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Abstract

Usually, we train a neural system on a se-
quence of mini-batches of labeled instances.
Each mini-batch is composed of k samples,
and each sample will learn a representation
vector. MIXUP implicitly generates synthetic
samples through linearly interpolating inputs
and their corresponding labels of random sam-
ple pairs in the same mini-batch. This means
that MIXUP only generates new points on the
edges connecting every two original points in
the representation space. We observed that
the new points by the standard MIXUP cover
pretty limited regions in the entire space of
the mini-batch. In this work, we propose
BATCHMIXUP—improving the model learn-
ing by interpolating hidden states of the en-
tire mini-batch. BATCHMIXUP can gener-
ate new points scattered throughout the space
corresponding to the mini-batch. In experi-
ments, BATCHMIXUP shows superior perfor-
mance than competitive baselines in improv-
ing the performance of NLP tasks while using
different ratios of training data.

1 Introduction

The study of data augmentation techniques has
a long history in the NLP community. Typi-
cal data augmentations include synonym replace-
ment (Kobayashi, 2018), back-translation (Fadaee
et al., 2017), adding data noise (Xie et al., 2017),
etc. Mostly, these techniques are combined
with the augmentation-free models in pipeline.
MIXUP (Zhang et al., 2018) is able to augment
the data by linearly combining each two examples
by their hidden representations, keeping the whole
system trained in end-to-end.

MIXUP has shown effectiveness in a range of
NLP tasks (Sun et al., 2020). Nevertheless, it
has two drawbacks. First, MIXUP generates new
points merely and exactly on the connecting edges
of random point pairs; these new points cover

pretty limited region in the representation space
of the mini-batch. Second, the training of a system
equipped with MIXUP is considerably inefficient—
generally, MIXUP slows down the training by n
times if it generates n new points for each original
point pair. In this work, we propose BATCHMIXUP,
an improved mixup paradigm that generates new
points scattered uniformly throughout the whole
representation region of the mini-batch. Specifi-
cally, within a mini-batch, each example and its
label will first learn a representation vector respec-
tively, BATCHMIXUP then generates n new points
(including a new input representations and a new la-
bel representation) simultaneously by non-linearly
interpolating all the examples in the same mini-
batch. The new n points are expected to better
identify the space represented by the mini-batch.
Finally, the n mixed points will act as one batch to
update the model.

Our model BATCHMIXUP, as a batch-wise non-
linear MIXUP, shows advantages in two aspects.
(i) Compared with the standard MIXUP, BATCH-
MIXUP further improves the representation learn-
ing in solving downstream NLP tasks, yielding bet-
ter performance. (ii) BATCHMIXUP works much
more efficient than the conventional MIXUP and
other pair-wise mixup variants.

2 Related Work

MIXUP was originally proposed in the computer
vision community. The standard MIXUP (Zhang
et al., 2018) interpolates the raw pixels of each
two images in a mini-batch. Verma et al. (2019)
conducted interpolation in the hidden states of im-
ages. Guo et al. (2019b) discovered a limitation of
MIXUP, called “manifold intrusion”, which is the
conflict between the synthetic label of the mixed-up
points and the labels of the original examples. They
came up with “AdaMixup”, an adaptive MIXUP,
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where the mixing policies are automatically learned
from the data using an additional network and ob-
jective function designed to avoid manifold intru-
sion. Other work tried to explain the work mech-
anisms of MIXUP from different threads, such as
“MIXUP as directional adversarial training” (Ar-
chambault et al., 2019), “MIXUP training as the
complexity reduction” (Kimura, 2020)

To date, only a couple of previous studies ex-
plored the effectiveness of the standard MIXUP in
NLP. Guo et al. (2019a) tried two strategies: inter-
polating word embeddings or sentence embeddings
generated by convolutional/recurrent neural net-
works. Sun et al. (2020) incorporated MIXUP into
BERT (Devlin et al., 2019), the state of the art ar-
chitecture in NLP. To improve the standard MIXUP,
Guo (2020) added non-linearity to the MIXUP for
text classification tasks. However, that non-linear
MIXUP works on word embedding level, which is
less applicable to Transformer-style (Vaswani et al.,
2017) systems. All the work above are pair-wise
mixup, this work is the first work that interpolates
all the examples in the same mini-batch to cover
the representation space better.

3 The Base Model: MIXUP

Given a pair of samples (xi, yi) and (xj , yj) from
the original mini-batch (x: input, y: the one-hot
label), the standard MIXUP (Zhang et al., 2018)
generates a synthetic sample as follows.

x̂ij = βxi + (1− β)xj (1)

ŷij = βyi + (1− β)yj (2)

where β is a mixing scalar, sampled from a Beta(α,
α) distribution with a hyper-parameter α, for mix-
ing both the inputs and the corresponding targets.
The generated synthetic data are then fed into the
model for training to minimize the loss function.

From the same mini-batch, the standard
MIXUP will sample the β value n times so that
totally n new mixed points for a sampled input
pair will be generated sequentially. The model, as
a result, will be updated n times more than the
mixup-free model.

4 Our Model: BATCHMIXUP

BATCHMIXUP mixes all the samples in the same
mini-batch on the level of hidden states generated
by RoBERTa (Liu et al., 2019).1

1Please note that BATCHMIXUP also works for other deep
neural encoders.

To start, we first think about how the standard
text classifier works: For the labeled input (xi, yi),
first RoBERTa (optionally with a multilayer per-
ceptron block) generates a representation for xi
(“v(xi) ∈ Rd”), then v(xi) is fed to a logistic re-
gression (LR) layer to classify to yi. The LR layer
has a weight matrix W ∈ Rc×d where c is the class
size and d is the dimension size of representations.
Each row in W , i.e., wi ∈ Rd, can be treated as the
representation vector of the class yi. So, LR essen-
tially uses the dot-product to derive the matching
score (si ∈ R) between the input xi and the label
yi: si = (v(xi))

T · wi.
For the same mini-batch of inputs {v(xi)} and

labels {wi}, BATCHMIXUP deploys the same mix-
ing policy to interpolate the {v(xi)} and {wi}.

We denote the whole batch of input representa-
tions {v(xi)} as X ∈ Rd×b where b is the batch
size and the whole mixing policy for this batch is
M ∈ Rn×d×b. To generate a single mixed point
x̂i ∈ Rd, the BATCHMIXUP uses the following
mixing policy M[i] ∈ Rd×b (i = 1, · · · , n) on
X , where each element ofM[i] is independently
sampled from a Beta(α, α) distribution:

x̂i =
∑

axis=1

(softmax(M[i]) ◦ X ) (3)

where ◦ is the Hadamard product. Equation 3
can be performed for all i values in [1,n] simul-
taneously; this means the original batch input X
is transformed into a new batch of mixed input
X̂ ∈ Rn×d.

Similarly, the same mixing policyM is applied
to the batch of label representations, denoted as
Y ∈ Rd×b (Y = {wi}):

ŷi =
∑

axis=1

(softmax(M[i]) ◦ Y) (4)

Each (x̂i, ŷi) (i = 1, · · · , n) is a newly mixed
point. All {(x̂i, ŷi)} can be generated in parallel
and are scattered throughout the space represented
by X .

For training, we minimize the negative-dot-
product loss between the mixed input and the mixed
label. In testing, an input xi still compares with all
classes {yi} by dot-product between v(xi) and all
{wi} to find the best class.

5 Experiments

In experiments, we check the effectiveness of our
approach in NLP tasks with two settings: one is
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#training data entailment relation intent

100%

RoBERTa-large 80.91±1.47 87.24±1.52 93.77±0.44
w/ MIXUP 82.03±1.69 87.91±0.34 93.41±1.24
w/ Nonlinear Mixup 82.98±1.17 88.41±0.73 94.29±1.01
w/ BATCHMIXUP 83.56±0.90 90.04±0.33 94.94±0.20

75%

RoBERTa-large 80.07±1.27 87.49±0.31 90.31±1.11
w/ MIXUP 80.53±1.31 87.87±0.12 92.44±1.98
w/ Nonlinear Mixup 80.90±0.39 87.66±0.81 93.00±1.84
w/ BATCHMIXUP 82.00±0.91 88.41±0.54 93.55±1.58

50%

RoBERTa-large 77.50±0.82 82.83±4.92 85.11±2.88
w/ MIXUP 75.19±6.07 87.00±0.18 87.09±2.06
w/ Nonlinear Mixup 77.66±1.90 87.79±0.29 88.13±2.92
w/ BATCHMIXUP 79.47±2.07 88.29±0.22 90.13±2.20

25%

RoBERTa-large 70.92±4.04 78.95±0.33 80.95±2.22
w/ MIXUP 71.70±5.66 82.02±0.59 84.95±1.19
w/ Nonlinear Mixup 72.14±4.27 83.71±0.12 85.44±2.02
w/ BATCHMIXUP 74.36±2.82 86.66±0.26 87.71±1.38

1%

RoBERTa-large 50.41±0.29 3.41±0.74 42.21±5.54
w/ MIXUP 51.74±0.84 49.93±2.71 50.21±3.21
w/ Nonlinear Mixup 51.41±0.43 55.29±4.78 52.21±1.49
w/ BATCHMIXUP 51.46±1.43 60.29±2.18 55.21±1.77

random or majority baseline 50.16 1.31 1.29

Table 1: Experimental results on three NLP tasks: textual entailment (RTE (Dagan et al., 2005; Wang et al., 2019)),
relation classification (FewRel (Han et al., 2018)) and intent classification (BANKING77 (Casanueva et al., 2020)).
We decrease the size of training data from 100% to 1% with random sampling. All numbers are averaged over
three random seeds.

full-shot setting that trains on the regular full train-
ing data; the other is few-shot setting that train with
limited training data. Unfortunately, prior work
about mixup never evaluated on few-shot scenar-
ios.

Tasks. We evaluate on the following three tasks.
• Textual Entailment. Textual entailment is a

task that figures out the truth value of a hypothesis
sentence given a premise sentence (Dagan et al.,
2005). This is a binary classification (“entailment”
or “non-entailment”) problem where the input is
a sentence pair. We use the GLUE RTE (Wang
et al., 2019) benchmark which has 2,490/277/2,999
examples in train/dev/test. The smaller size of this
dataset (compared MNLI (Williams et al., 2018)
for example) makes it a good testbed for data aug-
mentation techniques.

• Relation Classification. FewRel (Han et al.,
2018) is a large-scale relation classification dataset.
It has 100 relation types, each with 700 labeled
examples. The original FewRel relation set was
split by 64/16/20 for developing meta-learning tech-
niques which only allow a test instance to search

for its relation type within the 20 candidates. This
is not a practical setting because (i) in relation de-
tection, an input should search for a label in the
entire space of defined relations, (ii) we should al-
ways define a ”None” type in this problem because
most span pairs in the input actually do not have
a relation. Since the test relations of FewRel is
not publicly available, we use the 64+16=80 rela-
tions as the entire relation set, in which 5 relations
are treated ”None” (So, basically this is a regular
“75+None” setting).

• Intent Classification (“intent”). We use
the benchmark BANKING772 (Casanueva et al.,
2020), which is single-domain intent detection
dataset comprising 13,083 annotated examples over
77 intents (average: 170 examples per intent). Each
intent class is described by a short name, such as
“get physical card”, “lost or stolen card”, etc.

Baselines. The augmentation-free system we use
for above tasks consists of a RoBERTa3 encoder

2https://github.com/PolyAI-LDN/
task-specific-datasets

3We used the pretrained “RoBERTa-large”

https://github.com/PolyAI-LDN/task-specific-datasets
https://github.com/PolyAI-LDN/task-specific-datasets
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(a) Two classes (orange vs. blue), 5-shot for each
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(b) Hyperplane after training w/o mixup; it cannot
distinguish the two classes clearly.
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(c) Hyperplane after training w/ BATCHMIXUP, it
separates the two classes very well

Figure 1: Visualization analysis

and a final logistic regression layer. Based on this
RoBERTa system, we compare our system BATCH-
MIXUP with (i) the standard MIXUP (Zhang
et al., 2018; Sun et al., 2020), and (ii) non-linear
MIXUP (Guo, 2020). Both baselines conduct data
interpolation in the hidden states output by the
RoBERTa.

All systems are implemented through the Hug-
gingface’s Transformers package.4

4https://github.com/huggingface/

Results and Analysis. Table 1 lists the
main results. We notice that our approach
RoBERTa+BATCHMIXUP consistently outper-
forms the baselines MIXUP and non-linear
MIXUP. In “1% entailment”, none of systems
really worked—all system results are around
the majority baseline. This is because that the
RTE task is very challenging with over limited
annotations. With 2.5K × 1%=25 labeled
examples, the “RoBETTa” cannot learn any
useful representations. This is in line with the
observations in (Yin et al., 2020) which showed
that few-shot RTE (when k ∈ {1, 3, 5, 10}) will
make RoBERTa fail. So, we conclude that when a
system is close to random guess, adding mixup is
not helpful. In this situation, maybe using other
conventional data augmentation skills makes more
sense as the representation learning of synthetic
data and that of the original data are decoupled.

To further study how BATCHMIXUP works, we
simulate the classification process with a toy experi-
ment: we generate a large amount of 2-dimensional
data in Gaussian distributions for two classes (Fig-
ure 1(a)), and randomly sample 5 examples for each
class to conduct 5-shot classification. We used a
MLP as the classifier, trained 100 epochs. Compar-
ing the final hyperplane of training with BATCH-
MIXUP with that of training without MIXUP, we
can observe that BATCHMIXUP can improve the
training considerably.

Last but not least, the training of same epochs for
“w/ MIXUP”, “w/ Nonlinear MIXUP” takes much
longer than our system “w/ BATCHMIXUP”. For
example, when all systems separately run on a GPU
Tesla V100, our system BATCHMIXUP and the
baseline “RoBERTa-large” both take about 1.5min
to finish one epoch on RTE, but “w/ MIXUP” and
“w/ Nonlinear MIXUP” will take ∼20mins if β is
sampled 15 times per point pair.

6 Conclusion

In this work, we proposed a novel MIXUP model,
named BATCHMIXUP, to improve the text classi-
fier. Different with prior MIXUP variants, which
always interpolate random two points, our system
interpolates all the hidden states in the mini-batch.
The mixed points by our system are able to better
cover the space expressed by the minibatch. The
experiments and visualization analysis both show
the effectiveness of our model BATCHMIXUP.

transformers
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Iñigo Casanueva, Tadas Temčinas, Daniela Gerz,
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