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Abstract

Transformer has become ubiquitous in the
deep learning field. One of the key ingredients
that destined its success is the self-attention
mechanism, which allows fully-connected con-
textual encoding over input tokens. However,
despite its effectiveness in modeling short se-
quences, self-attention suffers when handling
inputs with extreme long-range dependencies,
as its complexity grows quadratically w.r.t. the
sequence length. Therefore, long sequences
are often encoded by Transformer in chunks
using a sliding window. In this paper, we
propose Cluster-Former, a novel clustering-
based sparse Transformer to perform atten-
tion across chunked sequences. The proposed
framework is pivoted on two unique types of
Transformer layer: Sliding-Window Layer and
Cluster-Former Layer, which encode local se-
quence information and global context jointly
and iteratively. This new design allows in-
formation integration beyond local windows,
which is especially beneficial for question an-
swering (QA) tasks that rely on long-range de-
pendencies. Experiments show that Cluster-
Former achieves state-of-the-art performance
on several major QA benchmarks.

1 Introduction

Long-range contextual understanding has proven
critical in many natural language processing (NLP)
tasks. For example, the relevant context for cor-
rectly answering an open-domain question can arch
over thousands of words (Chen et al., 2017). En-
coding long sequences via deep neural networks,
however, has remained an expensive and challeng-
ing task due to high demand on training time
and GPU memory. Traditional sequence model-
ing methods (Hochreiter and Schmidhuber, 1997)
encode long sequences in a chronological order,
which suffers high latency. In the place of se-
quential encoding, recent models such as Trans-

former (Vaswani et al., 2017) use simultaneous self-
attention over the entire input instead, which has
been successfully adopted in many NLP tasks such
as textual entailment (Devlin et al., 2019), depen-
dency parsing (Zhou and Zhao, 2019), and summa-
rization (Lewis et al., 2019). A caveat with Trans-
former though is that building full connections over
long sequences translates to quadratic growth on
memory demand and computational complexity
w.r.t. sequence length.

One way to efficiently encode long sequences is
to first chunk a sequence into much shorter ones
with a sliding window, then build connections be-
tween the shorter sequences (Figure 1(a)). For ex-
ample, Child et al. (2019), Beltagy et al. (2020) and
Zaheer et al. (2020) apply sparse attention to chun-
ked sequences in hand-designed patterns in order to
gather information from the chunks (Figure 1(b)).
Choi et al. (2017) and Wang et al. (2019) first use
a simpler model to filter chunked sequences, then
process selected sequences with fully-connected
self-attention. Rae et al. (2019) makes use of the
shared memory of chunked sequences to build con-
nections between them. However, these methods
cannot encode long-range dependencies with as
much flexibility or accuracy as fully-connected
self-attention, due to their dependency on hand-
designed patterns.

Recently, several studies (Kitaev et al., 2020;
Tay et al., 2020a) propose to further improve the
sparse attention mechanism by hashing or sort-
ing the hidden states into different buckets (Fig-
ure 1(c)). These works mainly explore tasks with
relatively short sequences, such as sentence-level
machine translation, where the number of hash-
ing vectors is relatively small (less than 16 in Ki-
taev et al. (2020)), allowing randomly initialized
hashing vectors to hash hidden states into correct
buckets. However, how to use hashing-based atten-
tion in the context of long sequences (e.g.,, up to
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Figure 1: Illustration of different methods for processing long sequences. Each square represents a hidden state.
The black-dotted boxes are Transformer layers. (a) is the sliding-window-based method to chunk a long sequence
into short ones with window size 3 and stride 2. (b) builds cross-sequence attention based on sliding window
over pre-selected positions (red-dotted boxes). (c) hashes the hidden states into different buckets by randomly-
initialized vectors. (d) is our proposed approach to cluster the hidden states. Our final model is a combination of
(a) and (d) that processes both local and global context.

thousands of words) is still an unexplored territory.

Our proposed framework for efficient long se-
quence encoding, Cluster-Former, marries both
sliding-window and hashing-based methods to
achieve effective local and long-range dependency
encoding. Cluster-Former consists of two types
of encoding layer. The first one (noted as Sliding-
Window Layer) focuses on extracting local infor-
mation within a sliding window. It applies Trans-
former to the hidden states of each chunked se-
quence independently, as shown in Figure 1(a). The
other one (noted as Cluster-Former Layer) learns to
encode global information beyond the initial chun-
ked sequences. Specifically, we first apply cluster-
ing to the input hidden states so that similar hidden
states are assigned to the same cluster, as shown
in Figure 1(d). The clustered and sorted input is
then divided uniformly into chunks, each encoded
by a Transformer layer. Note that to make model
training more efficient, the cluster centroids are not
computed online but updated periodically (every
epoch or a few epochs). We accumulate the hidden
states from the layer prior to the Cluster-Former
layer in a memory bank, and apply the K-Means
algorithm to form cluster centroids during each
update cycle. Compared to previously discussed
sparse attention based on pre-selected positions
(Figure 1(b)) or randomly-initialized hashing vec-
tors (Figure 1(c)), experimental results show that
our method can encode dependency across chunked
sequences more effectively.

Our contributions can be summarized as follows.
(i) We propose Cluster-Former, a novel approach

to capturing long-range dependencies more effec-
tively than locality-sensitive hashing method. (ii)
We propose a new Transformer-based framework
to process long sequences by combining Sliding-
Window and Cluster-Former layers to extract both
local and global contextual information. (iii) Our
model achieves the best performance on question
answering datasets of Natural Questions (long an-
swer), SearchQA, and Quasar-T.

2 Related Work

Efficient Transformers With Transformer mod-
els growing larger and larger, how to handle
longer sequences arises as a critical challenge.
Many works have been proposed to improve the
computational and memory efficiency of Trans-
formers, including Sparse Transformer (Child
et al., 2019), Set Transformer (Lee et al., 2019),
Routing Transformer (Roy et al., 2020), Fast
Transformer (Vyas et al., 2020), Reformer (Ki-
taev et al., 2020), Sinkhorn Transformer (Tay
et al., 2020a), Longformer (Beltagy et al., 2020),
ETC (Ainslie et al., 2020), Synthesizer (Tay et al.,
2021), Performer (Choromanski et al., 2020),
Linformer (Wang et al., 2020), Linear Trans-
former (Katharopoulos et al., 2020), and Big-
Bird (Zaheer et al., 2020). Tay et al. (2020b) pro-
vided an excellent literature survey on this emerg-
ing topic. Our method falls into the setting of learn-
able sparse-attention patterns.

Among all these works, our method is closer
to Set Transformer (Lee et al., 2019), Routing
Transformer (Roy et al., 2020), and Fast Trans-
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Figure 2: An overview of the proposed Transformer layer. (a) Sliding-Window layer over a sequence. (b) Cluster-
Former layer over clustered hidden states from the output of (a). Cluster centroids are periodically updated based
on the memory bank of the hidden states in the corresponding layer.

former (Vyas et al., 2020), which all use cluster
centroids to learn patterns. However, we target at
solving a different task, question answering. And
it also leads to a significant different framework
to encode a short question with a long context,
other than a single long sequence, such as language
modeling task. Moreover, our cluster centroids are
updated in a very different way by periodical cen-
troids update with K-Means on memory bank, other
than memory-based centroids (Lee et al., 2019), ex-
ponentially moving centroids (Roy et al., 2020), or
online clustering (Vyas et al., 2020).

Long Sequence in Question Answering For
tasks such as open-domain question answer-
ing (Chen et al., 2017), a large volume of docu-
ments or paragraphs is usually retrieved to infer the
answer, yielding extremely long context content.
Despite the fact that state-of-the-art NLP models
are capable of extracting answers amid complex
context, they still struggle with extremely long in-
put sequences. Recent advances that advocate the
use of large-scale pre-trained models (Lewis et al.,
2019; Liu et al., 2019; Lan et al., 2020) for question
answering make this problem more prominent, due
to tremendous memory consumption. To process
long sequences, the most widely-used method is to
first use a lightweight model to filter out redundant
text, then use sliding-window-based approaches to
encode the remaining sequences with a more so-
phisticated model. Chen et al. (2017) integrated
bi-gram features into Information Retrieval (IR)

methods to retrieve related documents more ac-
curately. Wang et al. (2018) trained a paragraph
selector using as the reward whether the entire sys-
tem can obtain the correct answer or not. Asai et al.
(2020) trained a recurrent retriever to select para-
graphs for multi-hop question answering. Izacard
and Grave (2021) proposed to fuse local encoded
information into a decoder for answer generation.
Besides the above methods, directly applying Ef-
ficient Transformers to process long sequences in
question answering is another option. In this paper,
we focus on this direction by directly training our
Cluster-Former on the long context without using
lightweight model for context filtering.

3 Proposed Approach

The proposed framework to handle long sequences
is pivoted on two types of Transformer layer: (i)
Sliding-Window Layer; and (ii) Cluster-Former
Layer. The former focuses on encoding local se-
quence information, while the latter is on encoding
global context and always built on top of the former
layer. An overview of the two layers is illustrated
in Figure 2.

3.1 Sliding-Window Layer
Despite that our focus is on capturing long-range
dependencies for global context, local information
also plays a critical role for knowledge propaga-
tion. Therefore, in the lower section of our net-
work, we adopt the traditional sliding-window en-
coding mechanism. A sliding window segments
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a long sequence X into short, overlapping ones
with window size l and stride m, as illustrated in
Figure 2(a). Note that in this paper, we focus on
question answering tasks, for which we concate-
nate the question Q with each sequence chunked
from the document:

H0
k = [Q;X [m× k : (m× k + l)]] , (1)

where Q ∈ Rq×d denotes question embeddings
given a QA task, q is the number of tokens in the
question, and X ∈ Rx×d is the embeddings for all
context, x is the number of tokens in context. k is
the ID of the chunked sequence, l is the window
size, and m is the stride of the sliding window.
[idx1 : idx2] indicates selecting rows between the
index of idx1 and idx2 of the matrix. [·; ·] means
concatenating the matrices along the row. We first
use Transformer to encode each sequence in sliding
window as follows:

Hn+1
k = Transformer(Hn

k), (2)

where Hn+1
k ∈ R(q+l)×d is the output of Trans-

former on the k-th sequence in the n-th layer, while
it is not the final output of the n-th layer. As we
expect the neighbouring sequences to share useful
information in hidden states as well, we always set
m < l to allow overlapping between sequences.
We use the mean values of the Transformer hidden
states at the overlapped tokens between windows
as final outputs. To merge the representations from
the (k − 1)-th sequence:

Hn+1
k [q : q + l −m] + = Hn+1

k−1 [q + m : end],

Hn+1
k [q : q + l −m] / = 2,

and merge representations from (k + 1)-th se-
quence:

Hn+1
k [q + m : end] + = Hn+1

k+1 [q : q + l −m],

Hn+1
k [q + m : end] / = 2, (3)

where + = is to add matrices in-place and / = is
to divide a matrix by a scalar value in-place. The
merged hidden states Hn+1

k ∈ R(q+l)×d are the
final outputs of the n-th layer. If the next layer
is Cluster-Former, the output hidden states in this
layer Hn+1

k will be saved into memory bank for
computing the cluster centroids.

Algorithm 1 Cluster Centroids Update
1: Initialize Memory = Queue()
2: Centroids = GETCENTROIDS(RandomVector)
3:
4: function TRAIN(Inputs)
5: for i = 1, 2,. . . , IterationNum do
6: States = Sliding-Transformer(Inputs[i])
7: Memory.add(States)
8: while len(Memory) > M do
9: Memory.pop()

10: end while
11: if i % ClusterUpdateFrequency == 0 then
12: Centroids = GETCENTROIDS(Memory)
13: end if
14: Clusters = cluster States by Centroids
15: States = Cluster-Former(Clusters)
16: end for
17: end function
18:
19: function GETCENTROIDS(HiddenStates)
20: Centroids = K-Means(HiddenStates)
21: Outputs = List()
22: Outputs[1] = Centroids[1]
23: for i = 2, 3,. . . , ClusterNum do

24:
Outputs[i] = centroid from Centroids

that is closest to Outputs[i− 1]

but not in Outputs
25: end for
26: return Outputs
27: end function

3.2 Cluster-Former Layer
We introduce a Cluster-Former layer to add global
representational power to Transformer beyond slid-
ing windows. An in-depth visualization of the layer
is illustrated in Figure 2(b).

The input of the Cluster-Former layer comes
from the hidden states of the prior layer (in our
case a Sliding-Window layer). After merging the
overlaps between sequence chunks, the input of
this layer is defined as:

H̄n = [Hn
0 [0 : q + m]; ...;Hn

k [0 : q + m]] , (4)

where H̄n ∈ R(qdx/me+x)×d is the hidden states to
cluster, x is the number of tokens in the context.

As the hidden states with larger cosine similarity
are more likely to have higher attention weights,
we build sparse self-attention only on the hidden
states in the same cluster. In this work, we use
K-Means as the chosen clustering method for sim-
plicity. More advanced clustering algorithms have
the potential of yielding better performance. Since
running K-Means on the fly in each training itera-
tion is computationally expensive, we decide to re-
compute the cluster centroids with low frequency
(every epoch or a few epochs).

In addition, to avoid dramatic changes in the
cluster centroids due to limited hidden state inputs,
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we maintain a memory bank for the most recent
hidden states. The entire procedure is depicted in
Algorithm 1. Once we compute the cluster cen-
troids, we can directly use them for hidden state
clustering as follows:

vn = argmax
( Hn(Cn)T

||Hn||2||Cn||2

)
, (5)

where Cn ∈ Rp×d are the cluster centroids for
layer n, and p is the pre-defined number of clusters.
The function argmax(·) performs on the last dimen-
sion and assigns all the input hidden states into
different clusters based on the max value of cosine
similarity between the hidden states and cluster cen-
troids. vn ∈ R(qdx/me+x) is the assigned cluster
IDs of all the input hidden states.

Since the number of hidden states in different
clusters can vary substantially, padding them to
the maximum length for Transformer training will
significantly increase the computational time. To
make the extraction of global context more effi-
cient, we greedily pick the cluster centroids based
on the nearest neighbour (measured by cosine simi-
larity) as shown in the function GETCENTROIDS in
Algorithm 1. Thus, the hidden states with similar
cluster IDs are also close to each other. Then, we
can directly sort the cluster IDs of hidden states and
uniformly chunk the hidden states (same window
size and stride m):

un = argsort(vn),

ank = un[mk : m(k + 1)],

En
k = Hn[ank ], (6)

where the function argsort(·) is to obtain the indexes
of input values sorted in order (same values sorted
by the corresponding position of hidden states).
ank ∈ Rm is the chunked indexes of the hidden
states. En

k ∈ Rm×d is the k-th clustered hidden
states, and we will run Transformer on top of it to
build the connection beyond the words in the initial
sliding window as follows:

En+1
k = Transformer(En

k). (7)

After updating the hidden states, we map them back
to the order before clustering:

H̄n+1 = [En+1
0 ;En+1

1 ; ...;En+1
K ],

ān = [an0 ;an1 ; ...;anK ], (8)

H̄n+1[ān] = clone(H̄n+1), (9)

#train #test med max

Quasar-T 29k 3k 2.8k 8.2k
SearchQA 100k 27k 2.5k 4.9k
NQ 292k 8k 6.3k 128k

Table 1: Statistics of Question Answering datasets.
#train: number of questions in the training set. #test:
number of questions in the test set. med: median length
of the context. max: max length of the context.

where H̄n+1 is the final output hidden state of this
layer and has the same word order as the input H̄n.
In experiments, we stack these two types of layer
interchangeably to capture both global and local
context efficiently.

4 Experiments

4.1 Datasets
We evaluate our proposed approach on multiple
question answering benchmarks. The statistics of
all the datasets are summarized in Table 1.
• Quasar-T1 (Dhingra et al., 2017): The goal of

this task is to answer open-domain questions
from Trivia Challenge. All the passages har-
vested through information retrieval can be used
to answer questions. The task requires the model
to generate answers in phrases. The evaluation
metric on this dataset is based on Exact Match
and F1 score of the bag-of-words matching. Our
evaluation tool2 comes from the SQuAD dataset.

• SearchQA3 (Dunn et al., 2017): The setting
of this dataset is the same as Quasar-T, except
that the questions are sourced from Jeopardy!
instead.

• Natural Questions4 (Kwiatkowski et al., 2019):
This task aims to answer questions based on a
given Wikipedia document, and has two settings.
(i) Long answer: select a paragraph that can an-
swer the question based on the Wikipedia docu-
ment if any. (ii) Short answer: extract an answer
phrase from the document if the document con-
tains the answer. As the given document may not
contain answer, we can either predict an answer
or predict no answer. The evaluation metric on
this dataset is the F1 score, where true positives
are exactly correct answers, false positives are
1https://github.com/bdhingra/quasar
2https://rajpurkar.github.io/SQuAD-explorer/
3https://github.com/nyu-dl/dl4ir-searchQA
4https://ai.google.com/research/NaturalQuestions
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Quasar-T SearchQA NQ(long) NQ(short)
EM/F1 EM/F1 F1 F1

R3 (Wang et al., 2018) 35.3/41.7 49.0/55.3 - -
DECAPROP (Tay et al., 2018) 38.6/46.9 62.2/70.8 - -
DS-QA (Lin et al., 2018) 42.2/49.3 58.8/64.5 - -
Multi-passage BERT (Wang et al., 2019) 51.1/59.1 65.1/70.7 - -
DrQA (Chen et al., 2017) 37.7/44.5 41.9/48.7 46.1 35.7
DecAtt + DocReader (Kwiatkowski et al., 2019) - - 54.8 31.4
BERTjoint (Alberti et al., 2019) - - 64.7 52.7
BERTwwm + SQuAD2 (Pan et al., 2019) - - 68.2 57.2
RikiNet-RoBERTa (Liu et al., 2020) - - 75.3 59.3

Sliding Window 52.9/62.8 65.8/73.2 75.3 56.4
Sparse Attention (Child et al., 2019) 52.1/62.0 64.7/71.7 74.5 56.1
Locality-Sensitive Hashing (Kitaev et al., 2020) 53.2/62.9 66.0/73.5 75.5 56.4

Cluster-Former (#C=64) 53.3/63.3 67.0/74.2 76.3 56.7
Cluster-Former (#C=256) 53.6/63.5 67.5/74.5 76.3 56.7
Cluster-Former (#C=512) 54.0/63.9 68.0/75.1 76.5 57.1

Table 2: Results on Quasar-T, SearchQA test sets and NQ dev set. #C: number of clusters.

Long Answer Short Answer
F1 Precision Recall F1 Precision Recall

BigBird-ETC-large (Zaheer et al., 2020) 77.8 77.5 78.1 57.9 63.7 53.0
RikiNet (Liu et al., 2020) 76.1 78.1 74.2 61.3 67.6 56.1

Cluster-Former (Ours) 78.0 78.5 77.5 60.9 62.1 59.8

Table 3: Results on Natural Questions (NQ) leaderboard (test set). We show two published results here from over
40 submissions. Our model achieves No.1 for long answer and No.4 for short answer.

incorrect answer predictions, and false negatives
are incorrect “no answer” predictions. As the
test set is hidden, we split 5% of the training
set for validation, and use the original validation
set for testing. We use the official tool from the
dataset to evaluate our models. We also submit
our best model to the leaderboard.

4.2 Implementation Details
All the models are trained on 8 Nvidia V100 GPUs.
For clustering, we adopt “Yinyang kmeans” (Ding
et al., 2015)5 which takes less than 5 seconds for
clustering in all our experiment settings. We set
the memory size for clustering M = 100, 000 in
Algorithm 1. Based on our experiments, it makes
little difference for memory banks with 50k and
100k, update cycles with 1 iteration or half itera-
tion. We use cluster centroids that perform the best
on the validation set for test set experiments. As

5https://github.com/src-d/kmcuda

the cluster-centroid is offline computed, the infer-
ence time is the same as the sliding-window-based
method. We initialize our models with RoBERTa-
large (Liu et al., 2019). As the number of posi-
tion embeddings of RoBERTa is limited to 512,
we cannot assign different position embeddings to
all tokens. Instead, we assign the same position
embeddings to each chunked sequence.

The majority of our model is made up of Sliding-
Window Layers, as the local information is essen-
tial for QA tasks. We adopt the proposed Cluster-
Former Layer in layers 15 and 20 to further capture
long-range information. We set the sliding win-
dow size l to 256, stride m to 224, and change the
number of clusters in {64, 256, 512} to analyze its
impact on the final performance. We prepend a spe-
cial token to the beginning of all the given/retrieved
paragraphs and directly concatenate all the para-
graphs as the final context sequence. Due to mem-
ory constraints, we set the max length to be 5000
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3 4 5 6

8 55.7/65.0 55.6/64.4 54.7/64.3 55.4/64.6
12 55.1/64.9 55.8/65.0 56.1/65.4 55.4/64.6
16 55.6/65.0 55.2/64.7 55.1/64.6 54.8/64.1
20 54.8/64.2 55.4/64.8 55.1/64.6 -

Table 4: Experiments on Quasar-T dev dataset. a ∈
{3, 4, 5, 6} and b ∈ {8, 12, 16, 20}, if the layer number
l % a == 0 and l >= b, we set it as Cluster-Former
Layer, otherwise Sliding Window Layer.

during training and 10000 during inference. Dur-
ing dataset finetuning, we use Adam (Kingma and
Ba, 2015) to optimize the model. We set warm-up
updates to 2,220, maximal updates to 22,200, learn-
ing rate to 5 × 10−5, and batch size to 160. We
tune the dropout rate from {0.1, 0.15, 0.2} for all
the methods including baselines and report the best
results. The model converges in one day for all the
QA datasets.

For Quasar-T and SearchQA, we predict the
start and end positions of the answer. For Natu-
ral Question, we first identify whether the question
has short/long answers or not based on the mean
values of the first hidden state of all the chunked
sequences, 1

K

∑K
k=1H

N
k [0], where K is the num-

ber of chunks and N is the number of layers. If
answerable, we rank all the candidates for long
answer selection, and predict the start and end po-
sitions of short answers. Our model submitted to
Natural Question Leaderboard ensembled 3 mod-
els with 512 clusters, and only these models are
firstly trained on SQuAD2.0 and then finetuned on
Natural Question dataset.

4.3 Baselines

We compare our models with several strong base-
lines, including:

R3 (Wang et al., 2018) proposes to use rein-
forcement learning to jointly train passage ranker
and reader. DS-QA (Lin et al., 2018) proposes to
first use paragraph selection to filter the noisy data
and then trained model on denoised data. Multi-
passage BERT (Wang et al., 2019) proposes to fil-
ter the passages and then merge multiple useful pas-
sages into one sequence, which can be encoded by
BERT. DrQA (Chen et al., 2017) makes use of at-
tention mechanism across the question and the doc-
ument for answer phrase extraction. DecAtt and
DocReader (Kwiatkowski et al., 2019) is based on
a pipeline approach that first uses a simpler model

Wikitext Enwik8
ppl bpc

Sliding window 20.8 1.34
Sparse Attention 20.5 1.29
Locality-Sensitive Hashing 20.8 1.33

Cluster-Former (#C=64) 20.5 1.28
Cluster-Former (#C=256) 20.3 1.24
Cluster-Former (#C=512) 20.2 1.22

Table 5: Results on Language Modeling. #C: number
of clusters; Wikitext: Wikitext-103.

to select long answers and then a reading com-
prehension model to extract short answers from
the long answers. BERTjoint (Alberti et al., 2019)
jointly trains short and long answer extraction in a
single model rather than using a pipeline approach.
BERTwwm+SQuAD2 (Pan et al., 2019) makes use
of multi-task learning to further boost performance.
RikiNet-RoBERTa (Liu et al., 2020) proposes a
dynamic paragraph dual-attention reader and a
multi-level cascaded answer predictor. BigBird-
ETC (Zaheer et al., 2020) makes use of a sparse
attention mechanism to encode long sequences.

We also re-implement several strong baselines
which have not been applied to process long context
in question answering tasks:

• Sliding Window: The original method is fully
made up of Sliding-Window Layers and can only
attend to local information. To make a fair com-
parison among different methods on long-range
information collection, we replace several layers
of this sliding window baseline with Sparse At-
tention, Locality-Sensitive Hashing, and Cluster-
Former.

• Sparse Attention (Child et al., 2019): This
method replaces several layers in the previous
baseline by training a Transformer layer across
sequences on pre-selected positions. We run this
sparse Transformer on all the hidden states in
the same position across sequences, so that the
output of sparse Transformer can merge the in-
formation from different sequences.

• Locality-Sensitive Hashing (Kitaev et al.,
2020): This method hashes hidden states
into different buckets determined by randomly-
initialized hashing vectors. A Transformer layer
is then applied across buckets to build Sparse
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Question Where did the underground railroad start and finish ?
Context The Underground Railroad by artist Charles T. Webber , 1893 Date Late 1700s - 1865

Location Northern United States with routes to Canada , Mexico ...

Special token <s><s><s>Island island in the colonies city<s><s><s>With in the in .
Time did start and finish 1893 Date 1700 1865 Location Participants Outcome Deaths 19

1763
Stopwords the the , the , , , , to , , , , the American runaway slaves of free states the , , , it to , a the
Entity Canada Mexico Canada is applied Florida Spanish Railroad Railroad Railroad

Positions 49, 50, 51, 52, 53, 54, 55, 115, 116, 168, 273, 394, ..., 6022, 6040, 6042, 6060, 6094

Table 6: An example from Natural Question dataset. The rows in the middle section show the corresponding words
of the clustered hidden states, and the bottom row shows the positions of the clustered hidden states. “<s>” refers
to start token of long answer candidate.

Attention across the whole sequence. Note that
this method cannot be directly used for question
answering without adding Sliding-Window layer,
as our QA model is initialized by RoBERTa that
only has 512 position embeddings.

4.4 Experimental Results
State-of-the-Art Results on QA Table 2 and 3
show that our proposed method outperforms sev-
eral strong baselines, thanks to its ability to encode
both local and global information. Cluster-Former
with 512 clusters achieves new state-of-the-art re-
sults on Quasar-T, SearchQA and Natural Question
(long answer).

Effect of Cluster-Former We also test the abil-
ity of Cluster-Former on modeling long-range de-
pendencies. Note that Sparse Attention (Child et al.,
2019) and Locality-Sensitive Hashing (Kitaev et al.,
2020) have never been tested on question answer-
ing tasks with long context. For fair comparison,
we set the layers 15 and 20 as either Sparse At-
tention, Locality-Sensitive Hashing or our Cluster-
Former, and the left layers are Sliding Window
layers.

As shown, Sparse Attention performs worse than
our Cluster-Former. The loss may come from the
noise introduced by pre-selected positions, the cor-
responding words of which may not be related.
We set the number of hashing vectors in Locality-
Sensitive Hashing (LSH) to 64, the same as the
number of clusters in Cluster-Former. LSH outper-
forms the baseline slightly on QA and consistently
underperforms our Cluster-Former (#C=64). Over-
all, our Cluster-Former performs the best.

Effect of Number of Cluster Centroids We
also test the effect of different numbers of cluster

centroids (C) on model performance. We observe
that the model with 512 clusters works significantly
better than the model with 64 clusters on most of
the tasks. However, for Natural Questions Long
Answer setting, the improvement is marginal. As
we mainly rely on the hidden state of special tokens
“<s>” for long answer selection, and the same to-
kens can be assigned into same chunk more easily
even with a smaller number of clusters.

Selection of Cluster-Former Layers We also
have an analysis on which layers are better used
for Cluster-Former layer. As shown in Table 4, we
conduct a hyper-parameter search. And find that it
can get better performance with at least one Cluster-
Former layers in the middle layer (8-16). The worst
results come from only one Cluster-Former layer
in the layer of 22 or 23.

Language Modeling Although we focus on QA
tasks, to demonstrate the versatility of Cluster-
Former, we conduct additional experiments on lan-
guage modeling using the Wikitext-103 (Merity
et al., 2017) and Enwik8 (Mahoney, 2011) bench-
marks. All the models are trained from scratch.
We set the number of layers to 16, with 8 heads
per layer. Our Cluster-Former Layer is used in
layers 11 and 15 as in QA models. We segment
long input into short sequences of 3072 tokens, set
sliding window size l to 256, and stride m to 128.
SGD is used for optimizing the models. We set
clip threshold of gradients to 0.1, warm-up updates
to 16,000, maximal updates to 286,000, dropout
rate to 0.3, learning rate to 0.1, and batch size to
16. The model will converge in 3 days for all the
LM datasets. As shown in Table 5, Cluster-Former
outperforms strong state-of-the-art baselines.
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4.5 Qualitative Analysis
We perform qualitative analysis on how the hidden
states are clustered, by visualizing the correspond-
ing words and positions of the hidden states in Ta-
ble 6. From the first row, we can see that the special
tokens “<s>” tend to belong to the same cluster.
Note that “<s>” is the start token of each long an-
swer candidate, and its hidden state is used for final
long answer selection. Therefore, Transformer on
this cluster can compare across the candidates to
make the final prediction.

We further observe that the same types of to-
ken are more likely to appear in the same cluster.
For example, words from the second row to the
forth row cover the topics of time, stopwords, and
organization & geopolitical entities.

Finally, we randomly sample a cluster and list
the positions of clustered hidden states in the last
row of the table. We find that states in long dis-
tance, such as the 50-th and 6060-th states (over
6000 tokens apart), can be in one cluster, which
demonstrates the ability of Cluster-Former in de-
tecting long-range dependencies. Further, we ob-
serve that states tend to cluster in phrases. For
example, we see consecutive positions such as “49,
50, 51, 52, 53, 54, 55”, which likely results from
the sliding-window encoding.

5 Conclusion

In this paper, we present Cluster-Former, a new
method to encode global information for long se-
quences. We achieve new state of the art on three
question answering datasets: Quasar-T, SearchQA,
and Natural Questions. Further, we observe that
a larger number of clusters in Cluster-Former can
lead to better performance on question answering
tasks. Cluster-Former is a generic approach, and
we believe that it can benefit other NLP tasks that
rely on long-range dependencies as well.
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