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Abstract

Symbolic music understanding, which refers
to the understanding of music from the sym-
bolic data (e.g., MIDI format, but not audio),
covers many music applications such as genre
classification, emotion classification, and mu-
sic pieces matching. While good music rep-
resentations are beneficial for these applica-
tions, the lack of training data hinders repre-
sentation learning. Inspired by the success of
pre-training models in natural language pro-
cessing, in this paper, we develop MusicBERT,
a large-scale pre-trained model for music un-
derstanding. To this end, we construct a
large-scale symbolic music corpus that con-
tains more than 1 million music songs. Since
symbolic music contains more structural (e.g.,
bar, position) and diverse information (e.g.,
tempo, instrument, and pitch), simply adopt-
ing the pre-training techniques from NLP to
symbolic music only brings marginal gains.
Therefore, we design several mechanisms, in-
cluding OctupleMIDI encoding and bar-level
masking strategy, to enhance pre-training with
symbolic music data. Experiments demon-
strate the advantages of MusicBERT on four
music understanding tasks, including melody
completion, accompaniment suggestion, genre
classification, and style classification. Abla-
tion studies also verify the effectiveness of
our designs of OctupleMIDI encoding and bar-
level masking strategy in MusicBERT.

1 Introduction

Music understanding, including tasks like genre
classification, emotion classification, music pieces
matching, has attracted lots of attention in both
academia and industry. A better understanding of
melody, rhythm, and music structure is not only
beneficial for music information retrieval (Casey
et al., 2008) but also helpful for music genera-
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tion (Huang et al., 2018; Sheng et al., 2020). Sim-
ilar to natural language, music is usually repre-
sented in symbolic data format (e.g., MIDI) (Jack-
endoff, 2009; McMullen and Saffran, 2004) with se-
quential tokens, and some methods (Mikolov et al.,
2013a,b) from NLP can be adopted for symbolic
music understanding. Since the labeled training
data for each music understanding task is usually
scarce, previous works (Liang et al., 2020; Chuan
et al., 2020) leverage unlabeled music data to learn
music token embeddings, similar to word embed-
dings in natural language tasks. Unfortunately, due
to their shallow structures and limited unlabeled
data, such embedding-based approaches have lim-
ited capability to learn powerful music representa-
tions.

In recent years, pre-trained language models
(e.g., BERT) have been verified to be powerful for
representation learning from large-scale unlabeled
text corpora (Devlin et al., 2018; Radford et al.,
2019; Yang et al., 2019; Song et al., 2019; Brown
et al., 2020; Song et al., 2020). However, it is
challenging to directly apply the pre-training tech-
niques from NLP to symbolic music because of the
difference between natural text data and symbolic
music data. First, since music songs are more struc-
tural (e.g., bar, position) and diverse (e.g., tempo,
instrument, and pitch), encoding symbolic music
is more complicated than natural language. The
existing pianoroll-like (Ji et al., 2020) and MIDI-
like (Huang and Yang, 2020; Ren et al., 2020) rep-
resentations of a song are too long to be processed
by pre-trained models. For example, the length of
a music song encoded by REMI (Huang and Yang,
2020) has an average length of 15,679, as shown
in Table 1. Due to the limits of computational re-
sources, the length of sequences processed by a
Transformer model is usually cropped to below
1,000. Thus such representations cannot capture
sufficient information for song-level tasks. Accord-
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ingly, an effective, efficient, and universal symbolic
music encoding method is needed for music repre-
sentation learning. Second, due to the complicated
encoding of symbolic music, the pre-training mech-
anism (e.g., the masking strategy like the masked
language model in BERT) should be carefully de-
signed to avoid information leakage in pre-training.
Third, as pre-training relies on large-scale corpora,
the lack of large-scale symbolic music corpora lim-
its the potential of pre-training for music under-
standing.

Encoding OctupleMIDI CP-like REMI-like

Tokens 3607 6906 15679

Table 1: The average number of tokens per song on
LMD dataset with different encoding methods.

In this paper, we develop MusicBERT, a large-
scale pre-trained model with carefully designed
music encoding and masking strategy for music
understanding.

• We design a novel music encoding method called
OctupleMIDI, which encodes each note into a
tuple with 8 elements. These 8 elements repre-
sent the different aspects of the characteristics of
a musical note, including time signature, tempo,
bar, position, instrument, pitch, duration, and ve-
locity. OctupleMIDI has several advantages: 1)
It largely reduces the length of a music sequence
(4x shorter than REMI (Huang and Yang, 2020)
and 2x shorter than CP (Hsiao et al., 2021)),
thus easing the modeling of music sequences by
Transformer considering that music sequences
themselves are very long. 2) It is note centric.
Since each note contains the same 8-tuple struc-
ture and covers adequate information to express
various music genres, such as changing time sig-
nature and long note duration, OctupleMIDI is
much simpler and more universal than previous
encoding methods.

• We carefully analyze the masking strategies for
symbolic music understanding and propose a
bar-level masking strategy for MusicBERT. The
masking strategy in original BERT for NLP tasks
randomly masks some tokens, which will cause
information leakage in music pre-training. For
example, some attributes are usually the same in
a segment of consecutive tokens, such as time
signature, tempo, instrument, bar, and position.

Therefore, the masked tokens can be easily pre-
dicted by directly copying from the adjacent to-
kens since they are probably the same. Mean-
while, adjacent pitches usually follow the same
chord so that a masked pitch token can be eas-
ily inferred from the adjacent tokens in the same
chord. Therefore, we propose a bar-level mask-
ing strategy, which masks all the tokens of the
same type (e.g., time signature, bar, instrument,
or pitch) in a bar to avoid information leakage
and encourage effective representation learning.

• Last but not least, we collect a large-scale and
diverse symbolic music dataset, denoted as Mil-
lion MIDI Dataset (MMD), that contains more
than 1 million music songs, with different gen-
res, including Rock, Electronic, Rap, Jazz, Latin,
Classical, etc. To our knowledge, it is the largest
in current literature, which is 10 times larger
than the previous largest dataset LMD (Raffel,
2016) in terms of the number of songs as shown
in Table 2. Thus, this dataset greatly benefits
representation learning for music understanding.

We fine-tune the pre-trained MusicBERT on four
downstream music understanding tasks, including
melody completion, accompaniment suggestion,
genre classification, and style classification, and
achieve state-of-the-art results on all the tasks. Fur-
thermore, ablation studies show the effectiveness
of the individual components in MusicBERT, in-
cluding the OctupleMIDI encoding, the bar-level
masking strategy, and the large-scale corpus.

The main contributions of this paper are summa-
rized as follows:

• We pre-train MusicBERT on a large-scale sym-
bolic music corpus that contains more than 1
million music songs and fine-tune MusicBERT
on some music understanding tasks, achieving
state-of-the-art results.

• We propose OctupleMIDI, an efficient and uni-
versal music encoding for music understanding,
which leads to much shorter encoding sequences
and is universal for various kinds of music.

• We design a bar-level masking strategy as the
pre-training mechanism for MusicBERT, which
significantly outperforms the naive token-level
masking strategy used in natural language pre-
training.
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2 Related Works

2.1 Symbolic Music Understanding
Inspired by word2vec (Mikolov et al., 2013a,b) in
NLP, previous works on symbolic music under-
standing learn music embedding by predicting a
music symbol based on its neighborhood symbols.
Huang et al. (2016); Madjiheurem et al. (2016) re-
gard chords as words in NLP and learn chords rep-
resentations using the word2vec model. Herremans
and Chuan (2017); Chuan et al. (2020); Liang et al.
(2020) divide music pieces into non-overlapping
music slices with a fixed duration and train the em-
beddings for each slice. Hirai and Sawada (2019)
cluster musical notes into groups and regard such
groups as words for representation learning. How-
ever, the word2vec-based approaches mentioned
above only use relatively small neural network
models and take only a few (usually 4-5) surround-
ing music tokens as inputs, which have limited
capability compared with recently developed deep
and big pre-trained models like BERT (Devlin et al.,
2018), which takes a long sentence (e.g., with 512
words/tokens) as input. In this paper, we pre-train
big/deep models over a large-scale music corpus
and use more context as input to improve symbolic
music understanding.

2.2 Symbolic Music Encoding
There are two main approaches to encode symbolic
music: pianoroll-based and MIDI-based.

In pianoroll-based methods (Ji et al., 2020; Brun-
ner et al., 2018), music is usually encoded into a
2-dimensional binary matrix, where one dimension
represents pitches, and the other represents time
steps. Each element in the matrix indicates whether
the pitch is played at that time step. As a result, a
note is always divided into multiple fixed intervals,
which is inefficient, especially for long notes.

MIDI is a technical standard for transferring dig-
ital instrument data. Many works in symbolic mu-
sic (Oore et al., 2020; Huang et al., 2018) encode
music pieces based on MIDI events, including note-
on, note-off, time-shift, etc. REMI (Huang and
Yang, 2020) improves the basic MIDI-like encod-
ing using note-duration, bar, position, chord, and
tempo. Inspired by REMI (Huang and Yang, 2020),
PopMAG (Ren et al., 2020) and Compound Word
(CP) (Hsiao et al., 2021) compress the attributes
of a note, including pitch, duration, and velocity,
into one symbol and reduces duplicated position
events. Although such MIDI-like approaches avoid

redundancy for long notes, they still need multi-
ple tokens to represent the attributes, position, and
metadata of a single note, which can be further
compressed. This paper proposes OctupleMIDI, a
MIDI-based encoding method, which is efficient
due to the reduced sequence length and universal
to support various music genres.

2.3 Masking Strategies in Pre-training

Masking strategies play a key role in NLP pre-
training. For example, BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019) randomly mask
some tokens in an input sequence and learn to
predict the masked tokens. Furthermore, since
adjacent tokens may form a word or a phrase,
some works consider masking consecutive tokens.
For example, MASS (Song et al., 2019) randomly
masks a fragment of several consecutive tokens
in the input, and SpanBERT (Joshi et al., 2020)
randomly masks contiguous spans instead of to-
kens. However, symbolic music is different from
language. First, symbolic music contains structural
(e.g., bar, position) and diverse information (e.g.,
tempo, instrument, and pitch), while natural lan-
guage can be regarded as homogeneous data, which
only contains text. Second, music and language
follow different rules. Specifically, the language
rules include grammar and spelling, while the mu-
sic rules include beat, chord, etc. Accordingly, the
masking strategies for symbolic music need to be
specifically designed; otherwise, it may limit the
potential of pre-training because of information
leakage, as we analyzed before. In this paper, we
carefully design a bar-level masking strategy for
symbolic music pre-training.

3 Methodology

In this section, we introduce MusicBERT, a large-
scale Transformer model for symbolic music under-
standing. We first overview the model structure and
then describe the OctupleMIDI encoding and mask-
ing strategy for pre-training. At last, we describe
the large-scale music corpus with over 1 million
songs used in MusicBERT pre-training.

3.1 Model Overview

As shown in Figure 1, MusicBERT pre-trains a
Transformer encoder (Vaswani et al., 2017; De-
vlin et al., 2018), with masked language modeling
where some tokens in the input music sequence are
masked and are predicted in the model output. To
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Figure 1: Model structure of MusicBERT.

encode the music sequence more efficiently, we pro-
pose a novel encoding method called OctupleMIDI,
which encodes a symbolic music piece into a se-
quence of octuple tokens (an 8-tuple) that contains
8 basic elements related to a music note (we intro-
duce OctupleMIDI in detail in Sec. 3.2). To convert
the octuple tokens in each sequence step into the
input of the Transformer encoder, we concatenate
the embeddings of the 8 elements and use a linear
layer to convert them into a single vector. Then,
the converted vector is added with the correspond-
ing position embeddings and taken as the input of
the Transformer encoder. To predict each of the 8
tokens in the 8-tuple from the Transformer encoder,
we add 8 different softmax layers to map the hid-
den of the Transformer encoder to the vocabulary
sizes of 8 different element types, respectively.

3.2 OctupleMIDI Encoding

Previous works (Liang et al., 2020) encode the
symbolic music in a pianoroll-like way, which is
not efficient since a note is always divided into
multiple fixed small intervals (e.g., a quarter note
is represented with 8 consecutive tokens). MIDI-
like approaches (Huang and Yang, 2020; Ren et al.,
2020; Hsiao et al., 2021) encode a note into several
tokens based on MIDI events, making encoding
much shorter, and has been widely used in music
generation tasks. However, previous MIDI-like
representations are still long for the Transformer
structure due to computation complexity and learn-
ing efficiency. Accordingly, we propose a com-
pact symbolic music encoding method called Octu-
pleMIDI for music understanding tasks. As shown
in Fig. 2, OctupleMIDI encodes 6 notes into 6 to-
kens, which is much shorter than 33 tokens with
REMI (Huang and Yang, 2020) and 16 tokens with
CP (Hsiao et al., 2021). Meanwhile, OctupleMIDI

is general for various kinds of music. For example,
OctupleMIDI supports changeable time signature
and tempo.

In OctupleMIDI, we use sequences of octuple
tokens to represent symbolic music. Each octu-
ple token corresponds to a note and contains 8
elements, including time signature, tempo, bar, po-
sition, instrument, pitch, duration, and velocity. We
introduce the details of each element as follows:

• Time signature. A time signature is denoted as
a fraction (e.g., 2/4), where the denominator is
a power of two in range [1, 64], representing
the length of a beat (measured by note duration,
e.g., a quarter note in 2/4), and the numerator
is an integer in range [1, 128], representing the
number of beats in a bar (e.g., 2 beats in 2/4).
The value of the fraction measures the duration
of a bar normalized by a whole note (e.g., 2/4
means that the duration of a bar is a half note).
We consider the duration of a bar is no more than
two whole notes. Otherwise, we divide a long
bar into several equal-duration bars no longer
than two whole notes. Therefore, there are 254
different valid time signatures in OctupleMIDI.

• Tempo. Tempo is measured in beats per minute
(BPM), which describes the pace of music. In
most music samples, tempo values are in range
[24, 200]. For OctupleMIDI encoding, we quan-
tize tempo values to 49 different values from 16
to 256, forming a geometric sequence.

• Bar and position. We use bar and position to in-
dicate the on-set time of a note hierarchically. In
the coarse level, we use 256 tokens ranging from
0 to 255 to represent the bar, supporting up to 256
bars in a music piece, which is sufficient in most
cases. In the fine-grained level (inside each bar),



795

TS3/4

Instpiano

Bar0

Pos0

BPM120

Vel62

Pitch57

Dur64

TS3/4

Instpiano

Bar0

Pos0

BPM120

Vel62

Pitch60

Dur64

TS3/4

Instguitar

Bar0

Pos0

BPM120

Vel82

Pitch69

Dur16

TS3/4

Instguitar

Bar0

Pos16

BPM125

Vel82

Pitch67

Dur32

TS3/4

Instpiano

Bar1

Pos0

BPM130

Vel66

Pitch57

Dur16

TS3/4

Instguitar

Bar1

Pos0

BPM130

Vel86

Pitch65

Dur16

1 2 3 4 5 6

Octuple mask Bar-level mask

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

(a) OctupleMIDI encoding.
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Figure 2: Different encoding methods for symbolic music.

we use position with a granularity of 1/64 note to
represent the on-set time of a note, starting from
0 in each bar. Therefore, we need 128 tokens to
represent position since the duration of a bar is no
more than two whole notes, as described above.
For example, in a bar with a time signature of
3/4, the possible value of position is from 0 to
47.

• Instrument. According to the MIDI format, we
use 129 tokens to represent instruments, where
0 to 127 stands for different general instruments
such as piano and bass, and 128 stands for the
special percussion instrument such as drum.

• Pitch. For notes of general instruments, we use
128 tokens to represent pitch values following the
MIDI format. However, for notes of percussion
instruments, there are no pitches but percussion
types (e.g., bass drum, hand clap). Therefore,
we use another 128 “pitch” tokens to represent
percussion type for percussion instruments.

• Duration. To support the long note duration (up
to 60 whole notes in the common music genre)
with a fixed set of duration tokens, we propose a
mixed resolution method: using high resolution
(e.g., sixty-fourth note) when the note duration
is small and using a low resolution (e.g., thirty-
second note or larger) when the note duration is
large. Specifically, we use 128 tokens to repre-
sent duration, starting from 0, with an increment

of sixty-fourth note for the first 16 tokens, and
double the increment (i.e., thirty-second note)
every time for next 16 tokens. The duration for
percussion instruments is meaningless, so we al-
ways set them to 0.

• Velocity. We quantize the velocity of a note in
the MIDI format into 32 different values with an
interval of 4 (i.e., 2, 6, 10, 14, . . . , 122, 126).

An example of a music sequence in Octu-
pleMIDI encoding is shown in Fig. 2a.

3.3 Masking Strategy

Inspired by the masked language model in
BERT (Devlin et al., 2018), we randomly mask
some elements in the input sequence of octuple to-
kens and predict the masked ones. A naive masking
strategy is to randomly mask some octuple tokens
(mask all the elements in an octuple token), which
is denoted as octuple masking as shown in Fig. 2a.
However, considering the specific rules of music,
such naive strategy will cause information leakage,
and thus cannot well learn the contextual represen-
tation.

A music song consists of multiple bars, which
can be regarded as highly internally related units.
An octuple token can be easily inferred from the
adjacent tokens in the same bar. Specifically, time
signature, tempo, and bar usually remain the same
in the same bar. Instrument and position values
in the same bar follow regular patterns, where the
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instrument is limited to a small-scale fixed set of
values, and the position values are non decreas-
ing. Moreover, a chord is a fixed combination of
pitches, which always appear in adjacent positions.
Accordingly, we propose a novel bar-level mask-
ing strategy, where the elements with the same
type in the same bar are regarded as a unit and are
masked simultaneously. In this way, information
leakage can be avoided, and better contextual rep-
resentation can be learned through pre-training. An
example of bar-level masking is shown in Fig. 2a.

For the masked elements, 80% of them are
replaced with [MASK], 10% of them are re-
placed with a random element, and 10% remain
unchanged, following the common practice (De-
vlin et al., 2018; Joshi et al., 2020; Liu et al., 2019).
Inspired by RoBERTa (Liu et al., 2019), we remove
the next sentence prediction task in pre-training
and adopt a dynamic masking strategy, where the
masked sequence is generated every time when
feeding a sequence to the model.

3.4 Pre-training Corpus

A large-scale music dataset is necessary to learn
good music representations from pre-training.
However, previous symbolic music datasets are
usually of small scale: 1) the MAESTRO dataset
(Hawthorne et al., 2019) contains only one thou-
sand piano performances; 2) the GiantMIDI-Piano
dataset (Kong et al., 2020a,b) contains slightly
larger but still only ten thousands of piano per-
formances; 3) the largest open-sourced symbolic
music dataset by now is the Lakh-MIDI Dataset
(LMD) (Raffel, 2016), which contains about 100K
songs.

To pre-train a powerful model with good music
representations, we build a large-scale symbolic
music corpus with over 1.5 million songs. Specifi-
cally, we first crawled a large amount of music files,
cleaned files that are malformed or blank, and then
converted those files into our symbolic music en-
coding. Since OctupleMIDI encoding is universal,
most MIDI files can be converted to our encod-
ing without noticeable loss of musical information.
We found that these music files may have almost
identical music content even if their hash values
are different. Therefore, we developed an efficient
way to deduplicate them: we first omitted all ele-
ments except instrument and pitch in the encoding,
then got hash values of the remaining sequence and
use it as the fingerprint of this music file, which is

further used for deduplication. After cleaning and
deduplication, we obtained 1.5 million songs with
2 billion octuple tokens (musical notes). We denote
our dataset as Million-MIDI Dataset (MMD). We
compare the sizes of different music datasets in
Table 2.

Dataset Songs Notes (Millions)

MAESTRO 1,184 6
GiantMIDI-Piano 10,854 39
LMD 148,403 535

MMD 1,524,557 2,075

Table 2: The sizes of different music datasets. Since
LMD also consists of MIDI files from various websites,
we perform the same cleaning and deduplication pro-
cess as used in MMD and get 148,403 songs in LMD.

4 Experiments and Results

In this section, we first introduce the pre-training
setup for MusicBERT, and then fine-tune Mu-
sicBERT on several downstream music understand-
ing tasks to compare it with previous approaches.
Finally, more method analyses are conducted to ver-
ify the effectiveness of the designs in MusicBERT.

4.1 Pre-training Setup

Model Configuration We pre-train two versions
of MusicBERT: 1) MusicBERTsmall on the small-
scale LMD dataset, which is mainly for a fair
comparison with previous works on music under-
standing such as PiRhDy (Liang et al., 2020) and
melody2vec (Hirai and Sawada, 2019), which are
also pre-trained on LMD; 2) MusicBERTbase on the
large-scale MMD dataset, for pushing the SOTA
results and showing the scalability of MusicBERT.
The details of the two MusicBERT models are
shown in Table 4. We use our proposed bar-level
masking strategy with a masking probability of
15%. In addition, we use tokens of 8 duplicated
elements to represent the class token and the end
of sequence token. They are also masked with a
15% probability.

Pre-training Details The average sequence
length of OctupleMIDI representation of a song is
3607 tokens as shown in Table 1, which is too long
to model in Transformer. Therefore, we randomly
sample segments with a length of 1024 tokens for
pre-training. Following Liu et al. (2019), we pre-
train MusicBERT on 8 NVIDIA V100 GPUs for 4
days, and there are 125,000 steps in total, with a
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Model
Melody Completion Accompaniment Suggestion Classification

MAP HITS HITS HITS HITS MAP HITS HITS HITS HITS Genre Style
@1 @5 @10 @25 @1 @5 @20 @25 F1 F1

melody2vecF 0.646 0.578 0.717 0.774 0.867 - - - - - 0.649 0.299
melody2vecB 0.641 0.571 0.712 0.772 0.866 - - - - - 0.647 0.293
tonnetz 0.683 0.545 0.865 0.946 0.993 0.423 0.101 0.407 0.628 0.897 0.627 0.253
pianoroll 0.762 0.645 0.916 0.967 0.995 0.567 0.166 0.541 0.720 0.921 0.640 0.365
PiRhDyGH 0.858 0.775 0.966 0.988 0.999 0.651 0.211 0.625 0.812 0.965 0.663 0.448
PiRhDyGM 0.971 0.950 0.995 0.998 0.999 0.567 0.184 0.540 0.718 0.919 0.668 0.471

MusicBERTsmall 0.982 0.971 0.996 0.999 1.000 0.930 0.329 0.843 0.993 0.997 0.761 0.626
MusicBERTbase 0.985 0.975 0.997 0.999 1.000 0.946 0.333 0.857 0.996 0.998 0.784 0.645

Table 3: Results of different models on the four downstream tasks: melody completion, accompaniment suggestion,
genre classification, and style classification. We choose four baseline models: Melody2vec (Hirai and Sawada,
2019) is widely used in music understanding tasks, tonnetz (Chuan and Herremans, 2018) and pianoroll (Dong
et al., 2018) are classical methods for music representation, PiRhDy (Liang et al., 2020) is a new model that
significantly outperforms previous models in all four downstream tasks. Results of melody2vec on accompaniment
suggestion task are emitted since it only encodes melody part of music.

MusicBERT small base

Number of layers 4 12
Element embedding size 512 768
Hidden size 512 768
FFN inner hidden size 2048 3072
#Attention heads 8 12
Pre-training dataset LMD MMD

Table 4: The model configurations of MusicBERT.

batch size of 256 sequences, each has a maximum
length of 1024 tokens. We use Adam (Kingma and
Ba, 2014) optimizer with β1=0.9, β2=0.98, ε=1e-6
and L2 weight decay of 0.01. The learning rate
is warmed up over the first 25,000 steps to a peak
value of 5e-4 and then linearly decayed. Dropout
value on all layers and attention weights are set to
0.1.

4.2 Fine-tuning MusicBERT

We fine-tune MusicBERT on four downstream
tasks: two phrase-level tasks (i.e., melody com-
pletion and accompaniment suggestion) and two
song-level tasks (i.e., genre and style classifica-
tion). For the two phrase-level tasks, the learning
rate is warmed up over the first 50,000 steps to a
peak value of 5e-5 and then linearly decayed un-
til reaching 250,000 total updates. For the two
song-level tasks, the learning rate is warmed up
over the first 4,000 steps to a peak value of 5e-5
and then linearly decayed until reaching 20,000
total updates. The batch size is set to 64 sequences
for both tasks. Other settings are the same as pre-
training. We compare MusicBERT with previous
works on symbolic music understanding, including

PiRhDy (Liang et al., 2020) and melody2vec (Hirai
and Sawada, 2019).

4.2.1 Melody Completion
Melody completion (Liang et al., 2020) is to find
the most matched consecutive phrase in a given set
of candidates for a given melodic phrase. There are
1,793,760 data pairs in the training set and 198,665
data groups in the test set in this task (Liang et al.,
2020). Each training data pair consists of one pos-
itive sample and one negative sample, while each
test data group consists of 1 positive sample and 49
negative samples. We use mean average precision
(MAP) and HITS@k (k=1, 5, 10, 25, indicating the
rate of correctly chosen phrase in the top k candi-
dates) as evaluation metrics, making comparisons
with PiRhDy (Liang et al., 2020), melody2vec (Hi-
rai and Sawada, 2019), pianoroll (Dong et al.,
2018), tonnetz (Chuan and Herremans, 2018). As
shown in Table 3, MusicBERTsmall outperforms all
previous works on the same pre-training dataset
LMD, indicating the advantage of MusicBERT
on learning representations from melodic con-
text. MusicBERTbase with a larger model and
pre-training corpus can further achieve better re-
sults, showing the effectiveness of large-scale pre-
training.

4.2.2 Accompaniment Suggestion
Accompaniment suggestion (Liang et al., 2020) is
to find the most related accompaniment phrase in a
given set of harmonic phrase candidates for a given
melodic phrase. There are 7,900,585 data pairs
in the training set, each consisting of one positive
sample and one negative sample, and 202,816 data
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groups in the test set (Liang et al., 2020). Each
group in the test set consists of N positive sam-
ples and (50-N) negative samples when there are
N accompaniment tracks in the MIDI file of that
sample. We use mean average precision (MAP)
and HITS@k as metrics, making comparisons with
PiRhDy (Liang et al., 2020), pianoroll (Dong et al.,
2018), tonnetz (Chuan and Herremans, 2018). As
shown in Table 3, MusicBERT models perform
much better than previous works, indicating the
advantages of MusicBERT in understanding har-
monic context.

4.2.3 Genre and Style Classification

Genre classification and style classification (Fer-
raro and Lemström, 2018) are multi-label classi-
fication tasks. Following Ferraro and Lemström
(2018), we use the TOP-MAGD dataset for genre
classification and the MASD dataset for style clas-
sification. TOP-MAGD contains 22,535 annotated
files of 13 genres, and MASD contains 17,785 files
of 25 styles. We evaluate MusicBERT on TOP-
MAGD and MASD using 5-fold cross-validation
and use the F1-micro score as the metric (Liang
et al., 2020; Ferraro and Lemström, 2018; Oramas
et al., 2017). Due to the limitation of computational
resources, for songs with more than 1,000 octuple
tokens, we randomly crop segments with 1,000
tokens. On average, the selected segment covers
more than 1/4 of a music song according to Table 1,
which is enough to capture sufficient information
for identifying genres and styles. As shown in
Table 3, MusicBERT models significantly outper-
form previous works, indicating that MusicBERT
can perform well on song-level tasks.

4.3 Method Analysis

In this subsection, we analyze the effectiveness
of each design in MusicBERT, including Octu-
pleMIDI encoding, bar-level masking strategy, and
the pre-training itself. We conduct experiments
on MusicBERTsmall with a maximum sequence
length of 250 due to the huge training cost of
MusicBERTbase. For simplicity, we treat melody
completion and accompaniment suggestion as bi-
nary classification tasks: classifying matched and
not matched melody or accompaniment pairs, in-
stead of ranking a group of pairs by predicted match
score. We use the accuracy percentage score as the
metric for these two binary classification tasks.

Effectiveness of OctupleMIDI We compare
our proposed OctupleMIDI encoding with
REMI (Huang and Yang, 2020) and CP (Hsiao
et al., 2021) by training MusicBERTsmall models
with each encoding respectively and evaluate on
downstream tasks. As shown in Table 5, for song-
level tasks (i.e., genre and style classification),
OctupleMIDI significantly outperforms REMI and
CP based encoding, since the model can learn
from a larger proportion of a music song with
the compact OctupleMIDI encoding, given all
encoding methods use the same length of sequence
for pre-training. For phrase-level tasks (melody
completion and accompaniment suggestion), the
input sequence length is usually less than the
truncate threshold. Thus, benefiting from the short
representation, OctupleMIDI significantly reduces
the computational complexity of the Transformer
encoder, which is only 1/16 of that with REMI-like
encoding and 1/4 of that with CP-like encoding.
Moreover, according to Table 5, OctupleMIDI
performs better than the other two encoding
methods on phrase-level tasks.

Encoding Melody Accom. Genre Style

CP-like 95.7 87.2 0.719 0.510
REMI-like 92.0 86.5 0.689 0.487

OctupleMIDI 96.7 87.9 0.730 0.534

Table 5: Results of different encoding methods. “Ac-
com.” represents accompaniment suggestion task.

Effectiveness of Bar-Level Masking We com-
pare our proposed bar-level masking strategy with
two other strategies: 1) Octuple masking, as men-
tioned in Sec. 3.3 and Fig. 2a; 2) Random masking,
which randomly masks the elements in the octu-
ple token similar to the masked language model
in BERT. We use the same masking ratio for all
these strategies. As shown in Table 6, our proposed
bar-level masking can effectively boost results on
downstream tasks.

Mask Melody Accom. Genre Style

Random 96.3 87.8 0.708 0.533
Octuple 96.0 87.3 0.722 0.530

Bar 96.7 87.9 0.730 0.534

Table 6: Results of different masking strategies.

Effectiveness of Pre-training To show the ad-
vantage of pre-training in MusicBERT, we com-
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pare the performance of MusicBERTsmall with and
without pre-training. As shown in Table 7, pre-
training achieves much better scores on the four
downstream tasks, demonstrating the critical role
of pre-training on symbolic music understanding.

Model Melody Accom. Genre Style

No pre-train 92.4 76.9 0.662 0.395

MusicBERT 96.7 87.9 0.730 0.534

Table 7: Results with and without pre-training.

5 Conclusion

In this paper, we developed MusicBERT, a large-
scale pre-trained model for symbolic music un-
derstanding. Instead of simply adopting the pre-
training methods from NLP to symbolic music,
we handle the distinctive challenges in music
pre-training with several careful designs in Mu-
sicBERT, including the efficient and universal Octu-
pleMIDI encoding, the effective bar-level masking
strategy, and the large-scale symbolic music corpus
with more than 1 million music songs. MusicBERT
achieves state-of-the-art performance on all of the
four evaluated symbolic music understanding tasks,
including melody completion, accompaniment sug-
gestion, genre classification, and style classifica-
tion. Method analyses also verify the effectiveness
of each design in MusicBERT. For future work, we
will apply MusicBERT on other music understand-
ing tasks such as chord recognition and structure
analysis to boost the performance.
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