@inproceedings{mao-etal-2021-dialoguetrm-exploring,
    title = "{D}ialogue{TRM}: Exploring Multi-Modal Emotional Dynamics in a Conversation",
    author = "Mao, Yuzhao  and
      Liu, Guang  and
      Wang, Xiaojie  and
      Gao, Weiguo  and
      Li, Xuan",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    address = "Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-emnlp.229",
    doi = "10.18653/v1/2021.findings-emnlp.229",
    pages = "2694--2704",
    abstract = "Emotion dynamics formulates principles explaining the emotional fluctuation during conversations. Recent studies explore the emotion dynamics from the self and inter-personal dependencies, however, ignoring the temporal and spatial dependencies in the situation of multi-modal conversations. To address the issue, we extend the concept of emotion dynamics to multi-modal settings and propose a Dialogue Transformer for simultaneously modeling the intra-modal and inter-modal emotion dynamics. Specifically, the intra-modal emotion dynamics is to not only capture the temporal dependency but also satisfy the context preference in every single modality. The inter-modal emotional dynamics aims at handling multi-grained spatial dependency across all modalities. Our models outperform the state-of-the-art with a margin of 4{\%}-16{\%} for most of the metrics on three benchmark datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mao-etal-2021-dialoguetrm-exploring">
    <titleInfo>
        <title>DialogueTRM: Exploring Multi-Modal Emotional Dynamics in a Conversation</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Yuzhao</namePart>
        <namePart type="family">Mao</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Guang</namePart>
        <namePart type="family">Liu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Xiaojie</namePart>
        <namePart type="family">Wang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Weiguo</namePart>
        <namePart type="family">Gao</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Xuan</namePart>
        <namePart type="family">Li</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2021-nov</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Findings of the Association for Computational Linguistics: EMNLP 2021</title>
        </titleInfo>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Emotion dynamics formulates principles explaining the emotional fluctuation during conversations. Recent studies explore the emotion dynamics from the self and inter-personal dependencies, however, ignoring the temporal and spatial dependencies in the situation of multi-modal conversations. To address the issue, we extend the concept of emotion dynamics to multi-modal settings and propose a Dialogue Transformer for simultaneously modeling the intra-modal and inter-modal emotion dynamics. Specifically, the intra-modal emotion dynamics is to not only capture the temporal dependency but also satisfy the context preference in every single modality. The inter-modal emotional dynamics aims at handling multi-grained spatial dependency across all modalities. Our models outperform the state-of-the-art with a margin of 4%-16% for most of the metrics on three benchmark datasets.</abstract>
    <identifier type="citekey">mao-etal-2021-dialoguetrm-exploring</identifier>
    <identifier type="doi">10.18653/v1/2021.findings-emnlp.229</identifier>
    <location>
        <url>https://aclanthology.org/2021.findings-emnlp.229</url>
    </location>
    <part>
        <date>2021-nov</date>
        <extent unit="page">
            <start>2694</start>
            <end>2704</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DialogueTRM: Exploring Multi-Modal Emotional Dynamics in a Conversation
%A Mao, Yuzhao
%A Liu, Guang
%A Wang, Xiaojie
%A Gao, Weiguo
%A Li, Xuan
%S Findings of the Association for Computational Linguistics: EMNLP 2021
%D 2021
%8 nov
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F mao-etal-2021-dialoguetrm-exploring
%X Emotion dynamics formulates principles explaining the emotional fluctuation during conversations. Recent studies explore the emotion dynamics from the self and inter-personal dependencies, however, ignoring the temporal and spatial dependencies in the situation of multi-modal conversations. To address the issue, we extend the concept of emotion dynamics to multi-modal settings and propose a Dialogue Transformer for simultaneously modeling the intra-modal and inter-modal emotion dynamics. Specifically, the intra-modal emotion dynamics is to not only capture the temporal dependency but also satisfy the context preference in every single modality. The inter-modal emotional dynamics aims at handling multi-grained spatial dependency across all modalities. Our models outperform the state-of-the-art with a margin of 4%-16% for most of the metrics on three benchmark datasets.
%R 10.18653/v1/2021.findings-emnlp.229
%U https://aclanthology.org/2021.findings-emnlp.229
%U https://doi.org/10.18653/v1/2021.findings-emnlp.229
%P 2694-2704
Markdown (Informal)
[DialogueTRM: Exploring Multi-Modal Emotional Dynamics in a Conversation](https://aclanthology.org/2021.findings-emnlp.229) (Mao et al., Findings 2021)
ACL