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Abstract

In recent years, neural paraphrase generation
based on Seq2Seq has achieved superior per-
formance, however, the generated paraphrase
still has the problem of lack of diversity. In
this paper, we focus on improving the diver-
sity between the generated paraphrase and the
original sentence, i.e., making generated para-
phrase different from the original sentence as
much as possible. We propose BTmPG (Back-
Translation guided multi-round Paraphrase
Generation), which leverages multi-round
paraphrase generation to improve diversity and
employs back-translation to preserve seman-
tic information. We evaluate BTmPG on two
benchmark datasets. Both automatic and hu-
man evaluation show BTmPG can improve the
diversity of paraphrase while preserving the se-
mantics of the original sentence.

1 Introduction

Paraphrase generation or sentence paraphrasing is
an important task in natural language processing,
and it requires rewriting a sentence while preserv-
ing its semantics. Paraphrase generation has been
widely used in many downstream tasks such as QA
systems, semantic parsing, dialogue systems and
so on.

In recent years, deep learning techniques like
sequence-to-sequence(Seq2Seq) have achieved su-
perior performance on natural language genera-
tion tasks (Zhao et al., 2010; Wubben et al., 2010).
Many paraphrase models based on Seq2Seq have
achieved inspiring results. For example, Prakash
et al. (2016) leveraged stacked residual LSTM net-
works to generate paraphrase, and Gupta et al.
(2018) proposed a deep generative framework
based on variational auto-encoder for paraphrase
generation.

Though paraphrase generation models based on
Seq2Seq have demonstrated advanced ability, the

generated paraphrase still has the problem of lack
of diversity, i.e., the output paraphrase only makes
trivial changes to the original sentence. A good
paraphrase of a sentence is one that is semantically
similar to that sentence while being (very) syntacti-
cally and/or lexically different from it (Bhagat and
Hovy, 2013). Paraphrase which is too similar to
the original sentence is much less useful in many
real applications.

In this paper, we focus on improving the diver-
sity of generated paraphrase, i.e., making generated
paraphrase different from the original sentence as
much as possible. An intuitive but uninvestigated
idea is to adopt multi-round paraphrase generation.
Concretely, we first send the original sentence into
a paraphrase generation model to generate a para-
phrase, and then we use the generated paraphrase
as the input of the model to generate a new para-
phrase. As long as we leverage a paraphrase gen-
eration model with strong diversity like variational
auto-encoder (VAE)(Kingma and Welling, 2013),
we can get the paraphrase as different as possible
from the original sentence after multi-round gener-
ation.

However, existing paraphrase models can not
ensure that the major semantics of the original
sentence can be preserved after multi-round para-
phrase generation, especially the model with strong
diversity. With the increase of paraphrasing round,
the generated sentence will be more and more dif-
ferent from the original sentence, and the seman-
tics will be gradually different from the original
sentence as well. To tackle this problem, we in-
troduce back-translation to maintain the semantics
of paraphrase. Back-translation, which translates
the generated sentence into the original sentence,
has been widely used in semi-supervised natural
language generation (Zhao et al., 2020) and data
augmentation(Li et al., 2020), and it can improve
the robustness of machine-translation system (Li
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and Specia, 2019). We assume that paraphrase with
similar semantics can be translated back to the orig-
inal sentence. So, we can leverage back-translation
to provide guidance for multi-round paraphrase
generation.

Particularly, we propose Back-Translation
guided multi-round Paraphrase Generation
(BTmPG), by combining neural paraphrase model
with back-translation to generate paraphrases in
a multi-round process. The contributions of our
work are summarized as below:

1) We propose a new multi-round paraphrase
generation method to generate diverse paraphrase
that is much different from the original sentence
and leverage back-translation to preserve the ma-
jor semantics during the multi-round paraphrase
generation. Our code is publicly available at
https://github.com/L-Zhe/BTmPG.

2) Automatic and human evaluation results
demonstrate that our method can substantially im-
prove the diversity of generated paraphrase, while
preserving the semantics during multi-round para-
phrase generation.

2 Related Work

Paraphrase generation or sentence paraphrasing
can been seen as a monolingual translation task.
Prakash et al. (2016) leveraged stacked residual
LSTM networks to generate paraphrase. Gupta
et al. (2018) found deep generative model such as
variational auto-encoder can be able to achieve bet-
ter performance in paraphrase generation. Li et al.
(2019) proposed DNPG to decompose a sentence
into sentence-level pattern and phrase-level pattern
to make neural paraphrase generation more inter-
pretable and controllable, and they found DNPG
can be adopted into unsupervised domain adapta-
tion method for paraphrase generation. Fu et al.
(2019) proposed a new paraphrase model with
latent bag of words. Wang et al. (2019) found
that adding semantics information into paraphrase
model can significantly boost performance. Sid-
dique et al. (2020) proposed an unsupervised para-
phrase model with deep reinforcement learning
framework. Liu et al. (2020) regarded paraphrase
generation as an optimization problem and pro-
posed a sophisticated objective function. All meth-
ods above focus on the generic quality of para-
phrase and do not care about the diversity of para-
phrase.

There are also some methods focusing on im-

proving the diversity of paraphrase. Gupta et al.
(2018) leveraged VAE to generate several different
paraphrases by sampling the latent space. (Kumar
et al., 2019) provided a novel formulation of the
problem in terms of monotone sub-modular func-
tion maximization to generate diverse paraphrase.
Goyal and Durrett (2020) used syntactic transfor-
mations to softly “reorder” the source sentence
and guide paraphrase model. Thompson and Post
(2020) introduced a simple paraphrase generation
algorithm which discourages the production of n-
grams that are present in the input to prevent trivial
copies or near copies. Note that the purpose of
the work (Gupta et al., 2018; An and Liu, 2019)
is different from ours, while Thompson and Post
(2020) has the same purpose with our work, i.e.,
pushing the generated paraphrase away from the
original sentence.

3 Model

In this section, we introduce the components of our
model in detail. First, we define the paraphrase
generation task and give an overview of our model.
Next, we describe the paraphrase model and the
back-translation model. Then, we show how to
use the gumble-softmax to connect the paraphrase
model with the back-translation model. Finally, we
describe the loss function and training process of
our model in detail. Figure1 shows an overview of
our model.

3.1 Notations and Overview

Our model regards paraphrase generation as a
monolingual translation task. Given a paraphrase
pair (S0, P ), which S0 is the original/source sen-
tence and P is the target paraphrase given in the
dataset.

As is shown in Figure 1, we introduce a multi-
round paraphrasing method. In the first round
generation, we send S0 into a paraphrase model
to generate a paraphrase S1. In the second round
generation, we use the S1 as the input of the model
to generate a new paraphrase S2. And so forth, in
the i-th round generation, we send Si−1 into the
paraphrase model to generate Si.

Although multi-round generation can increase
the paraphrase diversity, the semantics of para-
phrase may change during generation. We thus
introduce back-translation to tackle this problem
based on the assumption that paraphrase can be
translated back to the original sentence while the

https://github.com/L-Zhe/BTmPG
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Figure 1: An overview of BTmPG, which leverages back-translation to guide paraphrase model during training
and generates paraphrases in a multi-round process.

semantic information has not been changed. In
the first round, we calculate the loss between S1

and P to train our paraphrase model. In the i-th
round, we send its generated paraphrase Si into
a back-translation model to generate S

′
i , and we

optimize the cross-entropy loss between S
′
i and

S0. The back-translation model which translates
the paraphrase in i-th round back to the original
sentence can guide the paraphrase to preserve se-
mantics during multi-round generation.

In addition, we introduce gumble-softmax em-
bedding to tackle the problem that the model with
sampling operation between different rounds’ gen-
eration can not be optimized by SGD optimizer.

3.2 Paraphrase Model

We require sufficient diversity of paraphrase model
so that it is able to introduce enough changes in
the paraphrase of each round. The VAE (Kingma
and Welling, 2013; Rezende et al., 2014) is a deep
generative model that allows learning rich, nonlin-
ear representations for high dimensional inputs. It
can improve the diversity by sampling from latent
space. Bowman et al. (2016) proposed a new model
to apply VAE to natural language generation for the
first time. Our paraphrase model is based on con-
ditional VAE with LSTM. Transformer (Vaswani
et al., 2017) has achieved excellent performance
in many tasks. But our experiments show that it
may cause KL divergence to become 0, called pos-
terior collapse, which means a decrease of diversity.
So we do not employ Transformer as encoder and
decoder.

We define the embedding matrices of Si and
P as Eis = {e1

s, e
2
s, · · · , eLi

s } and Ep =

{e1
p, e

2
p, · · · , eMp } respectively, where eis, e

j
p ∈ Rde

are the embedding vector of the word in Si and P ,

and de is the embedding dimension.

3.2.1 Encoder
Conditional VAE contains two encoders that share
parameters: an original sentence encoder and a
paraphrase encoder. We first send Eis into original
sentence encoder to get its encoding matrix Ois ∈
Rdh×Li and vector representation his ∈ Rdh of
Si, where dh is the hidden dimension of LSTM.
Then we send Ep and his into paraphrase encoder
to get its vector representation hz . hz is passed
through two different feed-forward neural networks
with parameter Φ to produce the mean µ and the
variance σ2 of the distribution of latent space. We
can get the latent code z ∈ Rdz by sampling from
latent space and reparameterization, where dz is
the dimension of latent code.

3.2.2 Decoder
We define the embedding matrix which be sent
into decoder as Ed = {e1

d, e
2
d, · · · , eNd } ∈ Rde×N .

Then, we concatenate z with the embedding vector
eid as the input of decoder. The decoder also takes
his as input. The output of decoder is defined as
Oid ∈ Rdh×N . Then, an attention (Luong et al.,
2015) and copy mechanism (See et al., 2017) are
leveraged as follow. First, we get the attention
weight pa and attention vector Va as follow.

pa = softmax(OidO
i
s
>

)

Va = paO
i
s

(1)

Then, we leverage them to calculate the decoder
probability pd and copy probability η.

pd = softmax(Wo[O
i
d||Va] + bo)

η = σ(Wh[Oid||Va] + Ws{eid||z}Ni=1 + bη)
(2)
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where Wo,Wh,Wb,bo,bη are learnable param-
eters. || is the concatenation operation. σ is the
sigmoid activation function. The final output prob-
ability of decoder is as follow.

p = ηpd + (1− η)pa (3)

3.2.3 Loss Function of Paraphrase Model
The VAE with parameter Θ is trained by minimiz-
ing the following objective:

LPara =−KL(qΦ(z|Si, P )||p(z))

+ EqΦ(z|P )[log pΘ(P |z, Si)]
(4)

where KL stands for the KL divergence. Eq. 4
is called evidence lower bound, which provides a
lower bound of log p(P |Si; Θ).

Bowman et al. (2016) figured out that variational
inference for text generation often yields models
that ignore their latent variables, a phenomenon
called posterior collapse. This may cause the low
diversity of generated sentences. To tackle this
problem, we propose a diversity loss. We find that
the diversity of the generated sentence is affected
by its first word. For example, the first word can
determine the form of a question sentence. Unfor-
tunately, compared with the questions beginning
with “Is, May, Would”, we are more likely to col-
lect questions beginning with “What, When, How”.
This can lead to serious category imbalances when
generating the first word. So we set the penalty
coefficient of the first-word loss as follow.

Lw1 = ln

(
Nb

nw1

e

)
log p(w1|Θ) (5)

where Nb is the batch size during the training pro-
cess, nw1 is the number of sentences beginning
with w1 in this batch. e is the Euler’s number that
can make sure the penalty coefficient always no
less than 1.

3.3 Back-Translation Model
Back-translation model aims to make sure the
semantics of the generated paraphrase are the
same with the original sentence during multi-round
generation. It translates Si back to S0. Differ-
ent from paraphrase model which needs diver-
sity, back-translation model is more focused on
semantics maintaining. We employ Transformer
(Vaswani et al., 2017) with copy mechanism as
back-translation model because of its excellent per-
formance in many tasks.

The loss function of back-translation model is as
follow: 1:

Lis = CrossEntropy(BTModel(Si), S0)

Lp = CrossEntropy(BTModel(P ), S0)

LBT = Lp + λ
∑
i

Lis
(6)

where λ is a hyper-parameter. BTModel indicates
the back-translation model.

There are two parts in the loss of back-translation
model: Lis and Lp. We assume the i-th round para-
phrase can be translated back to the original sen-
tence S0 if its semantics are preserved and thus we
optimize Lis. Similarly, the paraphrase P can be
translated back to the original sentence S0 as well,
so we also leverage Lp to train back-translation
model. This can improve the generalization abil-
ity of the back-translation model, because back-
translation model tends to guide paraphrase model
to copy original sentence without changes if we do
not employ true paraphrase data to train it.

3.4 Gumble-Softmax Embedding
We employ gumble-softmax embedding to connect
each module of our model. We first define an em-
bedding operation as follow:

Embed(X) = WeX (7)

For the probability p generated by paraphrase
model, we leverage gumble-softmax(Jang et al.,
2017) to get its one-hot matrix without sampling
from multinomial distribution. Then we can get the
embedding matrix E as follow:

GS(π) = softmax((log(π)i + gi)/τ)

E = Embed (GS(p))
(8)

where π is a multinominal distribution wih k di-
mension, g1, g2, · · · , gi are i.i.d samples drawn
from Gumbel(0, 1). τ is a hyper-parameter.

There are three places in our model needing to
leverage gumble-softmax embedding. First, we
leverage it to embed the output probability of the
paraphrase model as the input of the next-round
paraphrase model. Next, gumble-softmax embed-
ding is also used to connect the back-translation
model with the paraphrase model. Figure 1 shows

1Note that we also use S0, Si and P to denote the one-hot
matrix of corresponding sentences.



1552

these two cases. Finally, it is used in the multi-
round paraphrase generation process to replace the
teacher forcing. Generally, Seq2Seq model em-
ploys teacher forcing for model training, with us-
ing ground truth to guide the generation process.
However, there is no ground truth in multi-round
paraphrase generation, it can only generate sen-
tence with a autoregressive method. We employ
gumble-softmax to replace sampling in each step
of the autoregressive process. Figure 2 shows this
process.

Ground Truth

LSTM LSTM LSTM LSTM LSTM LSTM

GS GS GS

(a)
Ground Truth

LSTM LSTM LSTM LSTM LSTM LSTM

GS GS GS

(b)

Figure 2: Figure (a) shows the decoder with teacher
forcing in the first round generation. Figure (b) shows
the decoder with autoregression in other-round genera-
tion.

3.5 Loss Function

We train paraphrase model together with back-
translation model. The total loss of our model is as
follow:

L = Lpara + LBT (9)

Although we define a multi-round paraphrase
model, we only train the first two rounds. Because
we find that training too many rounds requires
large computing resources, but can not improve
the model performance significantly. During infer-
ence, we can generate paraphrase more than two
rounds.

4 Experiment

4.1 Datasets

We evaluate our BTmPG model on two benchmark
datasets:

MSCOCO2 (Lin et al., 2014) dataset contains
human annotated captions of over 120k images.
Each image contains five captions from five dif-
ferent annotators. This dataset has been widely
used in previous works (Prakash et al., 2016; Gupta
et al., 2018; Cao and Wan, 2020). We sample the
MSCOCO according to Prakash et al. (2016).

2https://cocodataset.org/

Quora3 dataset is a question paraphrase dataset.
It contains over 400k question pairs. Each pair
marked with a binary value indicates whether the
questions in the pair are truly a duplicate of each
other. So we select all such question pairs with
binary value 1 as paraphrase dataset. There are
about 150k question pairs in total. We randomly
divide the training, validation and the test set.

Table 1 provides statistics of these two bench-
mark datasets.

Dataset Train Set Valid Set Test Set
MSCOCO 206,852 3,000 3,000

Quora 129,263 3,000 3,000

Table 1: Statistic for datasets: the sizes of training, val-
idation and test set.

4.2 Evaluation Metrics

We use five widely-used metrics to evaluate
paraphrases: BLEU4, self-BLEU, self-TER,
BERTScore and p-BLEU.

BLEU4 is widely used in generation tasks. It
can measure how well the sentences generated by
our model can match the references. Notice that
some works also calculate the ROUGE(Lin, 2004)
or METEOR, but we think the role of these two
metrics overlaps with BLEU4, as they all calculate
the overlap degree between outputs and references.
Therefore we only calculate BLEU4 to evaluate the
match degree between outputs and references.

We evaluate the difference between the output
sentence and the original sentence with two metrics.
One of them is self-BLEU which is the BLEU4
score between the output sentence and the original
sentence. The lower the value of self-BLEU, the
more difference between output sentences and orig-
inal sentences. Another is self-TER4. TER(Zaidan
and Callison-Burch, 2010) is used to evaluate the
edit distance between two sentences. Self-TER is
calculated as the TER between the output sentence
and the original sentence.

BERTScore 5 is proposed by Zhang et al. (2020)
to evaluate the semantic similarity between the out-
put sentence and the original sentence. BERTScore

3https://www.kaggle.com/c/
quora-question-pairs/data?select=train.
csv.zip

4We use the tool at https://github.com/
jhclark/multeval.

5The tool of BERTScore is available at https://
github.com/Tiiiger/bert_score

https://cocodataset.org/
https://www.kaggle.com/c/quora-question-pairs/data?select=train.csv.zip
https://www.kaggle.com/c/quora-question-pairs/data?select=train.csv.zip
https://www.kaggle.com/c/quora-question-pairs/data?select=train.csv.zip
https://github.com/jhclark/multeval
https://github.com/jhclark/multeval
https://github.com/Tiiiger/bert_score
https://github.com/Tiiiger/bert_score
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has been widely leveraged to measure semantic pre-
serving in the paraphrase generation task (Cao and
Wan, 2020). However, there may be some prob-
lems for BERTScore on our task due to the low
score for reference. This is because BERTScore is
not perfect in measuring semantic relevance. But
as far as we know, there is no better score to evalu-
ate semantic preserving, so we report BERTScore
as a reference for semantic preserving. More evalu-
ation about semantic relevance is shown in human
evaluation.

We leverage p-BLEU (Cao and Wan, 2020) to
evaluate the difference between outputs in differ-
ent rounds. Concretely, for outputs in k rounds
{y1, y2, · · · , yk}, the p-BLEU can be calculated as
follow.

p-BLEU =

∑
i

∑
j 6=i BLEU4(yi, yj)

k × (k − 1)
(10)

The lower p-BLEU means higher diversity be-
tween outputs in different rounds.

Notice that, BLEU4 may not suitable for our
task , because we focus on the diversity of para-
phrase. BLEU4 can only measure the match degree
between outputs and references. However, a sen-
tence usually has many more reference paraphrases,
while the target given in the dataset is only one ref-
erence. So we also perform human evaluation to
evaluate the semantic relevance, readability and
diversity of generated paraphrases.

4.3 Baseline
As our model focuses on the diversity of para-
phrase, we mainly compare our model with VAE-
SVG-eq (Gupta et al., 2018), DiPS(Kumar et al.,
2019)6, SOW-REAP(Goyal and Durrett, 2020)7

and the decoding method proposed by Thompson
and Post (2020)8. The last method penalizes the
n-gram appearing in the original sentence to make
the paraphrase different from the original sentence
and enhance diversity. We mark this method as
N-gram Penalty. We employ two different hyper-
parameters provided by the authors: one of them
is low penalty for N-gram, and another is high

6The code is available at https://github.com/
malllabiisc/DiPS.

7The code is available at https://github.com/
tagoyal/sow-reap-paraphrasing.

8DNPG (Li et al., 2019), which controls semantics through
encoding different levels of granularity respectively, can also
enhance diversity. But the code and outputs are not provided,
so we are not able to use it as baseline.

penalty. In addition, we also compare our model
with Transformer and Transformer copy.

4.4 Training Details

For both datasets, we truncate all the sentences
longer than 20 words and maintain a vocabulary
size of 25k. During testing, we replace UNK with
the original word with the highest copy probability.

For paraphrase model, we leverage 2-layer
LSTM. We set the embedding dimension de to 300,
hidden size dh of LSTM to 512. We set the latent
code dimension dz to 128. For back-translation
model, we leverage Transformer-copy with 3-layer
encoder and decoder. We set the model size to
450, and the head number of multi-head attention
to 9. We set λ to 1, which will be discussed in
our ablation study. For the hyper-parameter τ in
gumble-softmax, we refer (Nie et al., 2019) to in-
crease the τ over iterations via an exponential pol-
icy: τ = τ

−ne/Ne
max , where ne is the current epoch

and Ne is the total number of epoch. We set τmax

to 5. We train our model for 30 epochs. We set
batch size to 50, and we select the model of the
final epoch to generate paraphrase in test set.

5 Result

5.1 Automatic Evaluation

Table 2 shows the results of automatic evaluation.
Our model substantially improves the BERTScore
in the first round of paraphrase generation and gen-
erally gets the state-of-the-art performance. The
value of self-BLEU can be significantly reduced
with the increase of the round number of paraphrase
generation while maintaining semantics.

For both datasets, the first round paraphrase
generation of our model achieves the highest
BERTScore than any other models. This is be-
cause back-translation model can provide suffi-
cient semantic guidance for paraphrase model. As
the increase of the round number, the values of
self-BLEU and self-TER are reduced significantly,
which means the paraphrase sentences our model
generated are more and more different from orig-
inal sentences. While BERTScore can still main-
tain a relatively high value. (A slight reduction of
BERTScore is acceptable as BERTScore is not per-
fect in measuring semantic relevance.) We find that
the paraphrase generated in the fifth round is good
with balancing the diversity and the relevancy.

DiPS gets the BERTScore similar to round 5
generation, while its outputs lack of diversity com-

https://github.com/malllabiisc/DiPS
https://github.com/malllabiisc/DiPS
https://github.com/tagoyal/sow-reap-paraphrasing
https://github.com/tagoyal/sow-reap-paraphrasing
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Model MSCOCO Quora
BLEU4 self-BLEU ↓ self-TER ↑ BERTScore ↑ BLEU4 self-BLEU ↓ self-TER ↑ BERTScore ↑

Reference - 8.12 78.40 46.20 - 31.46 54.92 67.37
VAE-SVG-eq 25.07 13.77 66.92 51.72 22.52 36.05 50.25 67.06
Transformer 25.81 14.92 65.74 54.47 26.22 37.99 46.42 67.53
Transformer copy 26.80 17.94 62.49 56.49 28.97 43.69 42.52 71.05
DiPS 23.52 12.23 67.31 51.40 23.38 29.24 54.41 63.09
SOW-REAP 15.31 44.22 39.42 63.68 15.36 47.62 38.98 62.21
N-gram Penalty-low 25.37 12.16 66.66 53.47 26.00 36.65 47.31 66.93
N-gram Penalty-high 23.68 0.00∗ 69.24 52.08 17.53 0.00∗ 59.30 59.20

BTmPG
(Ours)

R1 25.54 18.50 61.78 59.34 28.02 58.47 33.99 77.21
R5 23.65 12.58 68.27 54.07 23.15 37.89 48.62 65.90
R10 22.42 10.98 70.10 52.37 22.17 34.15 53.34 62.91

Table 2: Automatic evaluation results on MSCOCO and Quora test sets. In the table, R1, R5 and R10 mean the
first round, the fifth round and the tenth round of paraphrase generation.

pared with our model. SOW-REAP gets the highest
BERTScore for MSCOCO, but it does not perform
well on self-BLEU. Because SOW-REAP tends to
generate paraphrase without change, the semantics
of the paraphrase may be similar with the origi-
nal sentence but the paraphrase lacks of diversity.
N-gram Penalty with high penalty can lead self-
BLEU to 0, as it strictly does not allow to generate
those 4-grams appearing in the original sentence.
Although the N-gram Penalty method can generate
outputs totally different from original sentences, it
fails to preserve the major semantics. However, our
BTmPG model can increase diversity as much as
possible while preserving major semantics.

To explore the pairwise diversity of our model’s
outputs in different rounds, we also calculate the
p-BLEU values for VAE-SVG-eq and our model
(p-BLEU is not suitable for other models). For
VAE-SG-Eq, we generate 10 outputs by random
sampling the latent space. For our model, we select
the first 10 rounds outputs. Table 3 shows the re-
sults of p-BLEU. The p-BLEU value of our model
is much lower than VAE-SVG-eq, which means
that our model has better ability to generate multi-
ple diversified paraphrases than VAE-SVG-eq.

5.2 Ablation Study
In this section, we will explore the role of back-
translation model in preserving semantics. We set
the hyper-parameter λ from 0 to 5. A bigger λ
means back-translation provides more semantic
guidance to paraphrase model. λ = 0 means that
we remove back-translation model totally. We gen-
erate paraphrases of 20 rounds and calculate the
values of BERTScore. In order to explore the ef-
fect of leveraging other paraphrase model in the
multi-round generation framework, we also adopt
VAE-SVG-eq in a multi-round generation process

Model p-BLEU ↓
MSCOCO Quora

VAE-SVG-eq 75.52 81.50
BTmPG(Ours) 62.83 67.60

Table 3: The p-BLEU score for VAE-SVG-eq and
BTmPG

to generate paraphrases of 20 rounds on Quora, and
compute the values of BERTScore. Figure 3 shows
the trend of BERTScore with the increase of the
round number.
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Figure 3: The BERTScore of paraphrases of 20 rounds
on Quora.

Obviously, compared with VAE-SVG-eq, our
improved VAE model can preserve semantics
better. Back-translation can much improve the
lower bound of BERTScore , which means back-
translation can help to preserve the semantics dur-
ing multi-round paraphrase generation.

We also calculate the p-BLEU for the para-
phrases of the first 10 rounds for different λ. Table
4 shows the result. From the table we can know
that, although back-translation can help to preserve
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semantics, a higher λ can lead to a lack of diversity
of paraphrase. Therefore, it is wise to select an
appropriate λ according to the actual requirement.

λ 0 0.5 1 2 5
p-BLEU 63.53 66.40 67.61 74.83 88.05

Table 4: The p-BLEU of paraphrases of the first 10
rounds for different λ.

5.3 Human Evaluation
We perform human evaluation on system outputs
with respect to three aspects: relevancy, fluency
and diversity. Relevancy indicates if the semantics
of outputs and original are identical. Fluency indi-
cates the readability of output sentences. Diversity
indicates the lexical and syntactic differences be-
tween output sentences and original sentences and
thus we use two indicators for lexical diversity and
syntactic diversity respectively.

We randomly sample 100 sentences from each
test set and get a total of 200 sentences for evalua-
tion. We employ 6 graduate students to rate each
instance. We ensure every instance is rated by at
least three judges. Table 5 shows the result of hu-
man evaluation.

Model Relevancy Fluency Diversity
Lexical Syntactic

VAE-SVG-eq 3.24 3.44 3.93 4.01
Transformer 3.82 3.96 3.71 3.77
DiPS 3.62 3.50 3.64 3.70
SOW-REAP 3.59 3.34 2.79 3.88
N-gram Penalty 3.44 3.65 3.79 3.68

BTmPG
(Ours)

R1 4.12 3.92 3.65 3.85
R5 3.93 3.81 3.95 4.00
R10 3.84 3.82 4.20 4.15

Table 5: Human evaluation results.

From the table, we can see that the paraphrase
in the first round can preserve more semantics of
original sentence but lack of diversity. With the
increase of the round number, the relevancy score
decreases slightly, but the diversity scores increase
substantially. Fluency may be influenced by di-
versity, because human may feel a slight decrease
of fluency with the increase of diversity. As com-
pared with other models, our model can generate
paraphrases with high diversity, while maintain-
ing semantics and fluency well. Previous models
like SOW-REAP and DiPS can not maintain the
semantics, though they can produce paraphrases
with relatively high diversity.

5.4 Case Study

We perform case studies for better understanding
the model performance. Table 6 shows an example
of Quora, which include paraphrases of the first 15
rounds.

Cases from Quora
Original why did modi scrap rs 500 & rs 1000 notes ? and

what ’s the reason for the sudden introduction of
the 2000 rupee note ?

Reference why did goi demobilise 500 and 1000 rupee
notes ?

Round1 why did the indian government ban the 500 and
1000 rupee notes and why is it bringing to ?

Round2 what do you think about the ban on 500 and
1000 denomination notes in india ?

Round4 how do you see the pm modi ’s move of banning
500 and 1000 rupee currency notes ?

Round5 what do you think of the decision by the indian
government to demonetize 500 and 1000 rupee
notes ?

Round9 is modi ’s decision on demonetization of 500
and 1000 notes by public modi ?

Round11 was the decision by the indian government to
demonetize 500 and 1000 notes right or wrong ?

Round12 would banning notes of denominations 500 and
1000 help to curb the black money in india ?

Round13 what will be the effects of banning 500 and 1000
rupees on indian economy ?

Round14 what are the advantage of banning 500 and 1000
rupees in Indian ?

Round15 what are the pros and corns of banning 500 and
1000 rupees by indian government ?

Table 6: An example of Quora and the generated para-
phrases in multiple rounds. The word in color means
that it does not appear in the original sentence.

This case shows how does our model modify
sentences during multi-round paraphrase genera-
tion process. With the increase of round number,
the difference between the generated paraphrase
and the original sentence becomes larger, while the
paraphrase still preserves the major semantics of
the original sentence.

6 Conclusion

In this paper, we focus on improving the diversity
of generated paraphrase, i.e., making the generated
paraphrase much more different from the original
sentence. We propose a multi-round paraphrase
generation method BTmPG with the guidance of
back-translation. Both automatic and human eval-
uation results show that our method can generate
diverse paraphrase while maintaining semantics.
Ablation study proves back-translation is very help-
ful to preserve semantics. In the future, we will
explore other methods such as GAN, to improve
paraphrase diversity. We will also test our method
on more languages other than English.
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