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Abstract

Recent work demonstrates the potential of
training one model for multilingual machine
translation. In parallel, denoising pretraining
using unlabeled monolingual data as a starting
point for finetuning bitext machine translation
systems has demonstrated strong performance
gains. However, little has been explored on
the potential to combine denoising pretraining
with multilingual machine translation in a sin-
gle model. In this work, we fill this gap by
studying how multilingual translation models
can be created through multilingual finetuning.
Fintuning multilingual model from a denois-
ing pretrained model incorporates the benefits
of large quantities of unlabeled monolingual
data, which is particularly important for low re-
source languages where bitext is rare. Further,
we create the ML50 benchmark to facilitate re-
producible research by standardizing training
and evaluation data. On ML50, we show that
multilingual finetuning significantly improves
over multilingual models trained from scratch
and bilingual finetuning for translation into
English. We also find that multilingual fine-
tuning can significantly improve over multilin-
gual models trained from scratch for zero-shot
translation on non-English directions. Finally,
we discuss that the pretraining and finetuning
paradigm alone is not enough to address the
challenges of multilingual models for to-Many
directions performance.

1 Introduction

A slow but increasingly growing focus on lan-
guages beyond English has contributed a large
wave of models, data, and tasks for non-English lan-
guages. Much work has been dedicated to the area
of translation, with increasing exploration in mas-
sively multilingual models. Despite advances in
multilingual natural language processing, resources

∗This work was completed when the first author was at
Facebook AI.

are highly unbalanced across different languages.
This is an obstacle for tasks requiring large quan-
tities of labeled data, such as translation systems,
which traditionally leverage hundreds of thousands
of professional human translations.

A promising avenue of research is to remove the
requirement for large quantities of labeled data by
leveraging unlabeled monolingual data, often in the
form of large-scale pretraining (Lample and Con-
neau, 2019; Conneau et al., 2020; Liu et al., 2020;
Tran et al., 2020; Liu et al., 2019; Brown et al.,
2020). Monolingual data is far more prevalent for
low resource languages, particularly in resources
such as Wikipedia or Commoncrawl, a version of
the web. Recent work has explored monolingual
denoising pretraining (Liu et al., 2020) for bilin-
gual models finetuning for individual translation
directions (for simplicity we will refer to mono-
lingual denoising pretraining as pretraining from
now on). However, bilingual finetuning alone does
not leverage the benefit of the potential of transfer
learning across languages. On the other hand, re-
cent work (Arivazhagan et al., 2019b; Fan et al.,
2020) has also demonstrated much potential for
performance improvement from multilingual trans-
lation models in a single model (for simplicity from
now on we will use multilingual translation model
or multilingual model to refer to a single model
which performs machine translation for multiple
languages), but these approaches do not leverage
unlabeled monolingual data directly. Little has
been explored regarding the combination of the two
approaches. Thus, this work studies the effective-
ness of combining both large scale pretraining and
all-in-one multilingual translation towards univer-
sal automatic translation across human languages.

In this work, we finetune pretrained models into
multilingual translation models 1. We analyze the

1We open source our implementation, pretrained and fine-
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effectiveness of multilingual finetuning — finetun-
ing a single model to perform translation for multi-
ple languages — across low, mid, and high resource
translation settings to understand the benefits and
limits of both pretraining and the transfer learning
across languages. First, we demonstrate how to
extend pretrained models to support additional lan-
guages using only monolingual data via denoising
training criteria. Next, we show how to perform ef-
fective finetuning to create one-model multilingual
translation. Finally, we evaluate the multilingual
translation across a variety of settings to understand
the strength of starting with pretraining. Ultimately,
we demonstrate that finetuning to create one-model
multilingual translation provides large BLEU im-
provements in the Many-to-English setting, but
starting with pretraining is not sufficient to achieve
strong English-to-Many performance.

2 Related work

2.1 Multilingual Pretraining

We build upon recent progress of pretraining tech-
niques for NLP applications (Peters et al., 2018;
Radford et al., 2018; Devlin et al., 2019; Liu et al.,
2019; Song et al., 2019; Lewis et al., 2020a). In
particular, recent works explored pretraining on
multilingual unlabeled corpora (Lample and Con-
neau, 2019; Conneau et al., 2020; Liu et al., 2020;
Tran et al., 2020) and significantly improved the
performance of finetuning of bilingual translation
models between two languages. We extend Liu
et al. (2020); Cooper Stickland et al. (2021) by
investigating finetuning in a multilingual setting.

2.2 Multilingual Neural Machine Translation

Training a universal translation system between
multiple languages (Firat et al., 2016; Johnson
et al., 2017) has shown enormous improvement
for translating low-resource languages (Gu et al.,
2018), even enabling zero-shot translation (Lakew
et al., 2018; Gu et al., 2019; Arivazhagan et al.,
2019a; Garcia et al., 2020). Previous multilin-
gual translation work began with multitask learning
(Dong et al., 2015). Subsequently, work focused
on the the model capacity bottleneck, leading to
exploration of various parameter sharing strategies
(Blackwood et al., 2018; Platanios et al., 2018;
Sachan and Neubig, 2018; Lu et al., 2018). Models

tuned models, and the ML50 dataset downloading scripts at
https://github.com/pytorch/fairseq/tree/
master/examples/multilingual.

for all languages (Ha et al., 2016) have also been
explored and extended to incorporate language in-
formation (Tan et al., 2019). Bitext data pretraining
and finetuning aiming at creating multiple machine
translation models for different translation direc-
tions has also be explored (Dabre et al., 2019; Lin
et al., 2020). Arivazhagan et al. (2019b); Fan et al.
(2020) indicate that it is essential to train gigan-
tic models with enough capacity to fully leverage
massive multilingual corpora. A closely related
concurrent work, Siddhant et al. (2020) shows it is
possible to train a multilingual system jointly with
monolingual datasets based on Song et al. (2019).
In contrast, in this work we focus on unlabeled
data denoising pretraining instead of bitext data
pretraining to utilize almost unlimitedly available
unlabeled texts. We aim at creating a single univer-
sal translation model across multiple languages via
finetuning multilingual translation systems from a
pretrained model.

2.3 Multilingual Translation Datasets

Working in a multilingual setting remains challeng-
ing, as various different datasets, evaluation set-
tings, and preprocessing such as tokenization are
used. Benchmarks for sentence embeddings (Hu
et al., 2020), natural language inference (Conneau
et al., 2018), and question answering (Lewis et al.,
2020b) exist, but there is not yet a setting for ma-
chine translation data with different resource levels
and language families at sufficiently large scale
and variety. Zhang et al. (2020) propose OPUS100
with 100 languages, but the training and evaluation
data are not human translated. Arivazhagan et al.
(2019b) use proprietary data to train and evaluate.
In contrast, we contribute the ML50 benchmark,
a dataset of 50 languages with publicly available
training and evaluation sets, including high, mid,
and extremely low resource directions, and open
source this benchmark.

3 Multilingual Translation from
Monolingual Denoising Pretraining

Masked language modeling and denoising pretrain-
ing have been successful across a wide variety of
tasks, including creating bilingual translation mod-
els. We describe the pretrained multilingual BART
model and present multilingual finetuning, a tech-
nique to convert pretrained models into multilin-
gual machine translation systems.

https://github.com/pytorch/fairseq/tree/master/examples/multilingual
https://github.com/pytorch/fairseq/tree/master/examples/multilingual
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mBART Multilingual BART (mBART) (Liu
et al., 2020) is a sequence-to-sequence generative
pretraining scheme. The model incorporates N lan-
guages by concatenating data: D = {D1, ...,DN}
where each Di is a collection of monolingual doc-
uments in language i. mBART is trained as a de-
noising autoencoder, training to predict the original
text X given g(X) where g is a noising function
that corrupts text. We maximize Lθ:

Lθ =
∑
Di∈D

∑
x∈Di

logP (x|g(x); θ) , (1)

where x is an instance in language i and the distri-
bution P is defined by the seq-to-seq model. This
model is pretrained using two types of noise in g —
random span masking and order permutation — as
described in (Liu et al., 2020).

3.1 Multilingual Finetuning
To leverage pretraining to create translation sys-
tems, previous work (Liu et al., 2020) used mBART
as a starting point and then performed bilingual
finetuning. Concretely, the seq-to-seq model was
finetuned on language i to language j translation.
However, bilingual finetuning does not leverage
the full capacity of multilingual pretraining, as the
resulting translation model can only translate be-
tween two languages. Recent work on multilin-
gual translation (Aharoni et al., 2019; Arivazhagan
et al., 2019b) demonstrates that strong translation
models can be created by doing multilingual train-
ing. Thus, we propose to perform multilingual
finetuning (ML-FT) to retain the benefits of both
multilingual translation models and unlabeled data
pretraining. Multilingual translation models allow
languages to transfer the learning from each other.
Pretraining utilizes large amount of monolingual
data to complement the lack of bitext data.

To perform multilingual finetuning, we collect
bitexts of different language pairs (i, j) into a large
collection Bi,j = {(xi, yj)} for each direction
(i, j). We augment each bitext pair (xi, yj) by
adding a source language token and a target lan-
guage token at the beginning of x and y respec-
tively to form a target language token augmented
pair (x′, y′). We then initialize a transformer based
seq-to-seq model by the pretrained mBART, and
provide the multilingual bitexts B =

⋃
i,j Bi,j to

finetune the pretrained model.

Multilingual Translation Model Variants We
explore 3 configurations to create different versions

of multilingual translation models: Many-to-one
(M→1), one-to-Many (1→M), and Many-to-Many
(M↔M) via a pivot language. Given the presence
of English language in large scale bitext data, we
follow (Arivazhagan et al., 2019b) using English as
the pivot language to create Many-to-Many mod-
els: the Many-to-one model encodes N languages
and decodes to English, while the one-to-Many
model encodes English and decodes into N lan-
guages. Finally, the Many-to-Many model encodes
and decodes N languages.

Temperature Sampling When training multilin-
gual models with many languages, the training
dataset sizes are imbalanced as different languages
have different quantities of bitext. Thus, we train
with temperature upsampling, which upsamples
lower resource pairs so that the high resource lan-
guages do not dominate the training data. We fol-
low Arivazhagan et al. (2019b) and use the fol-
lowing temperature based sampling function with
temperature T to sample data for each direction:

pi,j ∝

(
|Bi,j |∑
i,j |Bi,j |

)1/T

4 Experimental Setting

We examine the impact of multilingual finetuning
over pretrained models. First, we create the ML50
benchmark to include 50 different languages of
various resource levels and language families that
we can obtain from publicly available, high quality
data sources. The ML50 benchmark standardizes
training data, evaluation data, and evaluation proce-
dure across different languages. Second, we detail
how we obtain mBART50 pretrained models by
extending mBART25. Third, we describe three
strong baselines: bilingual translation models from
scratch, bilingual finetuning from mBART50 pre-
trained models, and multilingual translation models
from scratch. Finally, we describe our evaluation
and generation procedure. In the next section, (Sec-
tion 5), we will detail the results of the experiments.

4.1 ML50 Benchmark
To investigate the usefulness of pretraining and
multilingual finetuning compared to existing alter-
natives, we create the ML50 Benchmark. ML50
contains training and evaluation data across 50 dif-
ferent languages, from extremely low resource lan-
guages like Xhosa and Gujarati to high resource
languages like French and German. The full list
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of languages is shown in Table 1. We group the
languages into five categories based on the amount
of available training data: more than 10M pairs (8
languages), 1M to 10M pairs (5 languages), 100k
to 1M pairs (17 languages), 10K to 100K pairs
(13 languages), and finally, less than 10K pairs of
training data (5 languages). While considering the
resource levels, we also choose the ML50 dataset
to include languages in multiple language families,
from Germanic and Romance languages to Indic
and African ones. Many additional languages we
contribute are lower resource, compared to the lan-
guages in the original mBART25.

Training Data We gather bitext data between
English and 49 other languages to form ML50, to
enable the training of machine translation models.
We select these 49 languages based on the amount
of bitext and monolingual data to cover languages
with different amount of resources and under dif-
ferent language families. All of the data is publicly
available, such as WMT (Bojar et al., 2013, 2014,
2016, 2017, 2018; Barrault et al., 2019, 2020),
IWSLT (Luong and Manning, 2015; Cettolo et al.,
2017), TED58 (Qi et al., 2018), OPUS (Tiedemann,
2012), WAT (Nakazawa et al., 2019), LauraMarti-
nus (Abbott and Martinus, 2019), ITB (Kunchukut-
tan et al., 2018), and FLORES (Guzmán et al.,
2019). For multilingual training, each language
pair can include data from multiple sources. We
simply concatenate them together and remove du-
plicated source-target sentence pairs for each lan-
guage pair. We use fasttext (Joulin et al., 2017)
to perform language identification on both source
and target sentences, and we remove sentences
pairs if either source or target sentence is not pre-
dicted as expected language. We further filter out
training data that match to any source or target
side sentences in evaluation datasets. Compared
to other datasets such as OPUS100 (Zhang et al.,
2020), the ML50 benchmark contains around 4
times more training data. The full list of languages,
data sources, and amount of resulting data can be
found in Table 6.

Evaluation Data To ensure high quality evalu-
ation of languages covered in ML50, we include
publicly available, widely used evaluation sets. We
source these evaluation datasets from translation
workshops such as WMT, IWSLT, WAT, and other
published research works. We follow the evalua-
tion protocol, including tokenization, used for each

of these evaluation sets, to ensure our results are
comparable with existing work. We release these
scripts to make it easier for others 2. Compared to
other datasets such as OPUS100, we choose to use
high quality existing evaluation datasets rather than
use part of the training data as evaluation. This is
because training data, particularly for low resource
languages, is often very noisy and unreliable.

4.2 Creating mBART50

While multilingual pretrained models have shown
strong performance in a variety of tasks (Liu et al.,
2020; Conneau et al., 2020), they remain limited
as they are trained on a fixed number of languages.
For example, mBART was trained on 25 languages,
all fairly high resource. Pretraining fully from
scratch is computationally intensive — mBART
trained for 2.5 weeks on 256 Nvidia V100 GPUs
(Liu et al., 2020). However, there are hundreds of
different languages in the world, so restarting pre-
training from scratch to add any of them to mBART
would be difficult. Instead, we take the existing
mBART model, trained on 25 languages, and ex-
tend it to more than 50 languages.

We take the public available mBART25 check-
point (Liu et al., 2020) in the fairseq library (Ott
et al., 2019) to continue the pretraining process. We
extend mBART25 embedding layers with randomly
initialized vectors for an extra set of 25 language
tokens. To be consistent with mBART, we reuse its
250K sentencepiece (Kudo and Richardson, 2018)
model which was trained using monolingual data
for 100 languages from XLMR (Conneau et al.,
2020), and thus already supports languages beyond
the original mBART25 was trained on 3. To cre-
ate this extended mBART model, we combine the
monolingual data of original 25 languages and the
new 25 languages from XLMR (Conneau et al.,
2020). For pretraining, we train mBART50 for an
additional 500K updates with batch size of maxi-
mum 9216 tokens per GPU using 64 V100 GPUs.
We also release the pretrained mBART50 model,
which will be useful for a variety of text generation
tasks beyond translation.

2https://github.com/pytorch/fairseq/
tree/master/examples/multilingual.

3For languages that are not supported in the original 250K
sentencepiece vocabulary, we can extend the vocabulary to
include additional sub-word units for these languages and add
the corresponding embedding vectors to the pretrained models
to continue the pretraining.

https://github.com/pytorch/fairseq/tree/master/examples/multilingual
https://github.com/pytorch/fairseq/tree/master/examples/multilingual
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Data size Languages

10M+ German, Czech, French, Japanese, Spanish, Russian, Polish, Chinese
1M - 10M Finnish, Latvian, Lithuanian, Hindi, Estonian

100k to 1M Tamil, Romanian, Pashto, Sinhala, Malayalam, Dutch, Nepali, Italian, Arabic, Korean, Hebrew, Turkish,
Khmer, Farsi, Vietnamese, Croatian, Ukrainian

10K to 100K Thai, Indonesian, Swedish, Portuguese, Xhosa, Afrikaans, Kazakh, Urdu, Macedonian, Telugu, Slove-
nian, Burmese, Georgia

10K- Marathi, Gujarati, Mongolian, Azerbaijani, Bengali

Table 1: Languages in ML50 Benchmark. We display the languages included in the ML50 Benchmark and the quantity of
training data in bitext pairs. Full breakdown is provided in Table 6.

Multilingual Finetuning from mBART50 We
finetune the mBART50 model into Many-to-one
(M→1), one-to-Many (1→M), and Many-to-Many
(M↔M) models with the ML50 training dataset us-
ing English as pivot as described in Section 3.1.
We finetune the models for 300K updates and
sweep through different batch sizes (4096 and
8000 maximum tokens per GPU), learning rates
(1e−4, 2e−4, 5e−4) , and upsampling temperature
(1.5, 3, 5) for best performing multilingual mod-
els on validation, using 32 GPUs for each training
instance.

4.3 Baselines

We compare our proposed multilingual finetuning
to three strong baselines: bilingual training from
scratch, bilingual finetuning, and multilingual mod-
els trained from scratch.

Bilingual Trained from Scratch (BL-SC) We
train bilingual translation models with standard
Transformer (Vaswani et al., 2017) models for
translation into and from English to 49 languages.
For directions with more than 1 million bitext train-
ing data (de, cs, fr, ja, es, ru, pl, zh, fi, lv, lt, and hi),
we train Transformer Big models as there is more
data to benefit from additional model capacity. For
directions with more than 10 million bitext training
data (de, cs, fr, ja, es, ru, pl, and zh), we also train
Transformer Large models as there is even more
data to benefit from additional model capacity. The
best performing bilingual model is selected as the
Bilingual Train from Scratch baseline. Please refer
to Table 5 for details of these architectures.

Bilingual Finetuning (BL-FT) Bilingual fine-
tuning adapts the mBART model into bilingual
machine translation models by training for longer
on translation bitext. For each language direction,
we follow Liu et al. (2020) and finetune for 40K
updates to obtain the Bilingual Finetuning baseline.

Multilingual Trained from Scratch (ML-SC)
We train 3 different multlilingual models from
scratch: Many-to-one (M→1), one-to-Many
(1→M), and Many-to-Many (M↔M) with En-
glish as pivot. We train for 500K updates and
sweep through different batch sizes (4096 and
8000 maximum tokens per GPU), learning rates
(1e−4, 2e−4, 5e−4) , and upsampling temperature
(1.5, 3, 5) for best performing multilingual model
on validation, using 32 GPUs for each training in-
stance.

4.4 Evaluation and Generation

We evaluate performance with tokenized BLEU,
following the tokenization in mBART (Liu et al.,
2020). To generate, we decode using beam search
with beam sizeN = 5 with length penalty= 1.0 on
the validation set. We do not perform checkpoint
averaging. To select the best performing model in
a sweep, we compare BLEU on the validation set.

5 Multilingual Finetuning Performance

We evaluate the performance of multilingual fine-
tuning on the ML50 Benchmark — we compare
multilingual finetuning models with bilingual train-
ing from scratch, bilingual finetuning, and multilin-
gual training from scratch. Results of multilingual
finetuning comparing to all baselines are displayed
in Table 2 (per direction comparison is available in
Figure 1). The results demonstrate strong improve-
ment over the baselines on many-to-English and
comparable performance on English-to-many di-
rections. We also evaluate multilingual finetuning
many-to-many models zero-shot performance on
non-English directions without bitext data. Our re-
sults demonstrates multilingual finetuning models’
strong improvement on zero-shot directions com-
paring to multilingual models trained from scratch.
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Data Multilingual FT Translation to English Multilingual FT Translation from English

∆BLEU
Bilingual Bilingual FT Multilingual SC Bilingual Bilingual FT Multilingual SC

M→1 M↔M M→1 M↔M M→1 M↔M 1→M M↔M 1→M M↔M 1→M M↔M

>10M 2.4 0.2 0.7 -1.6 1.1 -0.5 -0.3 -1.5 -2.1 -3.3 0.2 0
1M-10M 6.2 4.4 2.3 0.5 1.4 0.3 1.7 0.6 -1.6 -2.7 0.2 -0.4
100k-1M 8.0 7.3 2.4 1.6 2.5 0.4 4.0 3.2 -0.4 -1.2 -0.1 -0.3
10-100K 22.3 20.7 5.5 3.8 4.4 2.3 13.5 13.7 0.1 0.32 -0.2 -0.3

4-10k 18.9 15.0 7.3 3.4 5.8 0.9 10.0 9.7 1.3 1.00 -0.7 -1.2

All 12.0 10.3 3.5 1.8 3.1 -0.1 6.3 5.8 -0.5 -1.0 -0.1 -0.4

Table 2: Multilingual Finetuning on 50 languages comparing to 3 baselines: (1) bilingual from scratch, (2) bilingual
finetuning, and (3) multilingual training from scratch. Multilingual Finetuning (a) consistently improves over all baselines
for translation into English (left), while (b) performs similarly over bilingual finetuning and multilingual from scratch with
significant improvement over bilingual from scratch for translation from English (right). Numbers are average BLEU difference
between multilingual finetuning models and the corresponding baselines. Per direction comparison is available in Figure 1.

5.1 Comparison to Bilingual Finetuning

To understand whether the benefit of transfer learn-
ing across languages can be stacked on top of
finetuning pretrained models, we analyze the im-
provement of multilingual finetuning with the same
model size as bilingual finetuning in Table 2.

In the Many-to-one setting, every language pair
is improved by multilingual finetuning except one.
Some low resource languages see substantial im-
provement of more than 10 BLEU points, with the
largest improvement being over 15 BLEU points.
On average, multilingual finetuning improves 3.5
BLEU across all directions into English. In the one-
to-Many setting, performance is about the same
between multilingual finetuning and bilingual fine-
tuning with average gap of −0.5 BLEU. In many-
to-many setting, on average multilinugal finetuning
improves the performance of translation into En-
glish by 1.8 BLEU while with −1.0 BLEU behind
for translation from English. We hypothesize that
the benefit of pretraining is diminished by the chal-
lenge of decoding into many target languages in
multilingual compared to bilingual finetuning.

5.2 Comparison to Multilingual from Scratch

To understand the impact of pretraining-finetuning
paradigms for multilingual translation, we examine
our proposed multilingual finetuning method com-
paring to multilingual models trained from scratch.
As shown in Table 2, in Many-to-One setting, mul-
tilingual finetuning performs consistently better
than multilingual model trained from scratch by
3.1 BLEU on average. For low resource directions
(4k-10k bitexts), the improvement is as high as 5.8

BLEU. However, in the One-to-Many and Many-to-
Many settings, multilingual finetuning does not per-
form better than multilingual training from scratch.
For translation from English, One-to-Many mul-
tilingual finetuning performs −0.1 BLEU points
worse than multilingual from scratch on average;
many-to-many multilingual finetuning model per-
forms −0.4 BLEU worse than multilingual from
scratch on average. On translation into English, we
also observe that many-to-many multilingual fine-
tuning models performs −0.1 BLEU worse than
multilingual from scratch on average. Again we
hypothesize that the benefit of monolingual data
pretraining is dominated by the challenges of a
large amount of decoding tasks for individual tar-
get languages. We will discuss the challenges of
to-many translation further in Section 6.1.

5.3 Comparison to Bilingual from Scratch

To understand the combined benefits of pretraining-
finetuning and multilingual transfer learning, we
examine the improvement of multilingual finetun-
ing with the same model size over bilingual from
scratch in Table 2. In the Many-to-one setting,
every language pair is improved by multilingual
finetuning — on average multilingual finetuning
improves over bilingual models by 12.0 BLEU.
Some low and mid resource languages see substan-
tial improvement of more than 20 BLEU points
(see Figure 1). In the one-to-Many setting, multi-
lingual finetuning outperforms almost all bilingual
models except for 5 directions with minor gaps
(mostly less than 1 BLEU). In many-to-many set-
ting, multilingual finetuning improves translation
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Figure 1: Multilingual Finetuning and Other Baselines Comparing to Bilingual Models for 50 Languages Translation. Y-Axis
numbers are BLEU difference to bilingual models trained from scratch.

into English by 10.3 BLEU while with 5.8 BLEU
improvement for translation from English. Thus
concludes that multilingual finetuning can achieve
the significant improvement over bilingual base-
lines across all directions translation into English
and from English.

5.4 Zero-shot on Non-English Directions

We study the impact of multilingual finetuning on
zero-shot non-English directions without any bitext
training data. We evaluate multilinugal many-to-
many scratch and finetuning over WMT 13 and 20
test data (fr-de and de-fr test data are from WMT20
(Barrault et al., 2020) and the other test data is from
WMT 13 (Bojar et al., 2013)). As shown in Table 4,

many-to-many multilingual finetuning model out-
performs many-to-many multilingual from scratch
models by a large margin with average 11.9 BLEU
improvement. We hypothesize that the zero-shot
non-English translation performance gain is from
two factors (1) that pretrained mBART multilingual
encoders and decoders are well-trained with mono-
lingual data; (2) that pretrained mBART decoders
are not coupled with specific source languages as
multilingual scratch models. Note that decoders
of multilingual models from scratch are always
trained with English as the source language in the
encoders while multilingual finetuning models’ de-
coders are trained with both English and the target
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Model de cs fr ja es ru pl zh fi lv lt hi

ML-FT M→1 41.5 34.2 39.8 20.5 28.6 39.1 34.1 26.8 31.3 23.1 31.6 27.2
ML-FT M↔M 37.9 31.7 37.3 17.7 27.3 37.9 32.0 24.8 29.0 21.8 30.4 25.5
ML-FT 1→M 38.6 24.5 38.9 23.7 29.5 28.7 22.3 32.4 21.0 17.9 14.7 20.0
ML-FT M↔M 36.8 23.3 37.4 22.8 28.6 27.3 21.5 31.1 19.7 16.2 14.4 18.7

Model et ta ro ps si ml nl ne it ar ko he

ML-FT M→1 30.9 18 38.6 16.2 17.5 19.9 38.1 21.1 43.9 39.1 21.7 43.5
ML-FT M↔M 28.4 17.2 37.0 15.2 16.1 18.7 37.7 19.4 43.3 41.9 23.3 42.0
ML-FT 1→M 19.6 30.9 36.4 8.4 4.1 24.8 32.6 9.0 37.5 21.2 19.4 29.0
ML-FT M↔M 18.5 30.6 35.5 8.2 3.3 23.6 31.1 8.5 35.9 20.0 18.5 27.4

Model tr km fa vi hr uk th id sv pt xh af

ML-FT M→1 24.8 11.2 35.7 33.1 44.3 36.2 30.3 39.1 46.9 49.3 14.2 42.5
ML-FT M↔M 24.3 10.7 34.0 32.7 42.7 34.2 29.1 37.9 45.1 47.1 16.6 42.4
ML-FT 1→M 22.1 6.2 18.3 32.5 31.9 24.4 36.0 34.8 37.8 41.0 8.9 20.4
ML-FT M↔M 21.4 5.7 18.2 32.0 30.8 24.1 35.7 35.1 38.0 40.8 11.6 20.4

Model kk ur mk te sl my ka gl mr gu mn az

ML-FT M→1 19.3 31.4 42.5 44.0 33.9 32.1 28.6 40.6 17.4 15.8 13.6 19.9
ML-FT M↔M 15.6 31.7 39.4 41.8 31.6 29.7 24.5 36.9 15.4 5.4 12.8 17.4
ML-FT 1→M 6.5 24.6 27.0 41.0 22.8 35.4 12.3 28.0 13.4 1.9 8.5 8.1
ML-FT M↔M 6.9 22.2 29.0 39.6 23.1 36.8 12.3 28.0 13.1 1.9 7.7 8.0

Table 3: Multilingual Finetuning BLEU scores over 50 languages

language as source languages in encoders. This
result echos the findings in (Gu et al., 2019) re-
garding the importance of decoupling source and
target languages encoders and decoders learning in
zero-shot translation.

HHH
HHHsrc

tgt
model cs de es fr

cs
ML-SC - 3.1 2.9 2.2
ML-FT - 16.3 19.1 13.5

de
ML-SC 2.3 - 3.1 2.5
ML-FT 13.8 - 16.2 12.2

es
ML-SC 2.2 2.7 - 2.7
ML-FT 10.6 13.3 - 15.8

fr
ML-SC 2.3 3 3.4 -
ML-FT 8.7 14.2 21 -

Table 4: Multilingual Finetuning Many-to-Many Model raw
BLEU scores on Zero-shot non-English Directions: Multilin-
gual Finetuning (ML-FT) consistently outperforms Multilin-
gual Scratch (ML-SC) over all zero-shot directions with large
margin

6 Discussion

6.1 Challenges of To-Many Directions

In the Many-to-one setting, large improvements are
obtained by using pretrained models as a starting
point. Multilingual modeling increases the quan-
tity of target-side English data seen by the model.
For example, compared to bilingual finetuning, our
multilingual finetuning model is exposed to English
target side data from 50 different language pairs.

However, in the one-to-Many setting and the
Many-to-Many setting, models must decode into 50
different languages in both multilingual paradigms
— being either trained from scratch or pretrained-
and-finetuned. As shown in Table 2 (and Ta-
ble 9, Figure 1), multilingual models — either from
scratch or multilingual finetuning — perform worse
than bilingual finetuning for English to Many. This
indicates that the challenge of decoding into many
languages is a dominating factor in the multilingual
models, even with pretraining. Note that there are
49 decoding tasks in One-to-Many and 50 decoding
tasks in Many-to-Many, while only 1 in Many-to-
One. Additional research, for example following
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Figure 2: mBART50 and mBART25 Bilingual Finetuning BLEU Delta. mBART50 is better than mBART25 over new
languages on average. (left) Translation into English; (right) Translation out of English.

the study framework used in (Grönroos et al., 2020),
is needed to understand (1) the interaction between
pretraining and finetuning and multiple decoding
tasks, and (2) the difference between multiple en-
coding tasks and multiple decoding tasks.

6.2 Continuous Pretraining is Effective

Pretraining models at large scale is costly. By
proposing multilingual finetuning, we introduce a
dependency on pretrained models for multilingual
translation, which can be a limitation if the pre-
trained model does not cover the desired languages
for translation. Thus, we examine the possibility
and effectiveness of incrementally extending pre-
trained models to support additional languages. We
found that for the languages which are supported by
the original pretrained models, bilingual finetuning
from both previously pretrained and continuously
pretrained models demonstrate the almost exactly
the same performance (see Figure 3 for our analy-
sis of the bilingual finetuning performance of both
models over the original 25 languages). Thus, ex-
tending pretraining does not hurt performance on
the originally supported languages, despite dou-
bling the number of languages supported by the
pretrained model. This removes a big limitation
of using pretrained models — that users are often
limited to choices made during the original pre-
training, and thus if languages are not supported,
they cannot be used.

We also examine the effectiveness of such con-
tinued pretraining. We find that mBART50 has
stronger bilingual finetuning performance (see Fig-
ure 2) than mBART25 over the newly supported
25 languages on average, indicating that pretrained
models are able to be extended to support addi-
tional languages if model capacity allows.

7 Conclusion

We demonstrate that multilingual translation mod-
els can be created from pretrained models such
as mBART using multilingual finetuning. While
using pretrained models could theoretically limit
the number of languages, we show that mBART
can be extended to double the number of origi-
nal languages without loss of performance. To
train and evaluate on 50 languages, we develop
and release the ML50 benchmark. We show that
by performing multilingual finetuning, strong im-
provements can be achieved in the Many-to-one set-
ting. However, pretraining and finetuning paradigm
alone is not enough to address the challenges of
multilingual models for One-to-Many. Our future
work will include analysis of improved strategies
for One-to-Many translation, model capacity and
inference latency trade-off, an in-depth study of
zero-shot translation, training strategies for better
data efficiency, and applications of the universal
text representation and generation frameworks in
other crosslingual tasks.
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A Appendix

Model Encoder layers Decoder layers Embedding FFN embedding Heads

Standard 5 5 512 2048 8
Big 6 6 1024 4096 16

Large 12 12 1204 4096 16

Table 5: Baseline transformer model architectures

Source Languages

0

10

20

30

40

50

de cs fr ja es ru zh fi lv lt hi et ro si nl ne it ar ko tr vi kk my gu

mBART25 BL-FT mBART50 BL-FT

(a) Translation into English
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Figure 3: Comparing mBART50 and mBART50 bilingual finetunign on the mBART25 languages.
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ML50 Train ML50 Eval

Language # Sentences Source Source # Sentences
Valid

# Sentences
Test

af 45967 Opus LauraMartinus 1500 2686
ar 226073 IWSLT17 IWSLT17 1158 1460
az 5680 TED58 TED58 671 903
bn 4487 TED58 TED58 896 216
cs 42587802 WMT20 WMT19 2983 1997
de 45828203 WMT20 WMT19 2998 2000
es * 14524187 WMT13 WMT13 3003 3000
et 1052003 WMT18 WMT18 2000 2000
fa 144895 TED58 TED58 3930 4490
fi * 2353313 WMT17 WMT17 3000 3002
fr 36797950 WMT14 WMT14 3000 3003
gl 9504 TED58 TED58 682 1007
gu 7471 WMT19 WMT19 1998 1016
he 204380 TED58 TED58 4515 5508
hi 1327206 ITB ITB 520 2507
hr 116792 TED58 TED58 3333 4881
id 83944 TED58 TED58 2677 3179
it 226457 IWSLT17.mltlng IWSLT17.mltlng 1566 1147
ja * 16167141 WMT20 WMT20 dev-split 999 999
ka 12364 TED58 TED58 654 943
kk 29186 WMT19 WMT19 2066 1000
km 191967 WMT’20 Flores devtest 2378 2309
ko 224612 IWSLT17 IWSLT17 1143 1429
lt * 1395010 WMT19 WMT19 2000 1000
lv * 1808291 WMT17 WMT17 2003 2001
mk 24037 TED58 TED58 640 438
ml 358916 lotus lotus 500 1000
mn 7168 TED58 TED58 372 414
mr 9397 TED58 TED58 767 1090
my 18073 WAT19 WAT19 1000 1018
ne 227387 Flores Flores 2559 2924
nl 232572 IWSLT17.mltlng IWSLT17.mltlng 1777 1181
pl 10332683 WMT20 WMT20 dev-split 1000 1000
ps 579346 WMT’20 Flores devtest 3162 2698
pt 49446 TED58 TED58 1193 1803
ro 592594 WMT16 WMT17 1999 1999
ru * 13922899 WMT20 WMT19 3000 2000
si 565661 Flores Flores 2898 2905
sl 18751 TED58 TED59 1068 1251
sv 53596 TED58 TED58 1729 2283
ta 609767 WMT’20 WMT20 dev-split 995 994
te 22042 lotus lotus 500 1000
th 93723 TED58 TED58 2989 3713
tr 204200 WMT17 WMT17 3000 3007
uk 104193 TED58 TED58 3060 3751
ur 26302 lotus lotus 500 1000
vi 127069 IWSLT 15 IWSLT15 1268 1080
xh 48981 Opus LauraMartinus 1500 2717
zh * 10082367 WMT20 WMT19 3981 2000

Table 6: ML50 Benchmark dataset stats. For each language, we list the size of training data after the filtering steps, the source
of training/evaluation data, and the size of evaluation data. We notice that part of the available dataset are missing due to human
error for a few language pairs. We mark these languages with asterisk and we will release next version of the ML50 benchmark
data to include the missing data.
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Lang de cs fr ja es ru pl zh fi lv lt hi

BL-Scratch to en 39.7 29.0 35.2 18.4 27 37.7 28.4 25.1 24.1 17.9 27.8 20.1
BL-FT to en 41.0 32.0 37.4 19.5 30.2 38.5 31.0 25.4 28.8 20.8 30.7 23.8

BL-Scratch from en 40 24.8 39 22.2 29 28.5 24.3 33.6 19.7 16.6 13.3 17.5
BL-FT from en 41.9 26.5 40.8 24.5 30.3 30.5 26.7 35.1 23.7 19.0 16.1 20.4

Lang et ta ro ps si ml nl ne it ar ko he

BL-Scratch to en 23.2 14.2 32.6 8.9 6.1 12.5 32.5 2.8 36.9 33.5 16.4 38.6
BL-FT to en 28.3 18.2 37.1 15.0 12.6 18.2 36.5 13.3 42.1 37.5 19.9 42.7

BL-Scratch from en 17.5 28.7 32.9 7.3 1.5 17.5 29.3 1.3 33.7 19.7 16.1 27.0
BL-FT from en 22.0 34.0 37.4 9.3 4.7 25.5 33.3 6.9 38.1 22.0 20.0 29.7

Lang tr km fa vi hr uk th id sv pt xh af

BL-Scratch to en 16.5 4.0 27.6 26.0 33.6 24.5 20.9 28.0 30.8 30.7 0.4 1.0
BL-FT to en 22.5 8.3 33.2 31.9 42.0 33.5 28.2 36.9 44.9 46.0 12.1 26.5

BL-Scratch from en 16.3 4.3 15.1 28.5 26.0 17.8 30.7 27.2 27.0 27.1 0.2 1.0
BL-FT from en 22.7 5.9 18.4 32.9 32.2 24.3 36.5 35.6 38.5 41.6 11.2 18.3

Lang kk ur mk te sl my ka gl mr gu mn az

BL-Scratch to en 1.4 7.8 14.1 10.9 7.9 3.9 6.1 6.6 2.8 0.0 3.5 2.8
BL-FT to en 11.0 28.0 35.8 35.8 28.5 25.1 23.8 34.3 11.6 0.5 11.2 15.5

BL-Scratch from en 0.6 8.3 8.2 15.0 4.9 19.8 3.7 4.2 5.2 0.0 3.3 1.9
BL-FT from en 5.9 23.7 27.2 38.8 21.9 35.8 13.0 26.7 11.5 0.6 8.5 7.4

Table 7: Bilingual and Finetuning Bilingual Baselines over 50 languages

Lang de cs fr ja es ru pl zh fi lv lt hi

ML-Scratch M→1 39.6 32.3 38.0 19.2 31.6 38.6 30.6 25.9 29.3 22.1 30.5 26.3
ML-Scratch M↔M 38.3 31.2 37.0 17.5 31.6 38.0 29.9 24.8 28.4 21.1 30.5 25.3
ML-Scratch 1→M 39.1 23.9 38.5 20.9 29.3 28.6 24.6 31.7 21.2 17.6 14.5 19.8
ML-Scratch M↔M 37.2 23.1 37.8 20.0 29.1 27.4 23.1 30.5 20.3 16.5 14.6 19.7

Lang et ta ro ps si ml nl ne it ar ko he

ML-Scratch M→1 29.1 20.5 36.3 16.0 15.4 19.5 34.5 17.7 40.1 51.0 29.2 39.7
ML-Scratch M↔M 28.3 19.9 36.6 15.7 16.2 19.2 37.6 20.3 41.9 44.5 24.1 40.5
ML-Scratch 1→M 19.2 33.3 36.1 8.4 4.2 25.0 32.6 9.4 36.5 21.7 19.3 29.6
ML-Scratch M↔M 18.6 32.1 35.2 8.3 3.9 23.8 31.9 9.1 36.6 20.9 18.1 28.1

Lang tr km fa vi hr uk th id sv pt xh af

ML-Scratch M→1 23.1 8.9 31.9 28.0 40.6 31.7 26.4 36.3 41.5 43.9 14.5 35.7
ML-Scratch M↔M 23.6 10.5 32.6 30.6 40.6 32.4 27.3 35.7 42.2 44.5 13.5 35.1
ML-Scratch 1→M 22.1 5.0 18.5 32.5 32.5 24.4 36.5 34.7 38.2 41.9 4.9 20.3
ML-Scratch M↔M 21.7 5.0 18.3 31.9 31.6 24.5 36.7 35.4 38.4 42.0 8.9 17.6

Lang kk ur mk te sl my ka gl mr gu mn az

ML-Scratch M→1 12.5 28.6 36.7 37.8 32.4 27.9 23.0 35.8 14.9 3.1 10.8 14.1
ML-Scratch M↔M 13.6 30.2 37.6 40.1 30.8 27.6 24.2 36.0 14.9 3.5 12.5 16.0
ML-Scratch 1→M 7.9 24.6 28.3 41.2 23.4 35.5 13.5 28.9 13.9 3.0 9.2 8.5
ML-Scratch M↔M 7.9 24.3 29.5 41.2 22.6 36.3 13.2 28.8 13.8 3.9 9.1 7.9

Table 8: Multilingual Baselines over 50 languages
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Data Translation to English Translation from English
BL-FT ML-SC ML-FT BL-FT ML-SC ML-FT

over over over over over over
Bilingual Bilingual Bilingual Bilingual Bilingual Bilingual

M→1 M↔M M→1 M↔M 1→M M↔M 1→M M↔M

>10M 1.7 1.4 0.6 2.4 0.1 1.8 -0.5 -1.6 -0.3 -1.5
1M-10M 3.9 4.8 4.1 6.2 4.4 3.3 1.5 1.0 1.7 0.6
100k-1M 5.6 5.5 6.9 8.0 7.2 4.4 4.1 3.5 4.0 3.2

10K-100K 16.8 17.9 18.4 22.3 20.7 13.4 13.7 14.0 13.5 13.7
4k-10k 11.6 13.1 14.1 18.9 15.0 8.7 10.6 10.9 10.0 9.7

All 8.5 9.0 9.5 12.0 10.3 6.8 6.4 6.1 6.3 5.8

Table 9: Multilingual Finetuning on 50 languages comparing to bilingual models. Numbers are average BLEU difference
compared to bilingual models trained from scratch.


