number
of Tweets, it is not possible to have an unbiased
test set and examine the effect of AL on choosing a
minimum number of data. For example for a topic
with only 100 labeled tweets in dataset, we can not
have a reliable test set (at least 1000 samples) and
a big pool dataset (100 samples are consumed by
AL in 2 iterations)

Preprocessing The texts of Tweets were pro-
cessed by changing "’t" to "not", for privacy and
generalization changing usernames to "Username",
removing punctuation except question marks, re-
moving special characters, removing trailing white
space, and changing URLs to "Link". Table 1
shows some samples of this data set.

4.4 Metrics

We evaluate the performance of models by F1
score instead of accuracy since the test data does
not come from a distribution with balanced labels.
Moreover, we examine the effectiveness of Active
Learning through some additional metrics. For
each setting, we compute the F1 score variation in
Active Learning loops. Namely, we compute F1
score on points which account for using 0%, 25%,
50%, 75%, and 100% of the pool data.

4https://www.tensorflow.org/
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Charlie Hebdo
Rumors Non-rumors

#CharlieHebdo witness - Gunmen told me to tell
the media they were Al-Qaeda in Yemen

Just arrived at scene of massacre
#Paris #charliehebdo

According to #CharlieHebdo\u2019s lawyer
four well-known French cartoonists
were killed by the masked gunmen:
Cabu, Wolinski, Charb et Tignous.

Anybody who wants to talk about what
Charlie Hebdo might have done to \"provoke\"

this should probably shut up, forever

Table 1: Tweet samples of PHEME dataset

In order to determine the minimum amount
of data needed for each experiment to achieve a
promising result, we consider a minimum num-
ber of data samples needed to achieve at least
fmax − 1% where fmax is the maximum F1 score
reached in that experiment.

5 Experimental Results

5.1 Baselines

We compare the models against two baselines:
RANDOM and Majority based on training data
observations. RANDOM is simply random pre-
diction. Majority is simply the majority of labels
observed in the training data at each iteration are
predicted for all samples in the test set.

5.2 Estimator selection

The proposed method of Active Learning has a base
estimator that estimates pool data and predicts the
test set. Topics that weren’t used in Active Learn-
ing loops due to having few Tweets, Ottawa shoot-
ing, Germanwings, were used for hyper-parameter
tuning in a greedy search base method.

5.3 Results

Tables 2 shows F1 score at points of using 0%,
25%, 50%, 75%, and 100% of pool data for each
experiment. In each column scores go from red
to white and green as models consume more data
showing how rapidly the model improves.

5.3.1 Model and Representation Comparison
By examining the results, Logistic Regression
yields the best performance among our models,
and TweetBERT is the best representation. This
is expected since TweetBERT is pretrained on
the tweets genre. Interestingly, GloVe represen-
tations outperform BERT respresentations, despite
the fact that BERT is known for its more sophisti-
cated architecture yielding contextualized embed-

dings. However, our version of GloVe embed-
dings is trained on Twitter data. This observation
suggests that the genre of the training data has a
larger impact on performance than the represen-
tation model complexity. TweetBERT+LR with
LC strategy achieves the best scores. Experiments
with LC strategy perform better than RND. Tweet-
BERT+LR with LC strategy also achieves the best
performance with only 25% of data.

5.3.2 Strategy Comparison

We examine the performance gain of LC in more
detail by comparing the difference of F1 score for
RND strategy and LC strategy of a fixed setting at
points of using 0%, 25%, 50%, 75%, and 100% of
pool data for each experiment. Table 2 illustrates
some of these observations. For instance, rows 0%
and 100% in the table shows where the model has
access to same portion of data, whether using LC
or RND. Subtracting values in RND column from
LC column for LR with TweetBERT yields 0, 2.07,
2.2, 1.33 and 0.03 for each row, respectively. Simi-
larily for rows 25%, 50%, and 75%, we observe the
effect of Active Learning such that the differences
for most of model-representation pairs would be
positive, indicating an improvement over the RND
strategy. RF, SVM, and GP get the benefit the most
from LC strategy.

Table 4 compares the performance of uncertainty
strategies using best representation-model pairs.
Except for QBC, other strategies are very close.
Based on our results, Ranked Batch (Batch-LC),
boosting (BOOST), and bagging (BAG) yield the
best performance, respectively. QBC fails to make
a diverse ensemble but when used with BOOST
and BAG there are more diverse voters. In each
row scores go from red to white and green as mod-
els consume more data showing improvement of
models.

Figure 1, 2 and 3 show F1 score for Tweet-
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Model Ada GP KNN3 KNN5 LDA
Stra. LC RND LC RND LC RND LC RND LC RND
0% 58.6 58.83 60.6 60.6 64.3 64.3 62.73 62.73 59.83 59.83
25% 70.37 70.43 72.57 63.5 70.2 69 71.57 70.27 68.8 67.83
50% 72.2 72.6 76.87 68.2 73.6 73.33 75.03 74.3 68.4 67
75% 74.1 73.6 75.37 70.67 75.33 74.97 76.1 74.93 64.53 62.6

TweetBERT

100% 74.17 74.07 72.3 72.23 75.87 75.83 76.2 76 63.93 63.77
0% 60.37 59.53 58.33 58.33 64.7 64.7 64.23 64.23 63.6 63.6
25% 70.2 70.53 73.47 66.33 72.3 71.27 73.03 70.9 64.7 61.23
50% 73.4 72.9 77.97 71.83 75.5 75.33 75.87 75.03 66.1 67.23
75% 74.7 73.77 76.2 74.37 76.33 76 76.67 76.33 73.37 73.1

GloVe

100% 73.9 74.07 75.37 75.4 76.83 76.97 77.37 77.53 76.8 76.67
0% 56.93 57.53 58.67 58.67 55.73 55.73 52.27 52.27 55.67 55.67
25% 67.6 65.97 64.63 66.97 66.47 66.77 65.8 66.73 70.57 71.07
50% 70.43 68.93 68.1 68.23 69.87 69.67 70.27 69.87 70.67 69.43
75% 71.23 70.97 71.4 70.03 71.03 70.57 71.63 71.53 69.53 66.5

BERT

100% 70.5 71.67 71.33 71.27 71.57 71.33 71.83 71.77 63.5 63.33
Model LR MLP QDA RF SVM
Stra. LC RND LC RND LC RND LC RND LC RND
0% 60.77 60.77 41.77 41.77 50.17 50.17 56.3 56.3 43.1 43.1
25% 76.6 74.53 56.47 55.63 43.83 40.2 74.33 67.73 43.53 41.73
50% 78.6 76.4 75.63 69.43 28.13 32.73 75.13 70.27 54.53 55.17
75% 78.93 77.6 69.57 71.87 34.93 35.83 73.5 71.37 63.7 61.03

TweetBERT

100% 78.5 78.47 71.67 74.17 37.43 38.13 72.03 72.4 65.93 66.03
0% 59.4 59.4 45.37 42.97 51.67 51.67 58.87 58.87 50.17 50.17
25% 75.9 73.13 56.93 57.77 47.5 44.17 74.4 67.67 69.17 61.37
50% 78.47 76.1 74 70.37 38.9 46.03 76.23 71.13 75.83 71.2
75% 78.2 77.53 75.07 74.13 42.27 42.33 74.67 72.7 76.3 75.43

GloVe

100% 78.27 78.27 76.83 76.7 47.97 47.7 74.3 74.03 77.47 77.3
0% 58.27 58.27 46.63 43.83 49.7 49.7 53.47 53.47 43.1 43.1
25% 73.33 72.5 64.73 65.73 51.9 50.57 70 58.3 65.07 45.53
50% 76.87 74.57 72.03 69.97 50.6 51.53 68.87 63.27 62.7 54.87
75% 76.77 75.53 73.5 72.93 52.37 52.37 66.9 64.8 63.2 60.67

BERT

100% 76.83 76.77 73.4 73.57 49.2 50.03 66.6 66.57 64.13 64.1

Table 2: F1 score at points of using 0%, 25%, 50%, 75%, and 100% of pool data for each experiment with all
representations and model representations. The scores are averaged over the three chosen topics in the PHEME
dataset. Baseline RANDOM prediction baseline achieves 26.98% F1 score, and Baseline Majority prediction
baseline achieves 40.90±3.3%. Intensity of color green shows high F1 scores, red show low F1 scores and white
for inbetween F1 scores.

Approach 0% 25% 50% 75% 100%
Few Shot 60.767 76.6 78.6 78.933 78.5
Zero Shot 50.1 57.5 65.867 69.6 71.033

Table 3: F1 score for TweetBERT+LR with LC strategy using 0%, 25%, 50%, 75% and 100% of pool dataset.
The scores are averaged over three chosen topics in PHEME dataset. In the Zero Shot setting, the initial dataset
includes other topics, as opposed to the Few Shot setting, in which, initial training data consists of 20 samples of
the target topic. Intensity of color green shows high F1 scores, red show low F1 scores and white for inbetween F1
scores
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Representation Model Strategy 0% 25% 50% 75% 100%
QBC 64.7 66.8 70.3 69.3 68.3
BAG 60.7 75.4 79.067 79.533 79

Batch_LC 64.767 76.4 78.8 79.267 79.167
BOOST 60.7 75.4 79.3 79.767 79.033
EG_intra 64.9 77.533 78.167 78.3 78.133
EG_inter 52.7 75.2 77.133 78.267 78

TweetBERT LR

LC 60.767 76.6 78.6 78.933 78.5
QBC 65.2 65.3 68.2 67.3 67.6
BAG 59.933 75.1 78.733 78.6 78.767

Batch_LC 64.133 75.6 78.967 78.867 78.8
BOOST 59.933 75.1 78.7 78.6 78.767

GloVe LR

LC 59.4 75.9 78.467 78.2 78.267

Table 4: F1 score for advanced strategies of a fixed setting at points of using 0%, 25%, 50%, 75% and 100%
of pool data for best representation-estimator pairs. The scores are average over three chosen topics in PHEME
dataset. Intensity of color green shows high F1 scores, red show low F1 scores and white for inbetween F1 scores.

BERT+LR with different uncertainty strategies.
The diagrams indicate that most models plateau
with 100-200 data samples and are able to achieve
decent performance with a small amount of data.
Most models have a large gain with 100-200 (well-
chosen with AL) data samples and there is a small
gain after having more than 200 samples. Our
best model (TweetBBERT+LR with BATCH-LC)
achieves at least fmax− 1% with 250, 300 and 250
data samples from pool data for each topic. ( fmax

being maximum of F1 score reached in that experi-
ment) On average, it achieves at least fmax − 1%
with 42% of pool data (There are 1039, 571, 610
samples in pool dataset of each topic).

5.3.3 Cross-Topic Evaluation
Table 3 compares best performing model-
representation pair with LC strategy starting from
two different initial training datasets. The initial
training dataset in zero-shot approach is all data
for all topics except the target topic. The initial
training dataset of few-shot approach contains a
minimal number of in topic in domain samples.
We experiment with 20 samples of the target topic.
We observe that only a few topic-related samples
perform much better than a large dataset of sam-
ples, namely, the few shot setting outperforms the
zero shot setting as observed in the 0% of pool data
column in Table 3. Data from other domains/topics
causes a high variance, which takes many related
samples for the model to converge onto reasonable
performance. The results demonstrated that Tweets
from other rumor topics can add some bias to the
model and make the model degrade in performance.

cc

Figure 1: Performance of different strategies with
TweetBERT+LR on the Charlie Hebdo topic. The Ver-
ticals axis shows F1 score and the horizontal axis shows
number of data samples used for training during Active
Learning.

6 Error Analysis

The confusion matrix for TweetBERT+LR with
EG-intra strategy on the Sydney Siege topic for dif-
ferent steps is shown in Table 5. We see that the
performance gain is majorly the result of decreas-
ing false negatives. Confusion matrix for other
topics also showed a similar behaviour. The model
ability to detect rumors improves with the amount
of data compared to ability to detect non-rumors.
Since, model is able to encode better boundaries
for rumors, while non-rumors might be diverse.
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cc

Figure 2: Performance of different strategies with
TweetBERT+LR on the Sydney Siege topic. The Verti-
cals axis shows F1 score and the horizontal axis shows
number of data samples used for training during Active
Learning.

TN FP FN TP
0% 44.42 12.14 19.40 24.02
25% 45.32 11.24 10.88 32.54
50% 46.58 9.98 10.38 33.04
75% 47.25 9.31 10.21 33.21
100% 47.45 9.11 10.88 32.54

Table 5: Confusion matrix on Sydney siege topic, av-
eraged over 5 runs. Numbers in the columns are per-
centages of True Negatives (NT), False Positives (FP),
False Negatives (FN) and True Positives (TP), respec-
tively. These numbers of average of number in 5 runs.
The First column shows percentage of pool data con-
sumed by the model.

7 Conclusion & Future Directions

We proposed an active-transfer learning framework
for the rumor detection task. In our proposed
framework, we examined different word represen-
tations, estimators and Active Learning strategies.
More than 300 experimental setups were run and
each setup was fine tuned to yield the best results.
Our experiments indicate multiple new findings:
1. The approximate minimum number of labeled
in-domain data needed for a decent rumor detec-
tion model with our proposed method is around
200; 2. In-genre pretrained (contextualized) LMs
have the biggest impact on model performance; 3.
We investigate and empirically show how epsilon-

cc

Figure 3: Performance of different strategies with
TweetBERT+LR on the Ferguson topic. The Verticals
axis shows F1 score and the horizontal axis shows num-
ber of data samples used for training during Active
Learning.

greedy inspired methods that joins randomness and
uncertainty in query selection could prevent the
model from over-fitting; and, 4. We also showed
that naive use of Tweets relating to other topics
can degrade the performance (the zero shot setting).
Although the method proposed in this paper did
not show improvement in using data from other
topics, information from different topics can be ex-
ploited by incorporating other techniques such as
weighting the data samples or meta-learning few-
shot domain adaptation. Diverse initial datasets
may yield an initial model with better uncertainty
scores and earlier convergence. The next step for
this method would be incorporating metadata such
as reply stances, user information, network prop-
agation information, etc. Finally, another method
that could improve our proposed model would be
using an ensemble of different representations and
different models to generalize better.
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8 Ethical Considerations

8.1 NLP Application

Misuse Potential and Failure Mode When
used as intended, applying the strategy described
in this paper can help to use the minimum amount
of labeled data to identify new emerging rumors
online. However, the annotation volume might
be inconsistent in some rumors with high variants.
This may lead to Failure and high bias. Further re-
search is needed to address the rumor identification
issues for emerging rumors, as this issue is present
among all current methodologies.

Environmental Cost The experiments described
in the paper use a single CPU for all the machine
learning models except MLP, which used GPUs.
The experiments may take several hours. Sev-
eral dozen experiments were run due to param-
eter search for all the models, and future work
should experiment with distilled models for more
lightweight training. We note that while our work
required extensive experiments to draw sound con-
clusions, future work will be able to draw on these
insights and need not run as many large-scale com-
parisons. Models in production may be trained
once for use using the most promising settings.
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