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Abstract

Language coverage bias, which indicates the
content-dependent differences between sen-
tence pairs originating from the source and tar-
get languages, is important for neural machine
translation (NMT) because the target-original
training data is not well exploited in current
practice. By carefully designing experiments,
we provide comprehensive analyses of the lan-
guage coverage bias in the training data, and
find that using only the source-original data
achieves comparable performance with using
full training data. Based on these observations,
we further propose two simple and effective
approaches to alleviate the language coverage
bias problem through explicitly distinguishing
between the source- and target-original train-
ing data, which consistently improve the per-
formance over strong baselines on six WMT20
translation tasks. Complementary to the trans-
lationese effect, language coverage bias pro-
vides another explanation for the performance
drop caused by back-translation (Marie et al.,
2020). We also apply our approach to both
back- and forward-translation and find that
mitigating the language coverage bias can im-
prove the performance of both the two repre-
sentative data augmentation methods and their
tagged variants (Caswell et al., 2019).

1 Introduction

In recent years, there has been a growing interest
in investigating the effect of original languages in
parallel data on neural machine translation (Bar-
rault et al., 2020; Edunov et al., 2020; Marie et al.,
2020). Several studies have shown that target-
original test examples1 can lead to distortions in
automatic and human evaluations, which should
be omitted from machine translation test sets (Bar-
rault et al., 2019; Zhang and Toral, 2019; Graham

1Target-original test examples are sentence pairs that are
translated from the target language into the source language.
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Figure 1: Example of language coverage bias illus-
trated by word clouds that are plotted at the English
side of sentence pairs in the En-De test sets from
WMT10 to WMT18. The test sets consist of English-
original and German-original sentence pairs.

et al., 2020). Another branch of studies report that
target-original test data leads to discrepant conclu-
sions: back-translation only benefits the transla-
tion of target-original test data while harms that
of source-original test data (Edunov et al., 2020;
Marie et al., 2020). They attribute these phenom-
ena to the reason that human-translated texts (i.e.,
translationese) exhibit formal and stylistic differ-
ences that set them apart from the texts originally
written in that language (Baker et al., 1993; Volan-
sky et al., 2015; Zhang and Toral, 2019).

Complementary to the translationese bias, which
is content-independent (Volansky et al., 2015), we
identify another important problem, namely lan-
guage coverage bias, which refers to the content-
dependent differences in data originating from dif-
ferent languages. These differences stem from the
diversity of regions and cultures. While the degree
of the translationese bias varies across different
translators (Toral, 2019), language coverage bias
is an intrinsic bias between the source- and target-
original data, which is hardly affected by the ability
of the translator. Figure 1 shows an example, where
the contents in English- and German-original texts
differ significantly due to language coverage bias.
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To investigate the effect of language coverage
bias in the training data on NMT models, we pro-
pose an automatic method to identify the original
language of each training example, which is gen-
erally unknown in practical corpora. Experimen-
tal results on three large-scale translation corpora
show that there exists a significant performance gap
between NMT models trained on the source- and
target-original data, which have different vocab-
ulary distributions, especially for content words.
Since the target-original training data performs
poorly in translating content words, using only the
source-original data achieves comparable perfor-
mance with using full training data. These findings
motivate us to explore other data utilization meth-
ods rather than indiscriminately mixing the source-
and target-original training data.

We propose to alleviate the language coverage
bias problem by explicitly distinguishing between
the source- and target-original training data. Specif-
ically, two simple and effective methods are em-
ployed: bias-tagging and fine-tuning. Experimental
results show that both approaches consistently im-
prove the performance on six WMT20 translation
tasks. Language coverage bias also provides an-
other explanation for the failure of back-translation
on the source-original test data, complementary to
the translationese effect (Marie et al., 2020). We
further validate our approach in the monolingual
data augmentation scenario, where the language
coverage bias problem would be more severe due
to the newly introduced monolingual data.

Contributions The main contributions of our
work are listed as follows:

• We demonstrate the necessity of studying the
language coverage bias for NMT, and identify
that using the target-original data can cause
poor translation adequacy on content words.

• We address the language coverage bias in-
duced by the target-original data by explicitly
distinguishing the original languages, which
can significantly improve the translation per-
formance on six WMT20 translation tasks.

• We show that alleviating the language cover-
age bias also benefits monolingual data aug-
mentation, which can improve both back-
and forward-translation and their tagged vari-
ants (Caswell et al., 2019).

2 Experimental Setup

Data We conducted experiments on six WMT20
benchmarks (Barrault et al., 2020), including
English⇔German (En⇔De), English⇔Chinese
(En⇔Zh), and English⇔Japanese (En⇔Ja) news
translation tasks. The preprocessed training cor-
pora contain 41.0M, 21.8M, and 13.0M sentence
pairs for En⇔De, En⇔Zh, and En⇔Ja, respec-
tively. We used the monolingual data that is pub-
licly available in WMT20 to train the proposed orig-
inal language detection model (Section 3.1) and
data augmentation (Section 4.2). The Appendix
lists details about the data preprocessing.

For En⇔De and En⇔Zh, we used newstest2019
as the validation sets. For En⇔Ja, we split the of-
ficial validation set released by WMT20 into two
parts by the original language and only used the
corresponding part for each direction. We used
newstest2020 as the test sets for all the six tasks.
We reported the Sacre BLEU (Post, 2018), as rec-
ommended by WMT20.

Model We used the Transformer-Big (Vaswani
et al., 2017) model, which consists of a 6-layer
encoder and a 6-layer decoder, and the hidden
size is 1024. Recent studies showed that training
on large batches can further boost model perfor-
mance (Ott et al., 2018; Wu et al., 2018). Accord-
ingly, we followed their settings to train models
with batches of approximately 460k tokens. Please
refer to the Appendix for more details about model
training. We followed Ng et al. (2019) to use the
Transformer-Big decoder as our language models,
which are used to detect the original language and
measure translation fluency. Language models are
also trained with large batches (Ott et al., 2018).

3 Observing Language Coverage Bias

In this study, we first establish the existence of lan-
guage coverage bias (Section 3.2), and show how
the bias affects NMT performance (Section 3.3).
To this end, we propose an automatic method to
detect the original language of each training exam-
ple (Section 3.1), which is often not available in
large-scale parallel corpora (Riley et al., 2020).

3.1 Detecting Original Languages

Detection Method Intuitively, we use a large-
scale monolingual dataset to estimate the distribu-
tion of the contents covered by each language. For
each training example, we compare its similarities
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Method En-Zh En-Ja En-De

FT 83.6 83.7 86.6
Ours 84.4 91.5 88.7

Table 1: F1 scores of detecting original languages in the
test sets. “FT” denotes the forward translation classifier
proposed by Riley et al. (2020).

to the distributions of source and target languages,
based on which we determine its original language.

Formally, let Ds and Dt denote the source-side
and target-side distributions of the covered contents.
Given a training example 〈x,y〉, the probability
that it is covered by one language (represented as
Ds and Dt) can be expressed as

P (Ds|〈x,y〉) =
P (Ds)P (〈x,y〉|Ds)

P (〈x,y〉)
,

P (Dt|〈x,y〉) =
P (Dt)P (〈x,y〉|Dt)

P (〈x,y〉)
.

We use a score function to denote the difference
between the two probabilities:

score = logP (Ds|〈x,y〉)− logP (Dt|〈x,y〉),
= logP (〈x,y〉|Ds)− logP (〈x,y〉|Dt) + c,

where c = logP (Ds) − logP (Dt), which has a
constant value when the source and target monolin-
gual datasets are given. Intuitively, examples with
higher score values are more likely to be source-
original while those with lower score values are
more likely to be target-original data. We train
language models θlm

s and θlm
t on the source- and

target-language monolingual data to estimate the
conditional probabilities:

P (〈x,y〉|Ds) = P (x|θlm
s ),

P (〈x,y〉|Dt) = P (y|θlm
t ).

Accordingly, the score can be rewritten as

score = logP (x|θlm
s )− logP (y|θlm

t ) + c. (1)

We label examples as source-original if their score
values are positive, and the other examples as target-
original. To find a specific constant for each lan-
guage pair, we tune the value of c to obtain the best
classification performance on the validation sets,
where the original languages are known.
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Figure 2: Translation performance on the validation
sets of the En⇔Zh translation task for different ratios
of most source- and target-original training examples.

Detection Accuracy We evaluated the detection
method on the mixture of the test sets of bidirec-
tional translation tasks in WMT20 for each lan-
guage pair. For comparison, we re-implemented
the CNN-based forward-translation (FT) classifier
proposed by Riley et al. (2020). The FT classi-
fier and the language models used in our method
were trained on the same monolingual data sets.
Table 1 shows that our method outperforms the
FT classifier in all language pairs. In addition,
our model also outperforms the FT approach on
detecting noisy training data, which leads to an im-
provement in translation performance (please refer
to Table 11 in the Appendix for more results).

3.2 Existence of Language Coverage Bias
In this section, we validate the existence of lan-
guage coverage bias by (1) comparing the perfor-
mance of NMT models trained on data with differ-
ent original languages, and (2) directly calculating
the divergence between the vocabulary distribu-
tions of the source- and target-original data.

Translation Performance Once all the training
examples are assigned a score by the detection
method (Eq. (1)), we regard R% of examples with
the highest scores as the most source-original exam-
ples, and R% of examples with the least scores as
the most target-original examples. We investigate
the effect of R% on translation performance, as
shown in Figure 2. Clearly, using the most source-
original examples significantly outperforms using
its target-original counterparts, demonstrating that
the source- and target-original data indeed differ
greatly from each other. To rule out the effect of
data scale, we treat 50% of data with the highest
scores as source-original data, and the same amount
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Data JS (×10−5)

All Content Function

Random 4 10 0
S vs T 745 1503 261

Table 2: JS divergence of the vocabulary distributions
between the source- and target-original data (“S vs T”)
on the training set of WMT20 En⇔Zh. “All”, “Con-
tent”, and “Function” denote all words, content words,
and function words respectively. For reference, we also
report the JS divergence between randomly selected
50% examples and the others (“Random”).

of data with the least scores as target-original data
in the following experiments by default.

Since some recent works find that BLEU might
be affected by the translationese problem (Edunov
et al., 2020; Freitag et al., 2020), we have also
conducted a side-by-side human-evaluation on the
Zh⇒En development set, where 500 randomly
sampled examples were evaluated by six persons
(agreement (Fleiss, 1971): Fleiss’ Kappa=0.46).
37.0% of outputs using the source-original data are
better than using target-original data, and 21.0%
are worse. By manually checking the outputs, we
find using only the target-original data tends to omit
important source contents (e.g., named entities) ei-
ther by totally ignoring some contents or by using
pronouns instead. The human-evaluation shows
the same trend with the BLEU score presented in
Figure 2. Given that conducting human-evaluation
on all the six translation tasks is time-consuming
and labor-intensive, we use automatic measures to
further investigate this problem in Section 3.3.

Vocabulary Distributions Complementary to
previous studies that focus on the content-
independent stylistic difference (Volansky et al.,
2015) between translationese and original texts (Ri-
ley et al., 2020; Edunov et al., 2020; Marie et al.,
2020), we investigate the content-dependent lan-
guage coverage bias between the source- and target-
original data in this experiment. Intuitively, if the
language coverage bias exists, the vocabulary dis-
tributions of the source- and target-original data
should differ greatly from each other, since the
covered issues tend to have different frequencies
between them (D’Alessio and Allen, 2000). We use
the Jensen-Shannon (JS) divergence (Lin, 1991) to
measure the difference between two vocabulary

Data En-Zh En-Ja En-De

Origin ⇒ ⇐ ⇒ ⇐ ⇒ ⇐

Target 33.2 20.6 30.5 15.4 39.3 37.4
Source 36.5 27.8 35.3 17.9 41.7 42.5
Both 36.6 27.5 34.9 18.5 42.3 42.2

Table 3: Sacre BLEU of using different sets of training
data on validation sets. We highlight the highest score
in bold and the second-highest score with underlines.

Data En⇒Zh En⇐Zh

Origin noun verb adj noun verb adj

Target 67.6 52.0 64.3 53.8 38.0 57.0
Source 69.7 54.0 66.2 61.8 44.1 63.9
Both 69.9 54.1 65.9 61.2 43.8 63.4

Table 4: Translation adequacy of different types of
content words measured by F-measure (Neubig et al.,
2019). The results are reported on the validation sets.

distributions p and q:

JS (p||q) = 1

2

(
KL(p||p+ q

2
) + KL(q||p+ q

2
)

)
,

where KL(·||·) is the KL divergence (Kullback and
Leibler, 1951) of two distributions.

Table 2 shows the JS divergence of the vocabu-
lary distributions between the source- and target-
original data. We also divide the words into con-
tent words and functions words based on their
POS tags, since content words are more related
to the language coverage bias, while the function
words are more related to the stylistic and structural
differences between the translationese and origi-
nal texts (Lembersky et al., 2011; Volansky et al.,
2015). The JS divergence between the source- and
target-original data are 186× larger than that be-
tween randomly split data, which is mainly due to
the difference between content words. Results for
different ratios R% and other language pairs can
be found in Appendix (Tables 12 and 13), where
the trend holds in all cases, supporting our claim of
the existence of language coverage bias.

3.3 Effect of Language Coverage Bias

In this section, we investigate the effect of language
coverage bias on NMT models.

Using only the source-original data achieves
comparable performance with using full data.
Table 3 lists the translation performances of NMT
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models trained on only the source- or target-
original data and on both of them. The results
show that using only the source-original data sig-
nificantly outperforms using the target-original data
in all language pairs, which reconfirm the necessity
of studying the language coverage bias for NMT. It
should be emphasized that using only the source-
original data (i.e. 50% of the whole training set)
achieves translation performances on par with us-
ing full training data. In the following experiments,
we investigate why using target-original data to-
gether cannot further improve the performance.

Using additional target-original data does not
consistently improve translation adequacy. To
rule out the effect of translationese and focus on
the content-dependent difference caused by the lan-
guage coverage bias, we examine the translation
adequacy of content words in Table 4 2. We fol-
low Raunak et al. (2020) to use F-measure (Neubig
et al., 2019) to quantify the translation accuracy of
specific types of words.

Compared with the source-original data, using
only the target-original data greatly reduces the
translation accuracy of content words, which we
attribute to the divergence of the content word dis-
tributions between the source- and target-original
data. The results also indicate that indiscriminately
using all the training data can not consistently im-
prove the translation adequacy of content words
over using only source-original data, and in some
cases using all the data is even harmful to the ade-
quacy on content words. Table 5 shows an example,
which suggests that using only the target-original
data tends to omit content words. This problem is
potentially caused by that some content words at
the source-side are less or even not visible in the
target-original data, and indiscriminately adding
target-original data induces a distribution shift on
the content word distribution.

Using additional target-original data only
slightly improves the structural fluency. Re-
cently, Edunov et al. (2020) claim that using addi-
tional back-translated data can improve translation
fluency. Target-original bilingual data is similar
to back-translated data since both of them are con-
structed by translating sentences from the target
language into the source language. One question

2We only list the results on En⇔Zh due to space limit.
Please refer to Table 14 in the Appendix for the translation
quality on other language pairs.

Input 大闸蟹是巴城最为知名的形象代言人。

Refer. The hairy crab is the most famous image
spokesperson in Bacheng.

Target It is one of the city’s most well-known
Orig. image spokesmen.

Source Hairy crabs are the most well-known
Orig. image spokesmen of Bacheng.

Both It is the best-known icon of Bacheng.

Table 5: An example of the outputs of NMT mod-
els trained on different sets of data. Using the target-
original data tends to omit content words.

naturally arises: can target-original bilingual data
improve the fluency of NMT models?

To answer the above question, we measure the
fluency of outputs with language models trained on
the monolingual data as described in Section 2. Pre-
vious study finds that different perplexities could
be caused by specific contents rather than struc-
tural differences (Lembersky et al., 2011). Specif-
ically, some source-original contents are of low
frequency in the target-language monolingual data
(e.g., “Bacheng” in Table 5), thus the language
model trained on the target-language monolingual
data tends to assign higher perplexities to outputs
containing more source-original content words. To
rule out this possibility and check whether the out-
puts are structurally different, we follow Lember-
sky et al. (2011) to abstract away from the content-
specific features of the outputs to measure their
fluency at the syntactic level. Table 6 shows the
results. Although using only the source-original
data results in high perplexities measured by vanilla
language models, the perplexities of NMT models
trained on different data are close to each other at
the syntactic level. Using additional target-original
data only slightly reduces the perplexity at the syn-
tactic level over using only the source-original data.

4 Addressing Language Coverage Bias

In Section 3 we show that the target-original data
performs poorly in translating content words due
to the language coverage bias. Accordingly, simply
using the full training data without distinguishing
the original languages is sub-optimal for model
training. Based on these findings, we propose to
address the language coverage bias by explicitly
distinguishing between the source- and the target-
original data (Section 4.1). We then investigate
whether the performance improvement still holds in
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Data No Abs. Cont. Abs.

Origin PPL Diff. PPL Diff.

WMT20 En⇒Zh

Target 38.4 −6.3% 14.0 −2.8%
Source 44.0 +7.3% 14.6 +1.4%

Both 41.0 - 14.4 -

WMT20 En⇐Zh

Target 25.9 −5.8% 13.4 −3.6%
Source 31.0 +12.7% 14.2 +2.2%

Both 27.5 - 13.9 -

Table 6: Translation fluency measured by the perplexi-
ties (i.e., PPL) of language models with different levels
of lexical abstraction, “Diff.” means the relative change
with respect to “Both”. “No Abs.” denotes no abstrac-
tion (i.e., vanilla LM), “Cont. Abs.” denotes abstract-
ing all content words with their corresponding POS
tags. The results are reported on the validation sets.

the monolingual data augmentation scenario (Sec-
tion 4.2), where the language coverage bias prob-
lem is more severe due to the newly introduced
dataset in source or target language.

4.1 Bilingual Data Utilization

In this section, we aim to improve bilingual data uti-
lization through explicitly distinguishing between
the source- and target-original training data.

Methodology We distinguish original languages
with two simple and effective methods:

• Bias-Tagging: Tagging is a commonly-used ap-
proach to distinguishing between different types
of examples, such as different languages (Aha-
roni et al., 2019; Riley et al., 2020) and synthetic
vs authentic examples (Caswell et al., 2019). In
this work, we attach a special tag to the source
side of each target-original example, which en-
ables NMT models to distinguish it from the
source-original ones in training.

• Fine-Tuning: Fine-tuning (Luong and Manning,
2015) is a useful method to help knowledge
transmit among data from different distributions.
We pre-train NMT models on the full training
data that consists of both the source- and target-
original data, and then fine-tune them on only
the source-original data. For fair comparison,
the total training steps of the pre-training and
fine-tuning stages are the same as the baseline.

Translation Performance Table 7 depicts the re-
sults on the benchmarking datasets. For compar-
ison, we also list the results of several baselines
using the vanilla Transformer architecture trained
on the constrained bilingual data in the WMT20
competition (Barrault et al., 2020). Clearly, both
the bias tagging and fine-tuning approaches con-
sistently improve translation performance on all
benchmarks, which confirms our claim of the ne-
cessity of explicitly distinguishing target-original
examples in model training.

Analysis Recent studies have shown that gener-
ating human-translation like texts as opposed to
original texts can improve the BLEU score (Riley
et al., 2020). To validate that the improvement
is partially from alleviating the content-dependent
language coverage bias, we examine the translation
adequacy of content words on the test sets, as listed
in Table 8. The results indicate that explicitly dis-
tinguishing between the source- and target-original
data improves the translation of content words (e.g.,
nouns), which is closely related to the language
coverage bias problem. Table 9 lists the translation
fluency at the syntactic level, where the proposed
approaches maintain the syntactic fluency.

4.2 Monolingual Data Augmentation

In this section, we aim to provide some insights
where monolingual data augmentation improves
translation performance, and investigate whether
our approach can further improve model perfor-
mance in this scenario that potentially suffers more
from the language coverage bias problem.

For fair comparison across language pairs, we
augment NMT models with the same English
monolingual corpus as described in Section 2. We
down-sample the large-scale monolingual corpus
to the same amount as that of the bilingual cor-
pus in each language pair, in order to rule out
the effect of the scale of synthetic data (Edunov
et al., 2018; Fadaee and Monz, 2018). We use back-
translation (Sennrich et al., 2016a) to augment the
English monolingual data for the task of translating
from another language to English (“X⇒En”), and
use forward-translation for the task in the opposite
translation direction (“En⇒X”). Table 10 lists the
results, where several observations can be made.

Explaining Data Augmentation with Language
Coverage Bias Concerning the monolingual data
augmentation methods (Rows 3-4), the vanilla
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Method En-Zh En-Ja En-De Average
⇒ ⇐ ⇒ ⇐ ⇒ ⇐

WMT20 Systems
Shi et al. (2020) 38.6 28.8 - - - - -
Zhang et al. (2020) 40.8 - 34.8 20.4 - - -
Molchanov (2020) - - - - 31.9 39.6 -

Our Implemented Systems
Baseline 42.3 28.4 35.8 20.9 32.3 41.4 33.5
Tag 43.4⇑ 29.2↑ 36.3 21.9⇑ 32.7 42.5⇑ 34.3
Tune 43.3⇑ 29.7⇑ 36.6↑ 21.8↑ 32.9↑ 42.2↑ 34.4

Table 7: Sacre BLEU reported on the WMT20 test sets. “Tag” and “Tune” denote the bias-tagging and fine-tuning,
respectively. We highlight the highest score in bold and the second-highest score with underlines. “↑/⇑” denotes
significantly better than the baseline with p < 0.05 and p < 0.01, respectively. For comparison, we list three
systems that use vanilla Transformer models trained on the bilingual data in the WMT20 competition.

Method En⇒Zh En⇐Zh

noun verb adj noun verb adj

Baseline 70.7 61.0 67.9 60.2 43.6 61.4
Tag 72.3 62.3 67.9 60.7 43.9 62.2
Tune 71.8 61.9 68.4 61.1 44.1 62.2

Table 8: F-measure of different types of content words
on the WMT20 En⇔Zh test sets. Results on other lan-
guages can be found in Appendix (Table 15).

Data En-Zh En-Ja En-De

Origin ⇒ ⇐ ⇒ ⇐ ⇒ ⇐

Baseline 13.7 13.4 17.4 15.4 16.3 17.8
Tag 13.7 13.4 17.5 15.4 16.4 17.8
Tune 13.8 13.4 17.4 15.4 16.3 17.9

Table 9: PPL at the syntactic level on the test sets. We
abstract the content words to rule out the language cov-
erage bias when measuring fluency.

back-translation (Row 3) harms the translation per-
formance on average, while the vanilla forward-
translation improves the performance, which is
consistent with the findings in previous stud-
ies (Edunov et al., 2020; Marie et al., 2020).
Caswell et al. (2019) have shown that the tagging
strategy works for back-translation while fails for
forward-translation, and our results confirm these
findings. Both phenomena can be attributed in
part to the language coverage bias problem. Back-
translated data originates from the target language,
and thus suffers more from the language cover-
age bias problem. Accordingly, directly using the
back-translated data is sub-optimal, while tagged

back-translation recovers translation performance
by distinguishing training examples with differ-
ent origins, which is consistent with our results in
Table 7. In contrast, the language coverage bias
problem does not exist for source-side monolingual
data (i.e. the same original language). Therefore,
the vanilla forward-translation can improve transla-
tion performance, while tagged forward-translation
performs worse.

Improving Data Augmentation Our approach
(Row 2) achieves comparable improvements of
translation performance with the monolingual data
augmentation approaches (e.g. averaged BLEU:
31.2 vs. 30.7, and 37.6 vs. 37.9), while we do
not use additional monolingual data to train the
models.3 Combining them can further improve per-
formance (Rows 5-6), indicating that the two types
of approaches are complementary to each other.
This is straightforward, since our approach better
exploits the bilingual data, while data augmentation
introduces new knowledge from additional mono-
lingual data. In addition, our approach consistently
improves performance over both vanilla and tagged
augmentation approaches, making it more robust
in practical application across datasets.

5 Related Work

Our work is inspired by three lines of research in
the NMT community.

3The monolingual data is only used to detect the original
languages of training data and is invisible in model training.
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# Monolingual Bilingual X⇒En En⇒X

Data Tagging Fine-Tune Zh Ja De Ave. Zh Ja De Ave.

1 × n/a
× 28.4 20.9 41.4 30.2 42.3 35.8 32.3 36.8

2 X 29.7 21.8 42.2 31.2 43.3 36.6 32.9 37.6

3

X

× × 28.9 21.2 38.1 29.4 44.2 36.8 32.8 37.9
4 X 29.4 21.2 41.5 30.7 43.1 36.4 32.3 37.3

5 ×
X

30.4 22.1 42.3 31.6 45.1 37.6 33.4 38.7
6 X 30.6 22.2 42.7 31.8 44.7 36.9 33.3 38.3

Table 10: Translation performance of augmenting English monolingual data with different strategies: back-
translation for X⇒En tasks (blue cells), and forward-translation for En⇒X tasks (red cells). “Tagging” denotes
adding a special tag to each synthetic sentence pair (Caswell et al., 2019). “Fine-Tune” denotes fine-tuning the
pre-trained NMT models on the source-original bilingual data, as described in Section 4.1.

5.1 Translationese

Recently, the effect of translationese in NMT eval-
uation has attracted increasing attention (Zhang
and Toral, 2019; Bogoychev and Sennrich, 2019;
Edunov et al., 2020; Graham et al., 2020). Gra-
ham et al. (2020) show that the source-side transla-
tionese texts can potentially lead to distortions in
automatic and human evaluations. Accordingly, the
WMT competition starts to use only source-original
test sets for most translation directions since 2019.
Our study reconfirms the necessity of distinguish-
ing the source- and target-original examples and
takes one step further to distinguish examples in
training data. Complementary to previous works,
we investigate the effect of language coverage bias
on machine translation, which is related to the con-
tent bias rather than the language style difference.
Shen et al. (2021) also reveal the context mismatch
between texts from different original languages. To
alleviate this problem, they proposed to combine
back- and forward-translation by introducing addi-
tional monolingual data, while we focus on better
exploiting bilingual data by distinguishing the orig-
inal languages, which is also helpful for back- and
forward-translation.

Lembersky et al. (2011, 2012) propose to adapt
machine translation systems to generate texts that
are more similar to human-translations, while Riley
et al. (2020) propose to model human-translated
texts and original texts as separate languages in a
multilingual model and perform zero-shot transla-
tion between original texts. Riley et al. (2020) and
our work both aim to better utilize the bilingual
training data. They aim to guide NMT models to
produce original text, while we focus on improving

translation adequacy by alleviating the language
coverage bias problem.

5.2 Data Augmentation

Concerning model training, recent works find that
back-translation can harm the translation of source-
original test set, and attribute the quality drop to
the stylistic and content-independent differences
between translationese and original texts (Edunov
et al., 2020; Marie et al., 2020). In this work, we
empirically show that language coverage bias is
another reason for the performance drop of back-
translation, as well as the different performances
between tagged forward-translation and tagged
back-translation (Caswell et al., 2019). In addi-
tion, we show that our approach is also beneficial
for data augmentation approaches, which can fur-
ther improve the translation performance over both
back-translation and forward-translation.

5.3 Domain Adaptation

Since high-quality and domain-specific parallel
data is usually scarce or even unavailable, domain
adaptation approaches are generally employed for
translation in low-resource domains by leveraging
out-of-domain data (Chu and Wang, 2018). Lan-
guages can be also regarded as different domains,
since articles in different languages cover different
topics (Bogoychev and Sennrich, 2019). Starting
from this intuition, we distinguish examples with
different original languages with tagging (Aharoni
et al., 2019) and fine-tuning (Luong and Manning,
2015), which are commonly-used in domain adap-
tation and multi-lingual translation tasks.

Our work also benefits domain adaptation: dis-
tinguishing original languages in general domain
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data consistently improves translation performance
of NMT models in several specific domains (Ta-
ble 16 in Appendix), making these models better
start points for further domain adaptation.

6 Conclusion and Future Work

In this work, we first systematically examine why
the language coverage bias problem is important
for NMT models. We conducted extensive ex-
periments on six WMT20 translation benchmarks.
Empirically, we find that source-original data and
target-original data differ significantly at the text
content, and using target-original data together
without discrimination is sub-optimal. Based on
these observations, we propose two simple and ef-
fective approaches to distinguish the source- and
target-original training data, which obtain consis-
tent improvements in all benchmarks.

Furthermore, we link language coverage bias
to two well-known problems in monolingual data
augmentation, namely the performance drop of
back-translation, and the different behaviors be-
tween tagged back-translation and tagged forward-
translation. We show that language coverage bias
can be considered as another reason for these prob-
lems, and fine-tuning on the source-original bilin-
gual training data can further improve performance
over both back- and forward-translation.

Future directions include exploring advanced
methods to better alleviate the language coverage
bias problem, as well as validating on other lan-
guage pairs. It is also interesting to investigate the
language coverage bias problem in multilingual
translation, where we can better understand this
problem by considering language family.
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A Appendices

A.1 Data Preprocessing

We used all the parallel corpora provided by
WMT20 and filtered sentences that are longer than
250 words. We tokenized English and German sen-
tences with Moses (Koehn et al., 2007), and seg-
mented Chinese and Japanese sentences with Jieba4

and Mecab5 respectively. We employed Byte pair
encoding (BPE) (Sennrich et al., 2016b) with 32K
merge operations for all language pairs. Specif-
ically, we jointly trained the BPE code on both
sides in En⇔De and independently learned the
BPE code on each side in En⇔Zh and En⇔Ja.

As for the monolingual data, we combined the
newscrawl data from 2017 to 2019 for English and
German. Since the newscrawl corpora for Chi-
nese and Japanese are significantly smaller, we
augmented these two languages with the common-
crawl corpus. We preprocessed the monolingual
data with the same rules as parallel data. Finally,
we randomly selected 41.0M sentences for each
language (i.e., En, De, Zh, Ja), which were used
to train the language detection models. For data
augmentation, to rule out the effect of the ratio
between synthetic and authentic data, we down-
sampled the monolingual data to the same amount
as the bilingual data for each language pair.

We used spaCy6 to perform the Part-Of-Speech
(POS) tagging for each language. Nouns, verbs,
and adjectives belong to content words and the
others belong to function words.

A.2 More Details of Model Training

In this work, we generally followed the default
hyper-parameters used in Vaswani et al. (2017) ex-
cept the batch size. Recent studies showed that
training on large batches can further boost model
performance (Ott et al., 2018; Wu et al., 2018).
Accordingly, we followed them to train models
with batches of approximately 460k tokens, us-
ing Adam (Kingma and Ba, 2015) with β1 = 0.9,
β2 = 0.98 and ε = 10−8. We used the same cosine
learning rate schedule as Wu et al. (2018), where
the learning rate was warmed up linearly in the first
10K steps, and then decayed following a cosine rate
within a single cycle. By default, NMT models and
language models were both trained for 30k steps
with the aforementioned batch size. Each model

4https://github.com/fxsjy/jieba
5https://taku910.github.io/mecab
6https://spacy.io

was trained using 8 NVIDIA V100 GPUs for about
20 hours.

A.3 Effect of Detection Methods on
Translation Performance

To further compare our proposed original language
detection method and the FT classifier (Riley et al.,
2020), we fine-tune the NMT model pre-trained
on the whole training set using the source-original
data detected by the two methods. Note that the two
detection methods are developed using the same
monolingual data sets. For fair comparison, the
fine-tuning sets are of the same amount (50% of
the whole training set) between the two methods
in this experiment. Table 11 lists the results, indi-
cating that our method performs better in detecting
original languages in large-scale parallel data.

Fine-Tune Data BLEU

× 27.5

FT 27.8
Ours 28.4

Table 11: Effect of original language detection meth-
ods. The results are reported on the validation set of
the Zh⇒En translation task.

A.4 Divergence of Vocabulary Distributions

In this section, we report the JS divergence of the
vocabulary distributions in more cases. Table 12
lists the results for different ratios R% on En⇔Zh,
and Table 13 shows the results on all language
pairs. The results show that the divergence of
vocabulary distributions between the source- and
target-original data is substantially larger than that
between randomly split data, which reconfirms the
existence of language coverage bias.

A.5 Effect of Language Coverage Bias for
Other Language Pairs

Table 14 lists the translation adequacy of NMT
models trained on only the source- or target-
original data and on both of them. The results
are reported on En⇔De and En⇔Ja, which exhibit
the same trend as that on En⇔Zh (Table 4 in the
main paper), indicating that the target-original data
performs poorly in translating content words.
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Data 10% 30% 50%

All Content Function All Content Function All Content Function

Random 20 51 0 7 18 0 4 10 0
S vs T 2660 5096 961 1371 2731 486 745 1503 261

Table 12: JS divergence (×10−5) of the vocabulary distributions between the source- and target-original training
data (“S vs T”) for different labeled ratios on En⇔Zh. For reference, we also report the JS divergence between
two sets of randomly selected examples (“Random”, non-overlap).

Data En-Zh En-Ja En-De

All Content Function All Content Function All Content Function

Random 4 10 0 8 17 0 2 4 0
S vs T 745 1503 261 1687 2910 666 870 1622 250

Table 13: JS divergence (×10−5) of the vocabulary distributions between the source- and target-original training
data for different language pairs. 50% examples are treated as source-original and the others are treated as target-
original. For reference, we also report the JS divergence between randomly selected 50% examples and the others
(“Random”, non-overlap).

Data En⇒Ja En⇐Ja En⇒De En⇐De

Origin noun verb adj noun verb adj noun verb adj noun verb adj

Target 60.9 47.7 62.1 44.5 29.8 46.2 70.5 54.3 58.4 70.8 53.6 67.0
Source 61.4 51.8 63.5 49.5 31.8 50.1 72.1 55.0 60.3 75.3 55.3 70.2
Both 61.3 51.7 63.2 50.7 32.1 50.4 72.7 56.6 60.4 74.9 55.7 71.0

Table 14: Translation adequacy of different types of content words measured by F-measure (Neubig et al., 2019).
The results are reported on the validation sets.

Method En⇒Ja En⇐Ja En⇒De En⇐De

noun verb adj noun verb adj noun verb adj noun verb adj

Baseline 62.0 53.0 59.1 54.0 35.5 50.4 66.7 48.1 53.6 75.0 54.0 70.2
Tag 62.5 53.3 61.1 55.7 36.5 52.4 67.1 48.6 54.0 76.1 54.4 70.7
Tune 62.8 53.7 61.7 55.3 36.9 51.8 67.1 48.7 54.0 75.7 54.8 70.8

Table 15: Translation adequacy of different types of content words measured by F-measure (Neubig et al., 2019).
The results are reported on the test sets.
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Domain Baseline Ours

Business 40.4 40.8
Crime 34.8 35.5
Entertainment 28.8 30.0
Politics 39.5 40.3
Sci-Tech 38.2 39.9
Sport 31.5 31.5
World 38.8 38.9

Overall 36.6 37.2

Table 16: Transformer performance on the validation
set of the En⇒Zh task. We split the whole validation
set into several parts by the domain tag. “Ours” de-
notes the “Bias-Tagging” approach as described in Sec-
tion 4.1. The results indicate that distinguishing data
with different original languages in the general domain
training data can improve the performance of NMT
models in many specific domains, making the models
better start points for further domain adaptation.

A.6 Translation Adequacy on Test Sets for
Other Language Pairs

We report the translation adequacy on test sets for
En⇔De and En⇔Ja in Table 15, corresponding
to Table 8 in the main paper. The results show
that explicitly distinguishing the source- and target-
original training data can consistently improve the
translation adequacy for content words on all the
six translation tasks.

A.7 Translation Performance in Specific
Domains

We evaluate NMT models trained with and with-
out explicit distinguishing between the source- and
target-original data in several specific domains.
The results are shown in Table 16, suggesting that
our method can improve the translation perfor-
mance of NMT models in several specific domains,
which can be combined with further domain adap-
tation approaches.


