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Abstract

We introduce a new pretraining approach
geared for multi-document language modeling,
incorporating two key ideas into the masked
language modeling self-supervised objective.
First, instead of considering documents in iso-
lation, we pretrain over sets of multiple related
documents, encouraging the model to learn
cross-document relationships. Second, we im-
prove over recent long-range transformers by
introducing dynamic global attention that has
access to the entire input to predict masked
tokens. We release CDLM (Cross-Document
Language Model), a new general language
model for multi-document setting that can be
easily applied to downstream tasks. Our ex-
tensive analysis shows that both ideas are es-
sential for the success of CDLM, and work in
synergy to set new state-of-the-art results for
several multi-text tasks.1

1 Introduction

The majority of NLP research addresses a single
text, typically at the sentence or document level.
Yet, there are important applications which are con-
cerned with aggregated information spread across
multiple texts, such as cross-document coreference
resolution (Cybulska and Vossen, 2014), classify-
ing relations between document pairs (Zhou et al.,
2020) and multi-hop question answering (Yang
et al., 2018).

Existing language models (LMs) (Devlin et al.,
2019a; Liu et al., 2019; Raffel et al., 2020), which
are pretrained with variants of the masked language
modeling (MLM) self-supervised objective, are
known to provide powerful representations for in-
ternal text structure (Clark et al., 2019; Rogers
et al., 2020a), which were shown to be beneficial

∗ Work partly done as an intern at AI2.
1Code and models are available at https://github.

com/aviclu/CDLM

Figure 1: An example from Multi-News (Fabbri et al.,
2019). Circled words represent matching events and
the same color represents mention alignments.

also for various multi-document tasks (Yang et al.,
2020; Zhou et al., 2020).

In this paper, we point out that beyond model-
ing internal text structure, multi-document tasks
require also modeling cross-text relationships, par-
ticularly aligning or linking matching information
elements across documents. For example, in Fig. 1,
one would expect a competent model to correctly
capture that the two event mentions suing and al-
leges, from Documents 1 and 2, should be matched.
Accordingly, capturing such cross-text relation-
ships, in addition to representing internal text struc-
ture, can prove useful for downstream multi-text
tasks, as we demonstrate empirically later.

Following this intuition, we propose a new sim-
ple cross-document pretraining procedure, which
is applied over sets of related documents, in which
informative cross-text relationships are abundant
(e.g. like those in Fig. 1). Under this setting, the
model is encouraged to learn to consider and repre-
sent such relationships, since they provide useful
signals when optimizing for the language modeling
objective. For example, we may expect that it will
be easier for a model to unmask the word alleges
in Document 2 if it would manage to effectively
“peek” at Document 2, by matching the masked
position and its context with the corresponding in-
formation in the other document.

Naturally, considering cross-document context
in pretraining, as well as in finetuning, requires

https://github.com/aviclu/CDLM
https://github.com/aviclu/CDLM
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a model that can process a fairly large amount of
text. To that end, we leverage recent advances in
developing efficient long-range transformers (Belt-
agy et al., 2020; Zaheer et al., 2020), which utilize
a global attention mode to build representations
based on the entire input. Overcoming certain re-
strictions in prior utilization of global attention (see
Section 2.1), we introduce a dynamic attention pat-
tern during pretraining, over all masked tokens, and
later utilize it selectively in finetuning.

Combining pretraining over related documents
along with our global attention pattern yields a
novel pretraining approach, that is geared to learn
and implicitly encode informative cross-document
relationships. As our experiments demonstrate,
the resulting model, termed Cross-Document Lan-
guage Model (CDLM), can be generically applied
to downstream multi-document tasks, eliminating
the need for task-specific architectures. We show
empirically that our model improves consistently
over previous approaches in several tasks, includ-
ing cross-document coreference resolution, multi-
hop question answering, and document matching
tasks. Moreover, we provide controlled experi-
ments to ablate the two contributions of pretraining
over related documents as well as new dynamic
global attention. Finally, we provide additional
analyses that shed light on the advantageous behav-
ior of our CDLM. Our contributions are summa-
rized below:

• A new pretraining approach for multi-
document tasks utilizing: (1) sets of related
documents instead of single documents; (2) a
new dynamic global attention pattern.

• The resulting model advances the state-of-the-
art for several multi-document tasks.

2 Method

2.1 Background: the Longformer Model

Recently, long-range LMs (e.g., Longformer (Belt-
agy et al., 2020), BigBird (Zaheer et al., 2020))
have been proposed to extend the capabilities of ear-
lier transformers (Vaswani et al., 2017) to process
long sequences, using a sparse self-attention archi-
tecture. These models showed improved perfor-
mance on both long-document and multi-document
tasks (Tay et al., 2021). In the case of multiple doc-
uments, instead of encoding documents separately,
these models allow concatenating them into a long
sequence of tokens and encoding them jointly. We
base our model on Longformer, which sparsifies

the full self-attention matrix in transformers by
using a combination of a localized sliding win-
dow (called local attention), as well as a global
attention pattern on a few specific input locations.
Separate weights are used for global and local at-
tention. During pretraining, Longformer assigns
local attention to all tokens in a window around
each token and optimizes the Masked Language
Modeling (MLM) objective. Before task-specific
finetuning, the attention mode is predetermined for
each input token, assigning global attention to a
few targeted tokens, such as special tokens, that are
targeted to encode global information. Thus, in the
Longformer model, global attention weights are not
pretrained. Instead, they are initialized to the local
attention values, before finetuning on each down-
stream task. We conjecture that the global attention
mechanism can be useful for learning meaning-
ful representations for modeling cross-document
(CD) relationships. Accordingly, we propose aug-
menting the pretraining phase to exploit the global
attention mode, rather than using it only for task-
specific finetuning, as described below.

2.2 Cross-Document Language Modeling

We propose a new pretraining approach consisting
of two key ideas: (1) pretraining over sets of related
documents that contain overlapping information
(2) pretraining with a dynamic global attention pat-
tern over masked tokens, for referencing the entire
cross-text context.

Pretraining Over Related Documents Docu-
ments that describe the same topic, e.g., different
news articles discussing the same story, usually
contain overlapping information. Accordingly, var-
ious CD tasks may leverage from an LM infrastruc-
ture that encodes information regarding alignment
and mapping across multiple texts. For example,
for the case of CD coreference resolution, con-
sider the underlined predicate examples in Figure 1.
One would expect a model to correctly align the
mentions denoted by suing and alleges, effectively
recognizing their cross-document relation.

Our approach to cross-document language mod-
eling is based on pretraining the model on sets (clus-
ters) of documents, all describing the same topic.
Such document clusters are readily available in a
variety of existing CD benchmarks, such as multi-
document summarization (e.g., Multi-News (Fab-
bri et al., 2019)) and CD coreference resolution
(e.g., ECB+ (Cybulska and Vossen, 2014)). Pre-
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Longformer Encoder

Doc1 Doc2

<CD-mask> </doc-s>......Harry Shearer... suing ...<doc-s> </doc-s> <doc-s>

alleges

is Harry Shearer

Figure 2: CDLM pretraining: The input consists of con-
catenated documents, separated by special document
separator tokens. The masked (unmasked) token col-
ored in yellow (blue) represents global (local) attention.
The goal is to predict the masked token alleges, based
on the global context, i.e, the entire set of documents.

training the model over a set of related documents
encourages the model to learn cross-text mapping
and alignment capabilities, which can be leveraged
for improved unmasking, as exemplified in Sec. 1.
Indeed, we show that this strategy directs the model
to utilize information across documents and helps
in multiple downstream CD tasks.

Pretraining With Global Attention To support
contextualizing information across multiple docu-
ments, we need to use efficient transformer models
that scale linearly with input length. Thus, we base
our cross-document language model (CDLM) on
the Longformer model (Beltagy et al., 2020), how-
ever, our setup is general and can be applied to
other similar efficient Transformers. As described
in Sec. 2.1, Longformer sparsifies the expensive
attention operation for long inputs using a com-
bination of local and global attention modes. As
input to the model, we simply concatenate related
documents using new special document separator
tokens, 〈doc-s〉 and 〈/doc-s〉, for marking doc-
ument boundaries. We apply a similar masking
procedure as in BERT: For each training example,
we randomly choose a sample of tokens (15%) to
be masked;2 however, our pretraining strategy tries
to predict each masked token while considering
the full document set, by assigning them global at-
tention, utilizing the global attention weights (see
Section 2.1). This allows the Longformer to contex-
tualize information both across documents as well
as over long-range dependencies within-document.
The non-masked tokens use local attention, by uti-
lizing the local attention weights, as usual.

An illustration of the CD pretraining procedure
is depicted in Fig. 2, where the masked token as-
sociated with alleges (colored in yellow) globally
attends to the whole sequence, and the rest of the
non-masked tokens (colored in blue) attend to their
local context. With regard to the example in Fig. 1,

2For details of masking see BERT (Devlin et al., 2019b).

this masking approach aims to implicitly compel
the model to learn to correctly predict the word al-
leges by looking at the second document, optimally
at the phrase suing, and thus capture the alignment
between these two events and their contexts.

2.3 CDLM Implementation
In this section, we provide the experimental details
used for pretraining our CDLM model.

Corpus data We use the preprocessed Multi-
News dataset (Fabbri et al., 2019) as the source
of related documents for pretraining. This dataset
contains 44,972 training document clusters, origi-
nally intended for multi-document summarization.
The number of source documents (that describe
the same topic) per cluster varies from 2 to 10, as
detailed in Appendix A.1. We consider each clus-
ter of at least 3 documents for our cross-document
pretraining procedure. We compiled our training
corpus by concatenating related documents that
were sampled randomly from each cluster, until
reaching the Longformer’s input sequence length
limit of 4,096 tokens per sample. Note that this
pretraining dataset is relatively small compared to
conventional datasets used for pretraining. How-
ever, using it results in the powerful CDLM model.

Training and hyperparameters We pretrain the
model according to our pretraining strategy, de-
scribed in Section 2.2. We employ the Longformer-
base model (Beltagy et al., 2020) using the Hug-
gingFace implementation (Wolf et al., 2020) and
continue its pretraining, over our training data, for
an additional 25k steps.3 The new document sepa-
rator tokens are added to the model vocabulary and
randomly initialized before pretraining. We use
the same setting and hyperparameters as in Beltagy
et al. (2020), and as elaborated in Appendix B.

3 Evaluations and Results

This section presents experiments conducted to
evaluate our CDLM, as well as the the ablations
and baselines we used. For the intrinsic evaluation
we measured the perplexity of the models. For
extrinsic evaluations we considered event and en-
tity cross-document coreference resolution, paper
citation recommendation, document plagiarism de-
tection, and multihop question answering. We also

3The training process for the base model takes 8 days on 8
RTX8000 GPUs. Training large models requires roughly 3x
compute; therefore we do not focus on large models here and
leave that for future work.
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conducted an attention analysis, showing that our
CDLM indeed captured cross-document and long-
range relations during pretraining.4

Baseline LMs Recall that CDLM employs mul-
tiple related documents during pretraining, and as-
signs global attention to masked tokens. To system-
atically study the importance of these two compo-
nents, we consider the following LM baselines:
– Longformer: the underlying Longformer
model, without additional pretraining.

– Local CDLM: pretrained using the same corpus
of CDLM with the Longformer’s attention pattern
(local attention only). This baseline is intended to
separate the effect of simply continuing pretraining
Longformer on our new pre-training data.

– Rand CDLM: Longformer with the additional
CDLM pretraining, while using random, unrelated
documents from various clusters. This baseline
model allows assessing whether pretraining using
related documents is beneficial.

– Prefix CDLM: pretrained similarly as CDLM
but uses global attention for the first tokens in the
input sequence, rather than the masked ones. This
resembles the attention pattern of BIGBIRD (Za-
heer et al., 2020), adopted for our cross-document
setup. We use this ablation for examining this al-
ternative global attention pattern, from prior work.

The data and pretraining hyperparameters used
for the ablations above are the same as the ones
used for our CDLM pretraining, except for the
underlying Longformer, which is not further pre-
trained, and the Rand CDLM, that is fed with dif-
ferent document clusters (drawn from the same
corpus). During all the experiments, the global at-
tention weights used by the underlying Longformer
and by Local CDLM are initialized to the values
of their pretrained local attention weights. All the
models above further finetune their global atten-
tion weights, depending on the downstream task.
When finetuning CDLM and the above models on
downstream tasks involving multiple documents,
we truncate the longer inputs to the Longformer’s
4,096 token limit.

3.1 Cross-Document Perplexity
First, we conduct a cross-document (CD) perplex-
ity experiment, in a task-independent manner, to as-

4Since the underlying Longformer model is encoder-only,
we evaluate on tasks that can be modeled using the encoder-
only setting. We leave extensions to address seq2seq tasks
like generation to future work.

Model Validation Test

Longformer 3.89 3.94
Local CDLM 3.78 3.84
Rand CDLM 3.68 3.81
Prefix CDLM 3.20 3.41
CDLM 3.23 3.39

Table 1: Cross-document perplexity evaluation on the
validation and tests set of Multi-News. Lower is better.

sess the contribution of the pretraining process. We
used the Multi-News validation and test sets, each
of them containing 5,622 document clusters, to con-
struct the evaluation corpora. Then we followed
the same protocol from the pretraining phase - 15%
of the input tokens are randomly masked, where
the challenge is to predict the masked token given
all documents in the input sequence. We matched
the pretraining phase of each one of the ablation
models: In CDLM and Rand CDLM, we assigned
global attention for the masked tokens, and for Pre-
fix CDLM the global attention is assigned to the
15% first input tokens. Both Longformer and Local
CDLM used local attention only. Perplexity is then
measured by computing exponentiation of the loss.

The results are depicted in Table 1. The ad-
vantage of CDLM over Rand CDLM, which was
pretrained equivalently over an equivalent amount
of (unrelated) CD data, confirms that CD pretrain-
ing, over related documents, indeed helps for CD
masked token prediction across such documents.
Prefix CDLM introduces similar results since it
was pretrained using a global attention pattern
and the same corpora used by CDLM. The Lo-
cal CDLM is expected to have difficulty to predict
tokens across documents since it was pretrained
without using global attention. Finally, the under-
lying Longformer model, which is reported as a
reference point, is inferior to all the ablations since
it was pretrained in a single document setting and
without global attention or further pretraining on
this domain. Unlike the two local-attentive models,
CDLM is encouraged to look at the full sequence
when predicting a masked token. Therefore, as
in the pretraining phase, it exploits related infor-
mation in other documents, and not just the local
context of the masked token, hence CDLM, as well
as Prefix CDLM, result with a substantial perfor-
mance gain.

3.2 Cross-Document Coreference Resolution

Cross-document (CD) coreference resolution deals
with identifying and clustering together textual
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mentions across multiple documents that refer to
the same concept (see Fig. 1). The considered men-
tions can be either entity mentions, usually noun
phrases, or event mentions, typically verbs or nom-
inalizations that appear in the text.

Benchmark. We evaluated our CDLM by utiliz-
ing it over the ECB+ corpus (Cybulska and Vossen,
2014), the most commonly used dataset for CD
coreference. ECB+ consists of within- and cross-
document coreference annotations for entities and
events (statistics are given in Appendix A.2). Fol-
lowing previous work, for comparison, we conduct
our experiments on gold event and entity mentions.

We follow the standard coreference resolution
evaluation metrics: MUC (Vilain et al., 1995),
B3 (Bagga and Baldwin, 1998), CEAFe (Luo,
2005), their average CoNLL F1, and the more re-
cent LEA metric (Moosavi and Strube, 2016).

Algorithm. Recent approaches for CD corefer-
ence resolution train a pairwise scorer to learn the
probability that two mentions are co-referring. At
inference time, an agglomerative clustering based
on the pairwise scores is applied, to form the coref-
erence clusters. We made several modifications
to the pairwise scorer. The current state-of-the-art
models (Zeng et al., 2020; Yu et al., 2020) train the
pairwise scorer by including only the local contexts
(containing sentences) of the candidate mentions.
They concatenate the two input sentences and feed
them into a transformer-based LM. Then, part of
the resulting tokens representations are aggregated
into a single feature vector which is passed into an
additional MLP-based scorer to produce the coref-
erence probability estimate. To accommodate our
proposed CDLM model, we modify this model-
ing by including the entire documents containing
the two candidate mentions, instead of just their
containing sentences, and assigning the global at-
tention mode to the mentions’ tokens and to the
[CLS] token. The full method and hyperparame-
ters are elaborated in Appendix C.1.

Baselines. We consider state-of-the-art baselines
that reported results over the ECB+ benchmark.
The following baselines were used for both event
and entity coreference resolution:
– Barhom et al. (2019) is a model trained jointly
for solving event and entity coreference as a single
task. It utilizes semantic role information between
the candidate mentions.

– Cattan et al. (2020) is a model trained in an end-
to-end manner (jointly learning mention detection
and coreference following Lee et al. (2017)), em-
ploying the RoBERTa-large model to encode each
document separately and to train a pair-wise scorer
atop.

– Allaway et al. (2021) is a BERT-based model
combining sequential prediction with incremental
clustering.

The following baselines were used for event
coreference resolution. They all integrate exter-
nal linguistic information as additional features.
– Meged et al. (2020) is an extension of Barhom
et al. (2019), leveraging external knowledge ac-
quired from a paraphrase resource (Shwartz et al.,
2017).

– Zeng et al. (2020) is an end-to-end model, encod-
ing the concatenated two sentences containing the
two mentions by the BERT-large model. Similarly
to our algorithm, they feed a MLP-based pairwise
scorer with the concatenation of the [CLS] repre-
sentation and an attentive function of the candidate
mentions representations.

– Yu et al. (2020) is an end-to-end model similar to
Zeng et al. (2020), but uses rather RoBERTa-large
and does not consider the [CLS] contextualized
token representation for the pairwise classification.

Results. The results on event and entity CD
coreference resolution are depicted in Table 2.
Our CDLM outperforms all methods, including
the recent sentence based models on event coref-
erence. All the results are statistically signifi-
cant using bootstrap and permutation tests with
p < 0.001 (Dror et al., 2018). CDLM largely sur-
passes state-of-the-art results on entity coreference,
even though these models utilize external informa-
tion and use large pretrained models, unlike our
base model. In Table 3, we provide the ablation
study results. Using our model with sentences only,
i.e., considering only the sentences where the can-
didate mentions appear (as the prior baselines did),
exhibits lower performance, resembling the best
performing baselines. Some crucial information
about mentions can appear in a variety of locations
in the document, and is not concentrated in one sen-
tence. This characterizes long documents, where
pieces of information are often spread out. Overall,
the ablation study shows the advantage of using
our pretraining method, over related documents
and using a scattered global attention pattern, com-
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MUC B3 CEAFe LEA CoNLL

R P F1 R P F1 R P F1 R P F1 F1

E
ve

nt

Barhom et al. (2019) 78.1 84.0 80.9 76.8 86.1 81.2 79.6 73.3 76.3 64.6 72.3 68.3 79.5
Meged et al. (2020) 78.8 84.7 81.6 75.9 85.9 80.6 81.1 74.8 77.8 64.7 73.4 68.8 80.0
Cattan et al. (2020) 85.1 81.9 83.5 82.1 82.7 82.4 75.2 78.9 77.0 68.8 72.0 70.4 81.0
Zeng et al. (2020) 85.6 89.3 87.5 77.6 89.7 83.2 84.5 80.1 82.3 - - - 84.3
Yu et al. (2020) 88.1 85.1 86.6 86.1 84.7 85.4 79.6 83.1 81.3 - - - 84.4
Allaway et al. (2021) 81.7 82.8 82.2 80.8 81.5 81.1 79.8 78.4 79.1 - - - 80.8
CDLM 87.1 89.2 88.1 84.9 87.9 86.4 83.3 81.2 82.2 76.7 77.2 76.9 85.6

E
nt

ity

Barhom et al. (2019) 81.0 80.8 80.9 66.8 75.5 70.9 62.5 62.8 62.7 53.5 63.8 58.2 71.5
Cattan et al. (2020) 85.7 81.7 83.6 70.7 74.8 72.7 59.3 67.4 63.1 56.8 65.8 61.0 73.1
Allaway et al. (2021) 83.9 84.7 84.3 74.5 70.5 72.4 70.0 68.1 69.2 - - - 75.3
CDLM 88.1 91.8 89.9 82.5 81.7 82.1 81.2 72.9 76.8 76.4 73.0 74.7 82.9

Table 2: Results on event and entity cross-document coreference resolution on ECB+ test set.

F1 ∆

full document CDLM 85.6
− sentences only CDLM 84.2 -1.4
− Longformer 84.6 -1.0
− Local CDLM 84.7 -0.9
− Rand CDLM 84.1 -1.5
− Prefix CDLM 85.1 -0.5

Table 3: Ablation results (CoNLL F1) on our model on
the test set of ECB+ event coreference.

pared to the other examined settings. Recently, our
CDLM-based coreference model was utilized to
generate event clusters within an effective faceted-
summarization system for multi-document explo-
ration (Hirsch et al., 2021).

3.3 Document matching

We evaluate our CDLM over document matching
tasks, aiming to assess how well our model can cap-
ture interactions across multiple documents. We
use the recent multi-document classification bench-
mark by Zhou et al. (2020) which includes two
tasks of citation recommendation and plagiarism
detection. The goal of both tasks is categorizing
whether a particular relationship holds between
two input documents. Citation recommendation
deals with detecting whether one reference docu-
ment should cite the other one, while the plagia-
rism detection task infers whether one document
plagiarizes the other one. To compare with recent
state-of-the-art models, we utilized the setup and
data selection from Zhou et al. (2020), which pro-
vides three datasets for citation recommendation
and one for plagiarism detection.

Benchmarks. For citation recommendation, the
datasets include the ACL Anthology Network Cor-
pus (AAN; Radev et al., 2013), the Semantic
Scholar Open Corpus (OC; Bhagavatula et al.,

2018), and the Semantic Scholar Open Research
Corpus (S2ORC; Lo et al., 2020). For plagiarism
detection, the dataset is the Plagiarism Detection
Challenge (PAN; Potthast et al., 2013).

AAN is composed of computational linguistics
papers which were published on the ACL Anthol-
ogy from 2001 to 2014, OC is composed of com-
puter science and neuroscience papers, S2ORC is
composed of open access papers across broad do-
mains of science, and PAN is composed of web
documents that contain several kinds of plagiarism
phenomena. For further dataset prepossessing de-
tails and statistics, see Appendix A.3.

Algorithm. For our models, we added the
[CLS] token at the beginning of the input se-
quence, assigned it global attention, and concate-
nated the pair of texts, according to the finetuning
setup discussed in Section 2.2. The hyperparame-
ters are further detailed in Appendix C.2.

Baselines. We consider the reported results of
the following recent baselines:
– HAN (Yang et al., 2016) proposed the Hierar-
chical Attention Networks (HANs). These models
employ a bottom-up approach in which a docu-
ment is represented as an aggregation of smaller
components i.e., sentences, and words. They set
competitive performance in different tasks involv-
ing long document encoding (Sun et al., 2018).

– SMASH (Jiang et al., 2019) is an attentive hi-
erarchical recurrent neural network (RNN) model,
used for tasks related to long documents.

– SMITH (Yang et al., 2020) is a BERT-based
hierarchical model, similar HANs.

– CDA (Zhou et al., 2020) is a cross-document
attentive mechanism (CDA) built on top of HANs,
based on BERT or GRU models (see Section 4).
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Model AAN OC S2orc PAN

SMASH (2019)5 80.8 - - -
SMITH (2020)5 85.4 - - -
BERT-HAN (2020) 65.0 86.3 90.8 87.4
GRU-HAN+CDA (2020) 75.1 89.9 91.6 78.2
BERT-HAN+CDA (2020) 82.1 87.8 92.1 86.2

Longformer 85.4 93.4 95.8 80.4
Local CDLM 83.8 92.1 94.5 80.9
Rand CDLM 85.7 93.5 94.6 79.4
Prefix CDLM 87.3 94.8 94.7 81.7
CDLM 88.8 95.3 96.5 82.9

Table 4: F1 scores over the document matching bench-
marks’ test sets.

Both SMASH and SMITH reported results only
over the AAN benchmark. In addition, they used a
slightly different version of the AAN dataset,5 and
included the full documents, unlike the dataset that
(Zhou et al., 2020) used, which we utilized as well,
that considers only the documents’ abstracts.

Results. The results on the citation recommenda-
tion and plagiarism detection tasks are depicted in
Table 4. We observe that even though SMASH and
SMITH reported results using the full documents
for the AAN task, our model outperforms them,
using the partial version of the dataset, as in Zhou
et al. (2020). Moreover, unlike our model, CDA
is task-specific since it trains new cross-document
weights for each task, yet it is still inferior to our
model, evaluating on the three citation recommen-
dation benchmarks. On the plagiarism detection
benchmark, interestingly, our models does not per-
form better. Moreover, CDA impairs the perfor-
mance of BERT-HAN, implying that dataset does
not require detailed cross-document attention at all.
In our experiments, finetuning BERT-HAN+CDA
over the PAN dataset yielded poor results: F1 score
of 79.6, substantially lower compared to our mod-
els. The relatively small size of PAN may explain
such degradations.

3.4 Multihop Question answering
In the task of multihop question answering, a model
is queried to extract answer spans and evidence sen-
tences, given a question and multiple paragraphs
from various related and non-related documents.
This task includes challenging questions, that an-
swering them requires finding and reasoning over

5Following the most recent work of Zhou et al. (2020),
we evaluate our model on their version of the dataset. We
also quote the results of SMASH and SMITH methods, even
though they used a somewhat different version of this dataset,
hence their results are not fully comparable to the results of
our model and those of CDA.

Model Ans Sup Joint

Transformer-XH (2020) 66.2 72.1 52.9
Graph Recurrent Retriever (2020) 73.3 76.1 61.4
RoBERTa-lf (2020) 73.5 83.4 63.5
BIGBIRD (2020) 75.5 87.1 67.8

Longformer 74.5 83.9 64.5
Local CDLM 74.1 84.0 64.2
Rand CDLM 72.7 84.8 63.7
Prefix CDLM 74.8 84.7 65.2
CDLM 74.7 86.3 66.3

Table 5: HotpotQA-distractor results (F1) for the dev
set. We use the “base” model size results from prior
work for direct comparison. Ans: answer span, Sup:
Supporting facts.

multiple supporting documents.

Benchmark. We used the HotpotQA-distractor
dataset (Yang et al., 2018). Each example in the
dataset is comprised of a question and 10 differ-
ent paragraphs from different documents, extracted
from Wikipedia; two gold paragraphs include the
relevant information for properly answering the
question, mixed and shuffled with eight distractor
paragraphs (for the full dataset statistics, see Yang
et al. (2018)). There are two goals for this task: ex-
traction of the correct answer span, and detecting
the supporting facts, i.e., evidence sentences.

Algorithm. We employ the exact same setup
from (Beltagy et al., 2020): We concatenate all the
10 paragraphs into one large sequence, separated
by document separator tokens, and using special
sentence tokens to separate sentences. The model
is trained jointly in a multi-task manner, where
classification heads specialize on each sub-task, in-
cluding relevant paragraphs prediction, evidence
sentences identification, extracting answer spans
and inferring the question types (yes, no, or span).
For details and hyperparameters, see Appendix C.3
and Beltagy et al. (2020, Appendix D).

Results. The results are depicted in Table 5,
where we included also the results for Transformer-
XH (Zhao et al., 2020), a transformer-based model
that constructs global contextualized representa-
tions, Graph Recurrent Retriever (Asai et al.,
2020), a recent strong graph-based passage re-
trieval method, RoBERTa (Liu et al., 2019), which
was modified by Beltagy et al. (2020) to operate on
long sequences (dubbed RoBERTa-lf), and BIG-
BIRD (Zaheer et al., 2020), a long-range trans-
former model which was pretrained on a massive
amount of text. CDLM outperforms all the ablated
models as well as the comparably sized models
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from prior work (except for BIGBIRD), especially
in the supporting evidence detection sub-task. We
note that the BIGBIRD model was pretrained on
much larger data, using more compute resources
compared both to the Longformer model and to our
models. We suspect that with more compute and
data, it is possible to close the gap between CDLM
and BIGBIRD performance. We leave for future
work evaluating a larger version of the CDLM
model against large, state-of-the-art models.

3.5 Attention Analysis
It was recently shown that during the pretraining
phase, LMs learn to encode various types of linguis-
tic information, that can be identified via their atten-
tion patterns (Wiegreffe and Pinter, 2019; Rogers
et al., 2020b). In Clark et al. (2019), the atten-
tion weights of BERT were proved as informative
for probing the degree to which a particular token
is “important”, as well as its linguistic roles. For
example, they showed that the averaged attention
weights from the last layer of BERT are beneficial
features for dependency parsing.

We posit that our pretraining scheme, which
combines global attention and a multi-document
context, captures alignment and mapping informa-
tion across documents. Hence, we hypothesize
that the global attention mechanism favors cross-
document (CD), long-range relations. To gain more
insight, our goal is to investigate if our proposed
pretraining method leads to relatively higher global
attention weights between co-referring mentions
compared to non-co-referring ones, even without
any finetuning over CD coreference resolution.

Benchmark. We randomly sampled 1,000 posi-
tive and 1,000 negative coreference-pair examples
from the ECB+ CD coreference resolution bench-
mark, for both events and entities. Each example
consists of two concatenated documents and two
coreference candidate mentions (see Section 3.2).

Analysis Method. For each example, which con-
tains two mention spans, we randomly pick one to
be considered as the source span, while the second
one is the target span. We denote the set of the
tokens in the source and target spans as S and T ,
respectively. Our goal is to quantify the degree of
alignment between S and T , using the attention
pattern of the model. We first assign global atten-
tion to the tokens in the source span (in S). Next,
we pass the full input through the model, compute
the normalized attention weights for all the tokens

Doc 1: President Obama will name Dr. Regina Benjamin as
U.S. Surgeon General in a Rose Garden announcement late
this morning. Benjamin, an Alabama family physician, [...]
Doc 2: [...] Obama nominates new surgeon general:
MacArthur “genius grant ”fellow Regina Benjamin. [...]

Figure 3: An example from ECB+ corpus. The un-
derlined phrases represent a positive, co-referring event
mention pair. The blue (green) colored mention is con-
sidered as the source (target) span.

in the input with respect to S, by aggregating the
scores extracted from the last layer of the model.
The score for an input token i /∈ S, is given by

s(i|S) ∝ exp

 n∑
k=1

∑
j∈S

(
αk
i,j + αk

j,i

) ,
where αk

i,j is the global attention weight from token
i to token j produced by head k, and n is the total
number of attention heads (the score is computed
using only the last layer of the model). Note that we
include both directions of attention. The target span
score is then given by s(T |S) = 1

|T |
∑

j∈T s(j|S).
Finally, we calculate the percentile rank (PR) of
s(T |S), compared to the rest of the token scores
within the containing document of T , namely,
{s(i|S)|i /∈ T}.

For positive coreference examples, plausible re-
sults are expected to be associated with high at-
tention weights between the source and the target
spans, resulting with a high value of s(T |S), and
thus, yielding a higher PR. For negative examples,
the target span is not expected to be promoted with
respect to the rest of the tokens in the document.

Results. First, we apply the procedure above over
one selected example, depicted in Figure 3. We
consider the two CD co-referring event mentions:
name and nominates as the source and target spans,
respectively. The target span received a PR of 69%
when evaluating the underlying Longformer. No-
tably, it received a high PR of 90% when using our
CDLM, demonstrating the advantage of our novel
pretraining method. Next, we turn to a systematic
experiment, elucidating the relative advantage of
pretraining with global attention across related doc-
uments. In Table 6, we depict the mean PR (MPR)
computed over all the sampled examples, for all
our pretrained models. We observe that none of
the models fail6 on the set of negatives, since the
negative examples contain reasonable event or en-
tity mentions, rather than random, non informative

6Typically, PR of ∼50% corresponds to random ranking.
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Pos. MPR (%) Neg. MPR (%)

events entities events entities

L
oc

al Longformer 61.9 59.7 54.8 50.5
Local CDLM 62.2 60.8 54.6 52.6

G
lo

ba
l Rand CDLM 70.6 69.1 56.6 53.2

Prefix CDLM 70.7 69.4 58.5 56.5
CDLM 72.1 70.3 58.0 55.7

Table 6: Cross-document coreference resolution align-
ment MPR scores of the target span, with respect to the
tokens in the same document.

spans. For the positive examples, the gap of up
to 10% of MPR between the “Local” and “Global”
models shows the advantage of adopting global
attention during the pretraining phase. This indi-
cates that the global attention mechanism implicitly
helps to encode alignment information.

4 Related Work

Recently, long-context language models (Beltagy
et al., 2020; Zaheer et al., 2020) introduced the idea
of processing multi-document tasks using a single
long-context sequence encoder. However, pretrain-
ing objectives in these models consider only single
documents. Here, we showed that additional gains
can be obtained by MLM pretraining using multi-
ple related documents as well as a new dynamic
global attention pattern.

Processing and aggregating information from
multiple documents has been also explored in the
context of document retieval, aiming to extract in-
formation from a large set of documents (Guu et al.,
2020; Lewis et al., 2020a,b; Karpukhin et al., 2020).
These works focus on retrieving relevant informa-
tion from often a large collection of documents,
by utilizing short-context LMs, and then generate
information of interest. CDLM instead provides an
approach for improving the encoding and contex-
tualizing information across multiple documents.
As opposed to the mentioned works, our model
utilizes long-context LM and can include broader
contexts of more than a single document.

The use of cross-document attention has been
recently explored by the Cross-Document Atten-
tion (CDA) (Zhou et al., 2020). CDA specifi-
cally encodes two documents, using hierarchical
attention networks, with the addition of cross at-
tention between documents, and makes similar-
ity decision between them. Similarly, the recent
DCS model (Ginzburg et al., 2021) suggested a
cross-document finetuning scheme for unsuper-

vised document-pair matching method (process-
ing only two documents at once). Our CDLM, by
contrast, is a general pretrained language model
that can be applied to a variety of multi-document
downstream tasks, without restrictions on the num-
ber of input documents, as long as they fit the input
length of the Longformer.

Finally, our pretraining scheme is conceptually
related to cross-encoder models that leverage simul-
taneously multiple related information sources. For
example, the Translation Language Model (TLM)
(Conneau and Lample, 2019) encodes together sen-
tences and their translation, while certain cross-
modality encoders pretrain over images and texts
in tandem (e.g., ViLBERT (Lu et al., 2019)).

5 Conclusion

We presented a novel pretraining strategy and tech-
nique for cross-document language modeling, pro-
viding better encoding for cross-document (CD)
downstream tasks. Our contributions include the
idea of leveraging clusters of related documents
for pretraining, via cross-document masking, along
with a new long-range attention pattern, together
driving the model to learn to encode CD relation-
ships. This was achieved by extending the global at-
tention mechanism of the Longformer model to ap-
ply already in pretraining, creating encodings that
attend to long-range information across and within
documents. Our experiments assess that our cross-
document language model yields new state-of-the-
art results over several CD benchmarks, while, in
fact, employing substantially smaller models. Our
analysis showed that CDLM implicitly learns to
recover long-distance CD relations via the atten-
tion mechanism. We propose future research to
extend this framework to train larger models, and
to develop cross-document sequence-to-sequence
models, which would support CD tasks that involve
a generation phase.
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A Dataset Statistics and Details

In this section, we provide details regrading the
pretraining corpus and benchmarks we used during
our experiments.

A.1 Multi-News Corpus

We used the preprocessed, not truncated version of
Multi-News, which totals 322MB of uncompressed
text.7 Each one of the preprocessed documents
contains up to 500 tokens. The average and 90th

percentile of input length is 2.5k and 3.8K tokens,
respectively. In Table 7 we list the number of re-
lated documents per cluster. This follows the origi-
nal dataset construction suggested in Fabbri et al.
(2019).

# of docs in cluster Frequency

3 12,707
4 5,022
5 1,873
6 763
7 382
8 209
9 89
10 33

Total 21,078

Table 7: MultiNews training set statistics.

A.2 ECB+ Dataset

In Table 8, we list the statistics about training, de-
velopment, and test splits regarding the topics, doc-
uments, mentions and coreference clusters. We
follow the data split used by previous works (Cybul-
ska and Vossen, 2015; Kenyon-Dean et al., 2018;
Barhom et al., 2019): For training, we consider the
topics: 1, 3, 4, 6-11, 13- 17, 19-20, 22, 24-33; For
Validation, we consider the topics: 2, 5, 12, 18, 21,
23, 34, 35; For test, we consider the topics: 36-45.

Train Validation Test

Topics 25 8 10
Docs 594 196 206
Mentions 3808/4758 1245/1476 1780/2055
Clusters 411/472 129/125 182/196

Table 8: ECB+ dataset statistics. The slash numbers for
Mentions and Clusters represent event/entity statistics.

7We used the dataset available in
https://drive.google.com/open?id=
1qZ3zJBv0zrUy4HVWxnx33IsrHGimXLPy.

A.3 Paper Citation Recommendation &
Plagiarism Detection Datasets

In Table 9, we list the statistics about training, de-
velopment, and test splits for each benchmark sep-
aratly, and in Table 10, we list the document and
example counts for each benchmark. The statistics
are taken from Zhou et al. (2020).

Dataset Train Validation Test

AAN 106,592 13,324 13,324
OC 240,000 30,000 30,000
S2ORC 152,000 19000 19000
PAN 17,968 2,908 2,906

Table 9: Document-to-Document benchmarks statis-
tics: Details regrading the training, validation, and test
splits.

Dataset # of doc pairs # of docs

AAN 132K 13K
OC 300K 567K
S2ORC 190K 270K
PAN 34K 23K

Table 10: Document-to-Document benchmarks statis-
tics: The reported numbers are the count of document
pairs and the count of unique documents.

The preprocessing of the datasets performed
by Zhou et al. (2020) includes the following steps:
For AAN, only pairs of documents that include ab-
stracts are considered, and only their abstracts are
used. For OC, only one citation per paper is con-
sidered, and the dataset was downsampled signifi-
cantly. For S2ORC, formed pairs of citing sections
and the corresponding abstract in the cited paper
are included, and the dataset was downsampled sig-
nificantly. For PAN, pairs of relevant segments out
of the entire document were extracted.

For all the datasets, negative pairs were sampled
randomly. Then, a standard preprocessing that in-
cludes filtering out characters that are not digits,
letters, punctuation, or white space in the texts was
performed.

B CDLM Pretraining Hyperparameters

In this section, we detail the hyperparameters set-
ting of the models we pretrained, including CDLM
Prefix CDLM, Rand CDLM, and Local CDLM:
The input sequences are of the length of 4,096,
effective batch size of 64 (using gradient accumula-
tion and batch size of 8), a maximum learning rate

https://drive.google.com/open?id=1qZ3zJBv0zrUy4HVWxnx33IsrHGimXLPy
https://drive.google.com/open?id=1qZ3zJBv0zrUy4HVWxnx33IsrHGimXLPy
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CD-LM

</doc-s>...<doc-s>[CLS] <m> </m>

sum

... </doc-s>...<doc-s> <m> </m>...

sum

Figure 4: CD-coreference resolution pairwise mention representation, using the new setup, for our CDLM models.
mi

t,m
j
t and st are the cross-document contextualized representation vectors for mentions i and j, and of the [CLS]

token, respectively. mi
t ◦m

j
t is the element-wise product between mi

t and mj
t . mt(i, j) is the final produced

pairwise-mention representation. The tokens colored in yellow represent global attention, and tokens colored in
blue represent local attention.

of 3e-5, and a linear warmup of 500 steps, followed
by a power 3 polynomial decay. For speeding up
the training and reducing memory consumption, we
used the mixed-precision (16-bits) training mode.
The pretraining took 8 days, using eight 48GB
RTX8000 GPUs. The rest of the hyperparame-
ters are the same as for RoBERTa (Liu et al., 2019).
Note that training CDLM using the large version
of the Longformer model might require 2-3 times
more memory and time.

C Finetuning on Downstream Tasks

In this section, we elaborate further implementation
details regarding the downstream tasks that we ex-
perimented, including the hyperparameter choices
and the algorithms used.

C.1 Cross-Document Coreference Resolution

The setup for our cross-document coreference res-
olution pairwise scoring is illustrated in Figure 4.
We concatenate the relevant documents using the
special document separator tokens, then encode
them using our CDLM along with the [CLS] to-
ken at the beginning of this sequence, as suggested
in Section 2.2. For within-document coreference
candidate examples, we use just the single contain-
ing document with one set of document separa-
tors, for the single input document. Inspired by Yu
et al. (2020), we use candidate mention marking:

we wrap the mentions with special tokens 〈m〉 and
〈/m〉 in order to direct the model to specifically
pay attention to the candidates representations. Ad-
ditionally, we assign global-attention to [CLS],
〈m〉, 〈/m〉, and the mention tokens themselves, ac-
cording to the finetuning strategy proposed in Sec-
tion 2.2. Our final pairwise-mention representation
is formed like in Zeng et al. (2020) and Yu et al.
(2020): We concatenate the cross-document contex-
tualized representation vectors for the tth sample:

mt(i, j) =
[
st,m

i
t,m

j
t ,m

i
t ◦m

j
t

]
,

where [·] denotes the concatenation operator, st is
the cross-document contextualized representation
vector of the [CLS] token, and each of mi

t and
mj

t is the sum of candidate tokens of the corre-
sponding mentions (i and j). Then, we train the
pairwise scorer according to the suggested finetun-
ing scheme. At test time, similar to most recent
works, we apply agglomerative clustering to merge
the most similar cluster pairs.

Regarding the training data collection and hyper-
parameter setting, we adopt the same protocol as
suggested in Cattan et al. (2020):8 Our training set
is composed of positive instances which consist of
all the pairs of mentions that belong to the same

8We used the implementation taken from https://
github.com/ariecattan/cross_encoder

https://github.com/ariecattan/cross_encoder
https://github.com/ariecattan/cross_encoder
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coreference cluster, while the negative examples
are randomly sampled.

The resulting feature vector is passed through
a MLP pairwise scorer that is composed of one
hidden layer of the size of 1024, followed by the
Tanh activation. We finetune our models for 10
epochs, with an effective batch size of 128. We
used eight 32GB V100-SMX2 GPUs for finetuning
our models. The finetuning process took ∼28 and
∼45 hours per epoch, for event coreference and
entity coreference, respectively.

C.2 Multi-Document Classification
We tune our models for 8 epochs, using a batch size
of 32, and used the same hyperparameter setting
from Zhou et al. (2020, Section 5.2).9 We used
eight 32GB V100-SMX2 GPUs for finetuning our
models. The finetuning process took ∼2,∼5,∼3,
and ∼0.5 hours per epoch, for AAN, OC, S2ORC,
and for PAN, respectively. We used the mixed-
precision training mode, to reduce time and mem-
ory consumption.

C.3 Multihop Question Answering
For preparing the data for training and evalu-
ation, we follow our finetuning scheme: for
each example, we concatenate the question
and all the 10 paragraphs in one long con-
text. We particularly use the following input
format with special tokens and our document
separators: “[CLS] [q] question [/q]
〈doc-s〉〈t〉 title1 〈/t〉 〈s〉 sent1,1 〈/s〉
〈s〉 sent1,2 〈/s〉 〈/doc-s〉 ... 〈t〉
〈doc-s〉 title2 〈/t〉 sent2,1 〈/s〉 〈s〉
sent2,2 〈/s〉 〈s〉 ...” where [q], [/q], 〈t〉,
〈/t〉, 〈s〉, 〈/s〉, [p] are special tokens represent-
ing, question start and end, paragraph title start
and end, and sentence start and end, respectively.
The new special tokens were added to the models
vocabulary and randomly initialized before task
finetuning. We use global attention to question
tokens, paragraph title start tokens as well as sen-
tence tokens. The model’s structure is taken from
Beltagy et al. (2020).

Similar to Beltagy et al. (2020), we finetune our
models for 5 epochs, using a batch size of 32, learn-
ing rate of 1e-4, 100 warmup steps. Finetuning on
our models took ∼6 hours per epoch, using four
48GB RTX8000 GPUs for finetuning our models.

9we used the script https://github.com/
XuhuiZhou/CDA/blob/master/BERT-HAN/run_
ex_sent.sh

https://github.com/XuhuiZhou/CDA/blob/master/BERT-HAN/run_ex_sent.sh
https://github.com/XuhuiZhou/CDA/blob/master/BERT-HAN/run_ex_sent.sh
https://github.com/XuhuiZhou/CDA/blob/master/BERT-HAN/run_ex_sent.sh

