
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 2546–2559
August 1–6, 2021. ©2021 Association for Computational Linguistics

2546

OKGIT: Open Knowledge Graph Link Prediction with Implicit Types

Chandrahas
Indian Institute of Science, Bangalore

chandrahas@iisc.ac.in

Partha Pratim Talukdar
Indian Institute of Science, Bangalore

ppt@iisc.ac.in

Abstract

Open Knowledge Graphs (OpenKG) refer to a
set of (head noun phrase, relation phrase, tail
noun phrase) triples such as (tesla, return to,
new york) extracted from a corpus using Ope-
nIE tools. While OpenKGs are easy to boot-
strap for a domain, they are very sparse and
far from being directly usable in an end task.
Therefore, the task of predicting new facts,
i.e., link prediction, becomes an important step
while using these graphs in downstream tasks
such as text comprehension, question answer-
ing, and web search query recommendation.
Learning embeddings for OpenKGs is one ap-
proach for link prediction that has received
some attention lately. However, on careful
examination, we found that current OpenKG
link prediction algorithms often predict noun
phrases (NPs) with incompatible types for
given noun and relation phrases. We address
this problem in this work and propose OKGIT
that improves OpenKG link prediction using
novel type compatibility score and type reg-
ularization. With extensive experiments on
multiple datasets, we show that the proposed
method achieves state-of-the-art performance
while producing type compatible NPs in the
link prediction task.

1 Introduction

An Open Knowledge Graph (OpenKG) is a set
of factual triples extracted from a text corpus us-
ing Open Information Extraction (OpenIE) tools
such as TEXTRUNNER (Banko et al., 2007) and
ReVerb (Fader et al., 2011). These triples are
of the form (noun phrase, relation phrase, noun
phrase), e.g., (tesla, return to, new york). An
OpenKG can be viewed as a multi-relational graph
where the noun phrases (NPs) are the nodes, and
the relation phrases (RPs) are the labeled edges
between pairs of nodes. It is easy to bootstrap
OpenKGs from a domain-specific corpus, making

Triple (tesla, return to, ?)

CaRE polytechnic
institute 2009 1986 jp

morgan patent

BERT chicago earth england america detroit
OKGIT new york america paris california london

Table 1: Some sample tail NP predictions by CaRE,
BERT, and OKGIT. The true tail NP is underlined. As
we can see, both CaRE and BERT fail to predict the cor-
rect tail NP. However, BERT predictions are type com-
patible with the query. OKGIT predicts the correct NP
while improving the type compatibility with the query.

them suitable for newer domains. However, they
are extremely sparse and may not be directly us-
able for an end task. Therefore, tasks such as NP
canonicalization (merging mentions of the same
entity) and link prediction (predicting new facts)
become an important step in downstream applica-
tions. Some example applications are text compre-
hension (Mausam, 2016), relation schema induc-
tion (Nimishakavi et al., 2016), canonicalization
(Vashishth et al., 2018), question answering (Yao
and Van Durme, 2014), and web search query rec-
ommendation (Huang et al., 2016). In this work,
we focus on improving OpenKG link prediction.

Although OpenKGs are structurally similar to
Ontological KGs, they come with a different set of
challenges. They are extremely sparse, NPs and
RPs are not canonicalized, and no type information
is present for NPs. There has been much work on
learning embeddings for Ontological KGs in the
past years. However, this task has not received
much attention in the context of OpenKGs. CaRE
(Gupta et al., 2019) is a recent method which ad-
dresses this problem. It learns embeddings for NPs
and RPs in an OpenKG while incorporating NP
canonicalization information. However, even after
incorporating canonicalization, we find that CaRE
struggles to predict NPs whose types are compati-

2547

ble with given head NP and RP.
As observed by Petroni et al. (2019), modern pre-

trained language representation models like BERT
can store factual knowledge and can be used to
perform link prediction in KGs. However, in our
explorations with OpenKGs, we found that even
though BERT may not predict the correct NP on
the top, it predicts type compatible NPs (Table 1).
A similar observation was also made in the context
of entity linking (Chen et al., 2020). As OpenKGs
do not have any underlying ontology and obtaining
type information can be expensive, BERT predic-
tions can help improve OpenKG link prediction.

Motivated by this, we employ BERT for im-
proving OpenKG link prediction, using novel type
compatibility score (Section 4.2) and type regu-
larizer term (Section 4.4). We propose OKGIT, a
method for OpenKG link prediction with improved
type compatibility. We test our model on multiple
datasets and show that it achieves state-of-the-art
performance on all of these datasets.

We make the following contributions:

• We address the problem of OpenKG link pre-
diction, focusing on improving type compati-
bility of predictions. To the best of our knowl-
edge, this is the first work that addresses this
problem.

• We propose OKGIT, a method for OpenKG
link prediction with novel type compatibility
score and type regularization. OKGIT can
utilize NP canonicalization information while
improving the type compatibility of predic-
tions.

• We evaluate OKGIT on the link prediction
across multiple datasets and observe that it
outperforms the baseline methods. We also
demonstrate that the learned model generates
more type compatible predictions.

Source code for the proposed model and the
experiments from this paper is available at https:
//github.com/Chandrahasd/OKGIT.

2 Related Work

OpenKG Embeddings: Learning embeddings for
OpenKGs has been a relatively under-explored area
of research. Previous work using OpenKG embed-
dings has primarily focused on canonicalization.
CESI (Vashishth et al., 2018) uses KG embedding
models for the canonicalization of noun phrases in

OpenKGs. The problem of incorporating canoni-
calization information into OpenKG embeddings
was addressed by Gupta et al. (2019). Their method
for OpenKG embeddings (i.e., CaRE) performs bet-
ter than Ontological KG embedding baselines in
terms of link prediction performance. The chal-
lenges in the link prediction for OpenKGs were
discussed in Broscheit et al. (2020), and methods
similar to CaRE were proposed. In spirit, CaRE
(Gupta et al., 2019) comes closest to our model;
however, they do not address the problem of type
compatibility in the link prediction task.

Entity Type: Entity typing is a popular problem
where given a sentence and an entity mention, the
goal is to predict explicit types of the entity. It has
been an active area of research, and many models
and datasets, such as (Mai et al., 2018), (Hovy et al.,
2006), and (Choi et al., 2018), have been proposed.
However, unlike this task, we aim to incorporate
unsupervised implicit type information present in
the pre-trained BERT model into OpenKG embed-
dings, rather than predicting explicit entity types
present in ontologies or corpora.

For unsupervised cases, the problem of type com-
patibility in link prediction was addressed in (Jain
et al., 2018). They employ a type compatibility
score by learning a type vector for each NP and two
type vectors (head and tail) for each relation. This
score is multiplied with the triple score function,
and the type vectors are trained jointly with em-
bedding vectors. Although their method addresses
the type compatibility issue, it is based on Onto-
logical KG embedding models and shares the same
limitations. In another work (Xie et al., 2016), hier-
archical type information available in the dataset is
incorporated while learning embeddings. However,
their model is suitable only for Ontological KGs
where the type information is readily available.

BERT in KG Embedding: BERT architecture has
been used for scoring KG triples (Yao et al., 2019;
Wang et al., 2019). However, their methods work
on Ontological KGs without any explicit attention
to NP types. In other work (Petroni et al., 2019),
pre-trained BERT models are used for predicting
links in KG. However, their focus was to evaluate
knowledge present in the pre-trained BERT models
instead of improving the existing link prediction
model. BERT embeddings were also used for ex-
tracting entity type information (Chen et al., 2020).
However, it was used for Entity Linking compared
to OpenKG link prediction in our case.

https://github.com/Chandrahasd/OKGIT
https://github.com/Chandrahasd/OKGIT

2548

CaRE

BERT

Type
Projection

PB

Type
Projection

P

Tail
Prediction

Score
(Section 4.1)

Tail Type
Compatibility

Score
(Section 4.2)

Final
Composite

Score
(Section 4.3)

= neil
 armstrong

= was
born in

= ohio

neil armstrong was born in [MASK]

Figure 1: OKGIT Architecture. OKGIT learns embeddings for Noun Phrases (NP) and Relation Phrases (RP)
present in an OpenKG by augmenting a standard tail prediction loss with type compatibility loss. Guidance for the
tail type is obtained through type projection out of BERT’s tail embedding prediction. In the figure, h, r, and t are
the head NP, relation (RP), and tail NP. h = wh

1 . . . w
h
kh

and r = wr
1 . . . w

r
kr

are tokens in the head NP and relation,
respectively. tC and tB are the tail NP vectors predicted by CaRE and BERT models (Please see Section 3 for
background on these two models). Vectors τB and τ are the type vectors obtained using type projections PB and
P , respectively. ψPRED represents tail prediction score (Section 4.1) while ψTYPE represents type compatibility
score (Section 4.2). ψOKGIT is the combined score generated by OKGIT for the input triple (h, r, t) (Section 4.3).
Please refer to Section 4 for more details.

3 Background

We first introduce the notation used in this paper,
followed by brief descriptions of BERT and CaRE.
Notation: An Open Knowledge Graph OpenKG
= (N ,R, T) contains a set of noun phrases (NPs)
N , a set of relation phrases (RPs) R and a set of
triples (h, r, t) ∈ T where h, t ∈ N and r ∈ R.
Here, h and t are called the head and tail NPs,
and r is the RP between them. Each of them
contains tokens from a vocabulary V , specifically,
h = (wh1 , w

h
2 , . . . , w

h
kh

), t = (wt1, w
t
2, . . . , w

t
kt

)
and r = (wr1, w

r
2, . . . , w

r
kr

). Here, kh, kr, and
kt are the numbers of tokens in the head NP, the
relation, and the tail NP. OpenKG embedding meth-
ods learn vector representations for NPs and RPs.
Specifically, vectors for an NP e ∈ N and an RP
r ∈ R are represented by boldface letters e ∈ Rde
and r ∈ Rdr . Here, de and dr are dimensions of
NP and RP vectors. Usually, de = dr. A score
function ψ(h, r, t) represents the plausibility of a
triple. Similarly, BERT represents tokens by dB-
dimensional vectors. A type projection matrix P
takes the vectors to a common dτ -dimensional type
space Rdτ . The vectors in the type space are de-
noted by τ .
BERT (Devlin et al., 2019): BERT is a bi-
directional language representation model based

on the transformer architecture (Vaswani et al.,
2017), which has shown performance improve-
ments across multiple NLP tasks. It is pre-trained
on two tasks, (1) Masked Language Modeling
(MLM), where the model is trained to predict ran-
domly masked tokens from the input sentences,
and (2) Next Sentence Prediction (NSP), where the
model is trained to predict whether an input pair
of sentences occurs in a sequence or not. In our
case, we use a pre-trained BERT model (without
fine-tuning) for predicting a masked tail NP in a
triple.
CaRE (Gupta et al., 2019): CaRE is an OpenKG
embedding method that can incorporate NP canon-
icalization information while learning the embed-
dings. NP canonicalization is the problem of group-
ing all surface forms of a given entity in one clus-
ter, e.g., inferring that Barack Obama, Barack H.
Obama, and President Obama all refer to the same
underlying entity. CaRE consists of three compo-
nents: (1) a canonicalization cluster encoder (CN),
which generates NP embeddings by aggregating
embeddings of canonical NPs from the correspond-
ing cluster, (2) a bi-directional GRU based phrase
encoder (PN), which encodes the tokens in RPs
to generate RP embeddings, and (3) a base model,
which is an Ontological KG embedding method
like ConvE (Dettmers et al., 2018). It uses NP and

2549

RP embeddings for scoring triples. These triple
scores are then fed to a loss function (e.g., pair-
wise ranking loss with negative sampling (Bordes
et al., 2013) or binary cross-entropy loss (BCE)
(Dettmers et al., 2018)). In this paper, we use CaRE
with ConvE as the base model. This model gen-
erates a candidate tail NP vector for a given NP h
and RP r, denoted by CaRE(h, r).

4 OKGIT: Our Proposed Method

Motivation: As illustrated in Table 1, top NPs pre-
dicted by CaRE may not always be type compatible
with the input query. On the other hand, BERT’s
top predictions are usually type compatible (Chen
et al., 2020), although they may not be factually
correct. Thus, we hypothesize that a combination
of these two models can produce correct as well as
type compatible predictions. Motivated by this, we
develop OKGIT, which combines the best of both
of these models. The complete architecture of the
proposed model can be found in Figure 1. In the
following section, we present various components
of the proposed model.

4.1 ψPRED: Tail Prediction Score

The correctness of tail prediction in a triple is mea-
sured by the triple score function ψPRED. Given a
triple (h, r, t), it uses the corresponding vectors (h,
r, t) and assigns high scores to correct triples and
low scores to incorrect triples. We follow CaRE
(Gupta et al., 2019) for scoring triples, which in-
ternally uses ConvE (Dettmers et al., 2018) as the
base model. For a given triple (h, r, t), the CaRE
model first predicts a tail NP vector tC as

tC = CaRE(h, r) (1)

The predicted tail NP vector tC is then matched
against the given tail NP vector t using dot product
to generate the triple score ψPRED.

ψPRED(t, tC) = tC
>t. (2)

The score ψPRED represents tail prediction cor-
rectness, and CaRE model uses only this score.

4.2 ψTYPE: Tail Type Compatibility Score

The type compatibility between a given (head NP,
RP) pair and a tail NP is measured by the type com-
patibility score function ψTYPE. It assigns a high
score when an NP t has suitable types as candidate
tail NP for given head NP h and RP r. We employ

a Masked Language Model (MLM) for measuring
type compatibility, specifically BERT (Devlin et al.,
2019). Following (Petroni et al., 2019), we can
generate a candidate tail NP vector using BERT.
Specifically, given a triple (h, r, t), we replace the
head NP h and RP r with their tokens and tail NP
t with a special MASK token. The resulting sen-
tence (wh1 , . . . , w

h
kh
, wr1, . . . , w

r
kr
,MASK) is sent

as input to the BERT model. We denote the output
vector from BERT corresponding to the MASK tail
token as tB.

tB = BERT(h, r,MASK) (3)

We can predict tail NPs for a given (h, r) by find-
ing the nearest neighbors of tB from the BERT
vocabulary (Appendix D). These predicted NPs
may not be the correct tail NP present in KG; how-
ever, they tend to be type compatible with the given
(h, r) pair.

Motivated by this, we extract the implicit NP
type information from this vector using a type pro-
jector PB ∈ Rdτ×dB . The output vector from
BERT tB is high-dimensional and can be used as
a proxy for NP’s type (Chen et al., 2020). There-
fore, PB projects the tB vector to a lower dimen-
sional space such that only relevant information
is retained. We do a similar operation on tail NP
embedding t and use a type projector P ∈ Rdτ×de
to extract type information. Both PB and P are
trained jointly with the model. Thus, the type vec-
tors are given by

τB = PBtB and τ = P t (4)

for BERT and CaRE, respectively. Here, both
τB, τ ∈ Rdτ . Then, the type compatibility score
between these can be measured by negative of Eu-
clidean distance, i.e.,

ψTYPE(τ , τB) = −||τB − τ ||22.

We also experimented with a dot product ver-
sion of the type score, ψDot

TYPE(τ , τB) = τB
>τ ,

and found its performance to be comparable to the
Euclidean distance version. Therefore, we use the
Euclidean distance version for all our experiments.

4.3 ψOKGIT: Final Composite Score
The score functions ψPRED and ψTYPE may con-
tain complementary information. Therefore, we
use a combination of triple and type compatibility
scores as final score for a given triple.

ψOKGIT(h, r, t) = ψPRED(t, tC) + γ × ψTYPE(τ , τB).
(5)

2550

Dataset #NPs #RPs
#Gold

Clusters
#Average NPs

Per Cluster

ReVerb20K 11,064 11,057 10,897 1.02
ReVerb45K 27,007 21,622 18,626 1.45
ReVerb20KF 3,524 6,076 3,406 1.03
ReVerb45KF 9,400 11,249 6,749 1.39

#Train #Validation #Test

ReVerb20K 15,498 1,549 2,324
ReVerb45K 35,969 3,597 5,394
ReVerb20KF 6,685 1,015 1,517
ReVerb45KF 14,775 1,781 2,650

Table 2: Dataset Statistics. Please refer to Section 5 for
more details.

Please recall that tC and τB are in turn depen-
dent on h and r ((1) and (3)), while τ is dependent
on t (4). Here, γ controls the relative weights given
to individual scores. This final score takes care of
both, i.e., triple correctness as well as type com-
patibility. For training, we feed the sigmoid of this
score function to the Binary Cross Entropy (BCE)
loss function following (Dettmers et al., 2018).

4.4 Learning with Type Regularization
Let X = {(hi, ri)|(hi, ri, ti) ∈ T for some ti ∈
N} be the set of all head NPs and RPs which ap-
pear in the OpenKG. Let yi be the label for the
triple (hi, ri, ti) which is 1 if (hi, ri, ti) ∈ T and 0
otherwise. We apply the logistic sigmoid function
σ on score ψOKGIT to get the predicted label

ŷi = σ(ψOKGIT(hi, ri, ti))

Finally, we use the following binary cross-entropy
(BCE) loss for triple correctness.

TripleLoss(hi, ri, ti) = yi · log(ŷi) + (1− yi) · log(1− ŷi)

To further reinforce the type compatibility in the
model, we include an additional loss term which
forces the type vectors of correct triples to be closer
in the type space. Similar to TripleLoss, we use the
binary cross-entropy loss for type regularization as
well. The type regularization term is shown below.

TypeLoss(hi, ri, ti) = yi · log(p̂i) + (1− yi) · log(1− p̂i)

where p̂ = σ(ψTYPE(τ , τB)). The cumulative
loss function is then given as below.
n∑
i=1

TripleLoss(hi, ri, ti)+λ×TypeLoss(hi, ri, ti)

(6)
where n is the number of training instances. We
consider X ×N as our training data where triples
present in T have label 1 and rest have label 0.

Dataset de = dr dτ λ γ
BERT
model

ReVerb20K 300 300 0.01 5.0 large
ReVerb45K 300 100 0.0 2.0 large
ReVerb20KF 300 300 0.001 5.0 base
ReVerb45KF 300 300 0.001 0.25 base

Table 3: Optimal Hyperparameter values. Please refer
to Section 5 for more details.

5 Experiments

Datasets: Following (Gupta et al., 2019), we use
two subsets of English OpenKGs created using Re-
Verb (Fader et al., 2011), namely ReVerb20K and
ReVerb45K. We follow the same train-validation-
test split for these datasets. As noted in (Petroni
et al., 2019), predicting multi-token NPs using
BERT could be challenging and it might require
special pre-training (Joshi et al., 2020). To un-
derstand this difference, we create filtered sub-
sets of these datasets such that they contain only
single token NPs 1. Specifically, we create Re-
Verb20KF (ReVerb20K-Filtered) and ReVerb45KF
(ReVerb45K-Filtered) which contain only single
token NPs. More details about these datasets can
be found in Table 2.
Setup and hyperparameters: We use de = dr
= 300 for NP and RP vectors. For other hyper-
parameters, we use grid-search and select the
model based on MRR on validation split. For type
vectors, we select dτ from {100, 300, 500}. The
weight for type regularization term λ is selected
from the range {10−3, 10−2 . . . , 101} ∪ {0}. Type
composition weight γ is selected from {0.25, 0.5,
1.0, 2.0, 5.0}. For the language model, we try both
BERT-base as well as BERT-large. The optimal val-
ues for hyperparameters are shown in Table 3. The
experiments run for 1.5 hours (for filtered subsets)
and 9 hours (for full datasets) on GeForce GTX
1080 Ti GPU.

6 Results

We evaluate the proposed model on the link predic-
tion task. We follow the same evaluation process
as in (Gupta et al., 2019). From our experiments,
we try to answer the following questions:

1. Is OKGIT effective in the link prediction task?
(Section 6.1)

1Please note that the single-token limitation is only valid
for BERT, not for OKGIT (Appendix D).

2551

ReVerb20K ReVerb45K

Model MRR(%)↑ MR↓ Hits(%)↑ MRR(%)↑ MR↓ Hits(%)↑

@1 @3 @10 @1 @3 @10
ConvE (Dettmers et al., 2018) 26.2 2177.0 20.2 29.1 36.3 18.4 6625.0 13.3 20.6 28.3
CaRE (Gupta et al., 2019) 30.6 851.1 24.4 33.1 41.7 32.0 1276.8 25.3 35.0 44.6
CaRE [BERT initialization] 31.6 837.0 24.8 35.0 44.2 31.2 925.5 24.2 34.4 44.3
OKGIT [Our model] 35.9 527.1 28.2 39.4 49.9 33.2 773.9 26.1 36.3 46.4

ReVerb20KF ReVerb45KF

Model MRR(%)↑ MR↓ Hits(%)↑ MRR(%)↑ MR↓ Hits(%)↑

@1 @3 @10 @1 @3 @10
BERT (Devlin et al., 2019) 4.9 1116.5 2.2 5.0 9.7 18.9 536.5 12.3 20.8 32.5
ConvE (Dettmers et al., 2018) 22.3 836.6 16.1 25.5 33.4 16.5 2398.1 10.9 18.9 27.6
CaRE (Gupta et al., 2019) 29.3 308.3 22.1 31.6 43.2 26.6 692.7 20.1 28.8 39.1
CaRE [BERT initialization] 31.8 207.6 24.2 34.8 46.2 24.9 557.3 17.8 27.6 38.3
OKGIT [Our model] 34.6 214.7 26.5 38.0 50.2 29.7 500.2 22.5 32.4 43.3

Table 4: Results of link prediction task. Here ↑ indicates higher values are better while ↓ indicates lower values
are better. We can see that the OKGIT model outperforms the baseline models on all the datasets (Section 6.1).

2. Does OKGIT generate more type compatible
NPs in link prediction? (Section 6.2)

3. Is the Type Projector effective in extracting
type vectors from embeddings? (Section 6.3)

6.1 Effectiveness of OKGIT Embeddings in
Link Prediction

We evaluate our model on the link prediction task.
Given a held-out triple (hi, ri, ti), all the NPs
e ∈ N in the KG are ranked as candidate tail NP
based on their score ψOKGIT(hi, ri, e). Let the
rank of the correct tail NP t be denoted by rankti .
Similarly, ranks are also calculated for predicting
head NPs instead of tail NPs using inverse relations
(Dettmers et al., 2018; Gupta et al., 2019); let it be
denoted by rankhi . These ranks are then used to
find Mean Reciprocal Rank (MRR), Mean Rank
(MR) and Hit@k (k=1,3,10) as follows.

MRR =
1

2× ntest

ntest∑
i=1

(
1

rankhi
+

1

rankti

)
,

MR =
1

2× ntest

ntest∑
i=1

(
rankhi + rankti

)
, and

Hits@k =

ntest∑
i=1

1(rankhi ≤ k) + 1(rankti ≤ k)

2× ntest
.

Here, ntest is the number of test triples and
1 is the indicator function. As noted in (Gupta

et al., 2019), ranking individual NPs is not suit-
able for OpenKGs due to the lack of canonical-
ization. Hence, following their approach, we rank
gold canonicalization clusters instead of individual
NPs. The gold canonicalization partitions the NPs
into clusters such that NPs mentioning the same
entity belong to the same cluster. For ranking these
clusters, we first find ranks of all NPs e ∈ N . Then
for each cluster, we keep the NP with minimum
rank as representative and discard others. The rep-
resentative NPs are then ranked again and the new
ranks are assigned to the corresponding clusters.
The rank of the cluster containing the true NP is
then used for evaluating the performance. For bet-
ter readability, the MRR and Hits@k metrics have
been multiplied by 100.

We compare OKGIT with BERT (MLM), ConvE
(Ontological KGE) and CaRE (OpenKGE). We
also compare against a version of CaRE where
phrase embeddings have been initialized with
BERT (CaRE [BERT initialization]). As we can
see from the results in Table 4, the proposed model
OKGIT outperforms baseline methods in link pre-
diction task across all datasets. This suggests that
the implicit type scores from BERT help in im-
proving ranks of correct NPs. Moreover, OKGIT
outperforms CaRE with BERT initialization, sug-
gesting the importance of type projectors 2.

The performance gain is higher for ReVerb20K
and ReVerb20KF (+5.3 MRR) than ReVerb45K
and ReVerb45KF (+1.2 and +3.1 MRR) datasets.
As we can see from Table 2, the number of NPs are
very close to the number of gold clusters in the 20K

2Please refer to Appendix A for a detailed comparison.

2552

Figure 2: Effect of type compatibility score and type
regularization on link prediction performance. While
the type compatibility score with λ = 0 gives bet-
ter gains in MRR (11%-12%) than type regularization
term with γ = 0 (7%-11%), the combined model per-
forms the best, achieving 12%-18% gains in MRR (Sec-
tion 6.1).

datasets. Thus, the canonicalization information is
slightly weaker in the 20K datasets than the 45K
datasets. Due to this, CaRE achieved better gains
in the ReVerb45K dataset as noted in (Gupta et al.,
2019). This leaves more scope of improvements in
the 20K datasets. By including the type informa-
tion from BERT, OKGIT is able to fill this gap. It
achieves better gains in the 20K datasets and is able
to alleviate the lack of canonicalization informa-
tion. Moreover, OKGIT is able to improve ranks
of correct NPs ranked lower by CaRE. This can be
seen by significant improvements in the MR.
Other Language Models: Using RoBERTa in-
stead of BERT results in similar performance im-
provements (Appendix B). However, our primary
focus is to understand the impact of implicit type
information present in pre-trained MLMs, such as
BERT, and not to compare multiple MLMs them-
selves.
Ablations: We perform ablation experiments to
compare the relative importance of type compati-
bility score ψTY PE and type regularization term.
We evaluate OKGIT with disabled type compatibil-
ity score (i.e., γ = 0 in Equation (5)) and disabled
type regularization term (i.e., λ = 0 in Equation
(6)) separately. Please note that CaRE model is
equivalent to OKGIT with γ = 0 and λ = 0. The
results of this experiment are shown in Figure 2.
We find that while type compatibility score gives
more performance gain (11%-12% gain in MRR)
than type regularization (7%-11% gain in MRR),

Dataset CaRE OKGIT

ReVerb20KF 0.23 0.30
ReVerb20K 0.35 0.36
ReVerb45KF 0.22 0.31
ReVerb45K 0.34 0.35

Table 5: Results of type evaluation in CaRE and
OKGIT predictions. We find that OKGIT performs bet-
ter than CaRE in all datasets in terms of F1-score. Also,
the results are statistically significant for all the datasets
(Section 6.2).

the combined model achieves the best performance
(12%-18% gain in MRR). It suggests that both the
components are important. Please refer to the Ap-
pendices A, B, C for more ablation experiments.

6.2 Type Compatibility in Predicted NPs
As noted in (Chen et al., 2020), BERT vectors
contain NP type information3. OKGIT utilizes
this type information for improving OpenKG link
prediction. In this section, we evaluate whether
OKGIT improves upon CaRE in predicting type
compatible NPs. For such an evaluation, we require
type annotations for the NPs in the OpenKGs. How-
ever, OpenKGs do not have an underlying ontology
or explicit gold NP type annotations, making a di-
rect evaluation impossible. Therefore, we employ a
pre-trained entity typing model UFET (Choi et al.,
2018). Given a sentence and an entity mention, the
entity typing model predicts the mentioned entity’s
types. Using this model, we obtain types for true
as well as predicted NPs by CaRE and OKGIT and
use it for the evaluation. Please note that this evalu-
ation is limited to the coverage and quality of the
UFET model.
Evaluation Protocol: The type vocabulary in
UFET model contains 10, 331 types includ-
ing 9 general, 121 fine-grained, and 10, 201
ultra-fine types. The model takes a sentence
(wh1 , . . . , w

h
kh
, wr1, . . . , w

r
kr
, wt1, . . . , w

t
kt

) formed
from a triple (h, r, t) along with an entity mention
(either t or h) as inputs and outputs a distribution
over types. We use the top five predicted types for
our experiments4. For a triple (h, r, t), we consider
the types predicted for the true tail NP t as true
types Γ(t). Let t̂CaRE and t̂OKGIT be the top pre-
dicted tail NP by CaRE and OKGIT for the (h, r)
pair. Then the types Γ(t̂CaRE) predicted for t̂CaRE

3We also verify this using Freebase, an ontological KG.
Please refer to the Appendix G for more details.

4We observe similar behaviour with top one and three
types.

2553

Figure 3: t-SNE projections of tail NP embeddings (left) and type vectors (right) extracted by the Type Projector
from tail NP embeddings (Section 4.2) in the ReVerb20K dataset. We find that the Type Projector is able to
extract informative type vectors from the tail embeddings. This is evident from the fact that the tail embeddings
corresponding to person, location, and dates were inter-mixed in the left plot, while they have been separated into
type specific clusters in the right plot. Please see Section 6.3 for details.

in the triple (h, r, t̂CaRE) is used as predicted types
for CaRE. Similarly the types Γ(t̂OKGIT) pre-
dicted for t̂OKGIT in the triple (h, r, t̂OKGIT) are
used as predicted types for OKGIT. For evaluation,
we calculate the mean F1-score as follows 5

F1 =
2

ntest

ntest∑
i=1

|Γ(ti) ∩ Γ(t̂i)|
|Γ(t̂i)|+ |Γ(ti)|

.

Here, |Γ(t)| denotes the number of types present
in Γ(t) and t̂ represents t̂CaRE or t̂OKGIT . We can
obtain the F1-scores for head NP similarly. We
evaluate the mean F1-scores across head and tail
NP prediction tasks on the test data and compare
CaRE with OKGIT.

As we can see from the results in Table 5,
OKGIT performs better than CaRE, suggesting
that OKGIT generates more type compatible NPs
than CaRE in the link prediction task. OKGIT
achieves higher gains in the single-token datasets
(i.e., ReVerb20KF and ReVerb45KF) than multi-
token dataset (i.e., ReVerb20K and ReVerb45K).
Upon investigation, we found that the types ob-
tained using the entity typing model (true as well
as predicted) for the multi-tokens datasets often
contain common noisy types, leading to the small
difference between CaRE and OKGIT. Following
Dror et al. (2018), we also check the results for sta-

5Since we use a fixed number of types for ground truth
and predictions, precision, recall, and F1-score have the same
values. Therefore, we only report the F1-score.

tistical significance using Permutation, Wilcoxon,
and t-test with α = 0.05, and found it to be signifi-
cant for all the datasets.

6.3 Effectiveness of Type Projector

To better understand the effect of type projection,
we visualize the vectors in NP-space from CaRE
and Type-space (i.e., after type projection) from
OKGIT. For this experiment, we randomly select
5 NPs from 3 categories, namely Person, Location
and Year. More details about this selection process
can be found in the Appendix E. We project the
NP vectors (i.e., t) corresponding to these NPs to a
2-dimensional NP-space using t-SNE (Maaten and
Hinton, 2008)6. Similarly, we also project the cor-
responding type vectors (i.e., τ) to 2-dimensional
Type-space. We plot the resulting vectors, color
and shape coded by their respective categories, in
Figure 3.

We can see that the vectors from different cate-
gories in the NP-space are mixed. However, after
the type projection, the vectors in the Type-space
are clustered together based on their categories.

6.4 Qualitative Evaluations

In this section, we present some examples of pre-
dictions made by CaRE and OKGIT methods. The
result is shown in Table 6. As we see in Triple-1,
both CaRE and OKGIT predict the correct NP (i.e.,

6We run t-SNE for 2000 iterations with 15 perplexity.

2554

Triples CaRE OKGIT

1.
(bach,
moved to,
?)

leipzig
mobile
vladimir h.
horowitz
yo yo

leipzig
vienna
stockholm
sweden
turin

2.
(clinton,
lead by,
?)

purchase
sale
video
movie
discount

1500
260
80
99
hire

Table 6: Few example predictions made by CaRE and
OKGIT models. We observe that the OKGIT predic-
tions are more type compatible with the query. Please
refer to Section 6.4 for more details.

leipzig) on top. However, more predictions from
OKGIT are type compatible (i.e., all are locations)
to the input query. On the other hand, CaRE pre-
dictions have mixed types (i.e., location, person,
etc.). Also, CaRE makes an incorrect prediction,
vladimir horowitz, possibly due to the presence of
a training triple (vladimir horowitz, had a great
affinity for, bach).

We see similar patterns in Triple-2, where the
correct tail NP should be of type number indicating
the count of votes. OKGIT is able to predict num-
bers in top predictions for Triple-2, while CaRE
has mixed types in top predictions.

7 Conclusion

The task of link prediction for Open Knowledge
Graphs (OpenKG) has been a relatively under-
explored research area. Previous work on OpenKG
embeddings has primarily focussed on improving
or incorporating NP canonicalization information.
While there are few methods for OpenKG link
prediction, they often predict noun phrases with
types incompatible with the query noun and re-
lation phrases. Therefore, we use implicit type
information from BERT to improve OpenKG link
prediction and propose OKGIT. With the help of
novel type compatibility score and type regulariza-
tion term, OKGIT achieves significant performance
improvement on the link prediction task across mul-
tiple datasets. We also find that OKGIT produces
more type compatible predictions than CaRE, eval-
uated using an external entity typing model.

Acknowledgments

We thank the anonymous reviewers for their con-
structive comments. This work is supported by the
Ministry of Human Resource Development (Gov-
ernment of India).

Broader Impact

OKGIT is the first attempt towards incorporating
implicit type information in OpenKG link predic-
tion without human intervention. It will greatly
benefit densification and applications of OpenKGs
where no underlying ontologies are available.

However, OKGIT predictions depend on vari-
ous datasets, i.e., the corpus used for training the
masked language model (e.g., BERT) and the cor-
pus from which the OpenKG triples were extracted.
A potential, possibly undesirable, bias may be intro-
duced in the predictions by manipulating these cor-
pora or adding a large number of malicious triples
in the OpenKG.

We have tested OKGIT in English datasets.
While the overall model architecture is independent
of the language, the model’s effectiveness might
vary depending upon the quality of the masked
language model, and it needs to be tested.

References
Michele Banko, Michael J. Cafarella, Stephen Soder-

land, Matt Broadhead, and Oren Etzioni. 2007.
Open information extraction from the web. In IJ-
CAI, IJCAI’07, page 2670–2676, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A col-
laboratively created graph database for structuring
human knowledge. In ACM SIGMOD, pages 1247–
1250. AcM.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Neural Information Processing
Systems (NeurIPS), pages 1–9.

Samuel Broscheit, Kiril Gashteovski, Yanjie Wang, and
Rainer Gemulla. 2020. Can we predict new facts
with open knowledge graph embeddings? a bench-
mark for open link prediction. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2296–2308, Online. As-
sociation for Computational Linguistics.

Shuang Chen, Jinpeng Wang, Feng Jiang, and Chin-
Yew Lin. 2020. Improving entity linking by model-
ing latent entity type information. In Proceedings of

https://doi.org/10.18653/v1/2020.acl-main.209
https://doi.org/10.18653/v1/2020.acl-main.209
https://doi.org/10.18653/v1/2020.acl-main.209

2555

the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 7529–7537.

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle-
moyer. 2018. Ultra-fine entity typing. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 87–96, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Tim Dettmers, Minervini Pasquale, Stenetorp Pon-
tus, and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In Proceedings of
the 32th AAAI Conference on Artificial Intelligence,
pages 1811–1818.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis, Min-
nesota. ACL.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Re-
ichart. 2018. The hitchhiker’s guide to testing sta-
tistical significance in natural language processing.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1383–1392. Association for
Computational Linguistics.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,
pages 1535–1545, Edinburgh, Scotland, UK. Associ-
ation for Computational Linguistics.

Swapnil Gupta, Sreyash Kenkre, and Partha Talukdar.
2019. CaRe: Open knowledge graph embeddings.
In EMNLP-IJCNLP, pages 378–388, Hong Kong,
China. ACL.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes:
The 90% solution. In NAACL-HLT, Companion Vol-
ume: Short Papers, pages 57–60, New York City,
USA. ACL.

Zhipeng Huang, Bogdan Cautis, Reynold Cheng, and
Yudian Zheng. 2016. Kb-enabled query recommen-
dation for long-tail queries. In CIKM, CIKM ’16,
pages 2107–2112, New York, NY, USA. ACM.

Prachi Jain, Pankaj Kumar, Mausam, and Soumen
Chakrabarti. 2018. Type-sensitive knowledge base
inference without explicit type supervision. In ACL
(Volume 2: Short Papers), pages 75–80, Melbourne,
Australia. ACL.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving pre-training by representing
and predicting spans. Transactions of the Associa-
tion for Computational Linguistics, 8:64–77.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. JMLR, 9(Nov):2579–
2605.

Khai Mai, Thai-Hoang Pham, Minh Trung Nguyen,
Tuan Duc Nguyen, Danushka Bollegala, Ryohei
Sasano, and Satoshi Sekine. 2018. An empirical
study on fine-grained named entity recognition. In
COLING, pages 711–722, Santa Fe, New Mexico,
USA. ACL.

Mausam Mausam. 2016. Open information extraction
systems and downstream applications. In Proceed-
ings of the twenty-fifth international joint conference
on artificial intelligence, pages 4074–4077.

Madhav Nimishakavi, Uday Singh Saini, and Partha
Talukdar. 2016. Relation schema induction using
tensor factorization with side information. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 414–
423, Austin, Texas. Association for Computational
Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In EMNLP-IJCNLP, pages 2463–2473,
Hong Kong, China. ACL.

Shikhar Vashishth, Prince Jain, and Partha P. Talukdar.
2018. CESI: canonicalizing open knowledge bases
using embeddings and side information. In WWW
2018, Lyon, France, April 23-27, 2018, pages 1317–
1327.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, NeurIPS, pages 5998–6008. Curran As-
sociates, Inc.

Quan Wang, Pingping Huang, Haifeng Wang, Song-
tai Dai, Wenbin Jiang, Jing Liu, Yajuan Lyu, Yong
Zhu, and Hua Wu. 2019. COKE: Contextual-
ized Knowledge Graph Embedding. arXiv preprint
arXiv:1911.02168.

Ruobing Xie, Zhiyuan Liu, and Maosong Sun. 2016.
Representation learning of knowledge graphs with
hierarchical types. In IJCAI, IJCAI’16, page
2965–2971. AAAI Press.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
KG-BERT: BERT for Knowledge Graph Comple-
tion. ArXiv, abs/1909.03193.

Xuchen Yao and Benjamin Van Durme. 2014. Infor-
mation extraction over structured data: Question an-
swering with Freebase. In ACL (Volume 1: Long Pa-
pers), pages 956–966, Baltimore, Maryland. ACL.

https://doi.org/10.18653/v1/P18-1009
https://arxiv.org/abs/1707.01476
https://arxiv.org/abs/1707.01476
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://aclweb.org/anthology/P18-1128
http://aclweb.org/anthology/P18-1128
https://www.aclweb.org/anthology/D11-1142
https://www.aclweb.org/anthology/D11-1142
https://doi.org/10.18653/v1/D19-1036
https://www.aclweb.org/anthology/N06-2015
https://www.aclweb.org/anthology/N06-2015
https://doi.org/10.1145/2983323.2983650
https://doi.org/10.1145/2983323.2983650
https://doi.org/10.18653/v1/P18-2013
https://doi.org/10.18653/v1/P18-2013
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://www.aclweb.org/anthology/C18-1060
https://www.aclweb.org/anthology/C18-1060
https://doi.org/10.18653/v1/D16-1040
https://doi.org/10.18653/v1/D16-1040
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.1145/3178876.3186030
https://doi.org/10.1145/3178876.3186030
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.3115/v1/P14-1090
https://doi.org/10.3115/v1/P14-1090
https://doi.org/10.3115/v1/P14-1090

2556

Appendices

A BERT Initialization vs Type Projectors

Here, we demonstrate the importance of type pro-
jectors by comparing OKGIT with multiple BERT-
augmented versions of CaRE. Specifically, we ini-
tialize the phrase and word embeddings in CaRE
with a pre-trained BERT model. The phrase (word)
is passed as input to BERT and the output corre-
sponding to the [CLS] token is then used for initial-
izing phrase (word) embedding for CaRE model.
This modified CaRE model is trained similar to the
base CaRE model. Based on different initialization
methods, we experiment with following baselines.
CaRE [BERT NP]: NP embeddings are initialized
using BERT and the rest of the model is same as
CaRE. This model uses 768 (for BERT-base) or
1024 (for BERT-large) dimensional vectors.
CaRE [BERT NP+PROJ]: Since CaRE [BERT
NP] uses higher dimensional vectors (768 or 1024)
compared to other methods (300), the comparison
may not be fair. To address this issue, we project
BERT embeddings to 300 dimension. The projec-
tion is trained with the rest of the model.
CaRE [BERT NP+RP]: We initialize NP embed-
ings as well as the word embeddings in RP encoder
using BERT embeddings. This method also uses
768 or 1024 dimensional vectors7.

In all the methods, including OKGIT, we never
fine-tune BERT, as our goal is to evaluate the type
information already present in pre-trained BERT
model. We experiment with both, BERT-base and
BERT-large, and report the best performing model.

As we can see from the results in Table 7,
OKGIT outperforms these baselines. Although
BERT initialization improves the performance of
CaRE model, the usage of explicit type-score and
type regularization leads to significant performance
improvements, suggesting their importance.

B Replacing BERT with other operations

In this section, we evaluate whether BERT module
in OKGIT can be replaced by simple operations
such as vector addition and concatenation. Specifi-
cally, we modify tB in Equation (3) by replacing
BERT with these operations leading to the follow-
ing variants of OKGIT.
OKGIT-C: BERT is replaced by concatenation of

7we also tried using pre-trained BERT as RP encoder in
CaRE, however, it performed poorly due to fixed RP encoder.

head NP vector h and relation phrase vector r

tB = [h; r].

OKGIT-A: BERT is replaced by vector addition

tB = h + r.

OKGIT-R: We also experiment with another
masked language model RoBERTa in place of
BERT.

tB = RoBERTa(h, r,MASK).

For this experiment, we use the ReVerb20KF
and ReVerb45KF datasets as representatives. We
perform grid-search with similar hyper-parameters
as in Section 5 of the main paper and select the best
model based on the MRR on the validation split.
The results are reported in Table 8.

As we can see from the results, the OKGIT-
C and OKGIT-A perform very similar to CaRE
on both datasets. This suggests that the perfor-
mance gains for OKGIT come from the BERT mod-
ule. This observation is further reinforced because
OKGIT-R results in similar improvements com-
pared to CaRE as OKGIT. However, in all cases,
we find that OKGIT with BERT outperforms other
model variants.

C CaRE with Entity Typing

Entity typing is the task of predicting explicit types
of an entity given a sentence and its mention. As
we are interested in improving type compatibility
of predictions in the link prediction task, we can
also incorporate the output from an entity typing
model. In this section, we explore this setting by
replacing the BERT module in OKGIT with an en-
tity typing model UFET from (Choi et al., 2018).
Specifically, we replace the vector tB in Equation
(3) with the output of UFET representing the pre-
dicted probability distribution over types.
OKGIT(UFET) Model: The UFET model takes
a sentence and an entity mention as input and pro-
duces a distribution over explicit set of types. In our
case, the sentence is formed by concatenating the
subject NP, relation phrase, and object NP, while
the object NP is used as mention. The output distri-
bution from UFET is used as tB in our model. We
call this version of the model as OKGIT(UFET)
and compare it CaRE and OKGIT.

We run a grid-search for finding the best hyper-
parameter similar to Section 5 and report the results

2557

ReVerb20K ReVerb45K

Model MRR(%)↑ MR↓ Hits(%)↑ MRR(%)↑ MR↓ Hits(%)↑

@1 @3 @10 @1 @3 @10
CaRE 30.6 851.1 24.4 33.1 41.7 32.0 1276.8 25.3 35.0 44.6
CaRE [BERT-L NP] 31.6 837.0 24.8 35.0 44.2 31.2 925.5 24.2 34.4 44.3
CaRE [BERT NP+PROJ]§ 27.4 950.2 21.9 29.2 38.0 30.7 952.8 23.0 34.4 45.5
CaRE [BERT-L NP+RP] 30.9 862.4 24.6 33.5 42.6 32.8 1015.6 25.9 35.9 45.6
OKGIT [Our model] 35.9 527.1 28.2 39.4 49.9 33.2 773.9 26.1 36.3 46.4

ReVerb20KF ReVerb45KF

Model MRR(%)↑ MR↓ Hits(%)↑ MRR(%)↑ MR↓ Hits(%)↑

@1 @3 @10 @1 @3 @10
CaRE 29.3 308.3 22.1 31.6 43.2 26.6 692.7 20.1 28.8 39.1
CaRE [BERT-B NP] 31.8 207.6 24.2 34.8 46.2 24.9 557.3 17.8 27.6 38.3
CaRE [BERT-L NP+PROJ] 27.6 258.6 21.0 29.1 40.7 24.7 600.5 17.4 27.4 39.2
CaRE [BERT-L NP+RP] 30.1 289.3 22.7 32.8 43.3 26.8 562.5 19.8 29.7 39.8
OKGIT [Our model] 34.6 214.7 26.5 38.0 50.2 29.7 500.2 22.5 32.4 43.3

Table 7: Results of the link prediction task. Here ↑ indicates higher values are better while ↓ indicates lower values
are better. We can see that the OKGIT model outperforms the baseline models on all the datasets (Appendix A).
Here, BERT-B and BERT-L denote BERT-base and BERT-large respectively. §For NP+PROJ models, BERT-large
performs best for ReVerb20K, while BERT-base performs best for ReVerb45K.

ReVerb20KF ReVerb45KF

Model MRR(%)↑ MR↓ Hits(%)↑ MRR(%)↑ MR↓ Hits(%)↑

@1 @3 @10 @1 @3 @10
CaRE (Gupta et al., 2019) 29.3 308.3 22.1 31.6 43.2 26.6 692.7 20.1 28.8 39.1
OKGIT-C [tB = [h; r]] 30.0 309.3 22.9 32.4 43.8 27.1 666.5 20.2 29.8 39.9
OKGIT-A [tB = h + r] 30.4 331.7 23.5 32.9 43.6 27.1 660.5 19.9 30.6 40.2
OKGIT-R [RoBERTa] 32.7 221.0 25.3 35.1 46.5 29.0 596.7 21.8 32.0 43.0
OKGIT [Our model] 34.6 214.7 26.5 38.0 50.2 29.7 500.2 22.5 32.4 43.3

Table 8: Results of the ablation experiments. We replace the BERT module from OKGIT with simple operations
such as vector addition (OKGIT-A) and vector concatenation (OKGIT-C). We also use RoBERTa in place of
BERT(OKGIT-R). As we can see, replacing BERT with simple operations result in performance similar to CaRE.
However, we do see better gains with RoBERTa, which performs better than CaRE and similar to OKGIT for
ReVerb45KF. For all datasets, the OKGIT model outperforms other variants (Appendix B).

ReVerb20KF ReVerb45KF

Model MRR(%)↑ MR↓ Hits(%)↑ MRR(%)↑ MR↓ Hits(%)↑

@1 @3 @10 @1 @3 @10
CaRE 29.3 308.3 22.1 31.6 43.2 26.6 692.7 20.1 28.8 39.1
OKGIT (UFET) 8.8 1208.2 6.9 9.6 11.0 4.9 1156.8 1.5 4.0 11.5
OKGIT [Our model] 34.6 214.7 26.5 38.0 50.2 29.7 500.2 22.5 32.4 43.3

Table 9: Comparison of OKGIT with OKGIT(UFET). We can see that including UFET model in the system hurts
the performance of the model (Appendix C).

on ReVerb20KF and ReVerb45KF datasets. The
results are presented in the Table 9. As we can see
from the results, OKGIT(UFET) performs poorly,
even when compared to CaRE. It suggests that
explicit type vectors from UFET model does not
help in the link prediction task.

D BERT as Link Prediction Model

As mentioned in Section 4.2, tB from Equation
(3) can be used for predicting tail NPs by finding

nearest neighbors in BERT vocabulary. However,
this approach has a limitation. This model can only
predict NPs that are single token and present in
BERT vocabulary, restricting its applicability.

This limitation, however, is not valid for OKGIT.
In OKGIT, the vector tB is used for computing
tail type compatibility score, instead of predicting
tail NPs. Therefore, it is not restricted to BERT
vocabulary or single-token NPs. As shown in Ta-
ble 4, OKGIT is equally effective for single-token

2558

ReVerb20K ReVerb45K

Model MRR(%)↑ MR↓ Hits(%)↑ MRR(%)↑ MR↓ Hits(%)↑

@1 @3 @10 @1 @3 @10
CaRE (Gupta et al., 2019) 30.7 879.2 24.4 33.5 41.7 32.9 1325.1 26.1 36.2 45.4
OKGIT [Our model] 34.3 609.4 27.0 37.1 47.4 34.1 820.2 26.7 37.5 47.5

ReVerb20KF ReVerb45KF

Model MRR(%)↑ MR↓ Hits(%)↑ MRR(%)↑ MR↓ Hits(%)↑

@1 @3 @10 @1 @3 @10
CaRE (Gupta et al., 2019) 28.0 326.0 21.2 30.5 41.3 28.0 683.8 21.0 31.4 41.3
OKGIT [Our model] 31.7 258.1 24.2 34.0 46.3 31.2 483.3 23.8 34.4 45.4

Table 10: Results of link prediction task on the validation split. We can see that the OKGIT model outperforms
the baseline models on all the datasets (Appendix F).

datasets (e.g., ReVerb20KF and ReVerb45KF) and
multi-token datasets (e.g., ReVerb20K and Re-
Verb45K).

E Selection of NPs for t-SNE

The OpenKGs do not have type annotations for
the NPs. Therefore, we manually annotated a set
of NPs and visualized a random subset. For this
process, we first list all the NPs and shuffle them.
Then we scan this list and note the first fifteen
person names, locations, and years. Later, we select
five NPs from each of these categories randomly
and use them for the evaluation.

F Link Prediction Performance on
Validation Split

The performance of CaRE and OKGIT on valida-
tion data on the link prediction task can be found
in Table 10. These performance corresponds to the
respective models which were used to report results
in Table 4 of the main paper.

G Type Information in BERT
Predictions

Our proposed OKGIT model is based on the hy-
pothesis that BERT vectors (i.e., tB in Equation (3)
in Section 4.2) contain implicit type information.
In this section, we evaluate this hypothesis that
BERT vectors contain type information. It should
be noted that evaluating OKGIT model for predict-
ing NP types is not the goal here. We are inter-
ested in understanding whether pre-trained BERT
vectors have sufficient type information, measured
with respect to some existing anchors.
Evaluation Method: For this experiment, we use
Freebase (Bollacker et al., 2008) which contains

explicit gold type information for entities. Specifi-
cally, we use FB15K dataset (Bordes et al., 2013).
We use the data from (Yao et al., 2019) for convert-
ing symbolic names in FB15k to textual descrip-
tions. We only consider the subset of triples in
FB15k which has single token in the tail node as
BERT can only predict single token NPs.8 This re-
sults in nT = 95, 782 triples. For type information,
we use the data from (Xie et al., 2016). It contains
61 primary types (e.g., /award). Please note that
each node in FB15k can have multiple types. For
a triple (h, r, t), we consider the types associated
with the true tail NP t as true types Γ(t). We then
pass tokenized head NP and RP to BERT and find
the top prediction t̂ = BERT(h, r,MASK) for tail
position. The set of types associated with the pre-
dicted NP t̂, denoted by Γ(t̂), is then used as the
predicted types. For evaluation, we calculate the
following metrics

Precision =
1

nT

nT∑
i=1

|Γ(ti) ∩ Γ(t̂i)|
|Γ(t̂i)|

,

Recall =
1

nT

nT∑
i=1

|Γ(ti) ∩ Γ(t̂i)|
|Γ(ti)|

, and

F1 =
2

nT

nT∑
i=1

|Γ(ti) ∩ Γ(t̂i)|
|Γ(t̂i)|+ |Γ(ti)|

.

Here, |Γ(t)| and |Γ(t̂)| denotes the number of
types present in Γ(t) and Γ(t̂) respectively. 9 For
comparison, we use the following baseline methods
to assign types to a given (h, r, t).

8Please note that this limitation is only valid for BERT, not
for OKGIT.

9Please note that, since we have gold type annotations
available for Freebase, the number of true and predicted types
need not be the same. Therefore, we evaluate precision and
recall along with F1-scores.

2559

Model Precision Recall F1

Random 0.13 0.10 0.10
MFT 0.45 0.30 0.31
BERT 0.44 0.40 0.36
Human 0.87 0.18 0.27

Table 11: Results of the experiment to test whether
BERT embeddings are rich with type information. As
we can see, BERT outperforms other methods in terms
of F1 score, suggesting that it contains relevant type in-
formation. Please refer to Appendix G for more details.

Random: assign |Γ(t̂)| randomly selected types.
Most Frequent Types (MFT): assign |Γ(t̂)| most
frequent types.
Human: We also evaluate the type annotations pro-
vided by human annotators on randomly selected
100 triples. Each triple is exposed to three annota-
tors and they are asked to provide types to the tail
NP. Since most of the annotations contain one type
for each triple, we take the union of the types pro-
vided by different annotators to compensate for Re-
call. For 69% of the triples, the annotators agreed
on the same type.

To be fair with the automated baselines, we use
the same number of predicted types as BERT (i.e.,
|Γ(t̂)|). A comparison with a pre-trained explicit
entity typing methods, such as (Choi et al., 2018),
is not applicable here as their type vocabulary is dif-
ferent. As we can see from the results in Table 11,
BERT achieves best F1 score, suggesting that it
contains type information. The Recall for Human
is low since most of the annotations contained only
one type, resulting in lower F1 score.

