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Abstract

We present the joint contribution of Instituto
Superior Técnico (IST) and Unbabel to the Ex-
plainable Quality Estimation (QE) shared task,
where systems were submitted to two tracks:
constrained (without word-level supervision)
and unconstrained (with word-level supervi-
sion). For the constrained track, we exper-
imented with several explainability methods
to extract the relevance of input tokens from
sentence-level QE models built on top of mul-
tilingual pre-trained transformers. Among the
different tested methods, composing explana-
tions in the form of attention weights scaled
by the norm of value vectors yielded the best
results. When word-level labels are used dur-
ing training, our best results were obtained by
using word-level predicted probabilities. We
further improve the performance of our meth-
ods on the two tracks by ensembling expla-
nation scores extracted from models trained
with different pre-trained transformers, achiev-
ing strong results for in-domain and zero-shot
language pairs.

1 Introduction

Quality estimation (QE) aims at assessing the qual-
ity of a translation system without relying on refer-
ence translations (Blatz et al., 2004; Specia et al.,
2018). This paper describes the joint contribution
of Instituto Superior Técnico (IST) and Unbabel
to the Explainable Quality Estimation shared task
(Fomicheva et al., 2021a). The goal of the shared
task is to identify translation errors without direct
word-level supervision (constrained track) or with
access to word-level labels (unconstrained track).

Recent advances in QE have led to consistent
improvements at predicting quality assessments
such as Direct Assessments (DAs, Graham et al.
2013). Traditional QE systems had to predict Hu-
man Translation Error Rate (HTER, Snover et al.
2006), yet with the advent of neural machine trans-
lation, we observed a shift from fluency into ade-

quacy errors (Martindale and Carpuat, 2018). For
that reason, DAs started getting used as the ground-
truth score for assessing the quality of transla-
tions (Specia et al., 2020). However, with DAs we
lose the ability to generate word-level supervision,
impacting the interpretability of sentence-level pre-
dictions in terms of lower granularity elements such
as word-level translation errors.

At the same time, state-of-the-art QE systems
such as OpenKiwi (Kepler et al., 2019b) and Tran-
sQuest (Ranasinghe et al., 2020b) build on top of
multilingual pre-trained models such as BERT (De-
vlin et al., 2019) and XLM-RoBERTa (Conneau
et al., 2020), which are largely responsible for the
performance boost we have observed in the last
two editions of the WMT QE shared task (Fonseca
et al., 2019; Specia et al., 2020). Due to the us-
age of such overparametrized black-box models,
this performance boost also comes at the cost of
efficiency and interpretability.

Research in explainable NLP uncovered sev-
eral strategies to interpret models’ decisions, ei-
ther in a post-hoc manner by querying a trained
model for extracting perturbation or gradient mea-
sures (Ribeiro et al., 2016; Arras et al., 2016),
or by building models that are inherently inter-
pretable (Lei et al., 2016; Chang et al., 2020).
Recent works have also put transformers under
the lens of explainability, aiming at unraveling
interpretable patterns that clarify how decisions
emerge from attention heads and across hidden
states at each layer (De Cao et al., 2020; Abnar and
Zuidema, 2020; Voita et al., 2021).

In this shared task, we experiment with several
of these methods to extract the relevance of input
tokens from sentence-level QE models built on top
of multilingual pre-trained transformers1. For the
constrained track, where models are unaware of
word-level supervision, our best results were de-

1Our code can be found at: https://github.com/
deep-spin/explainable_qe_shared_task/.

https://github.com/deep-spin/explainable_qe_shared_task/
https://github.com/deep-spin/explainable_qe_shared_task/
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rived from attention-based explanations. When we
used word-level labels during training, the best re-
sults were obtained by using word-level predicted
probabilities. Furthermore, we were able to push
the performance further by ensembling explana-
tions for both tracks.

2 Background

Quality Estimation. QE systems are usually de-
signed according to the granularity in which predic-
tions are made: word, sentence, or document-level.
The goal of word-level QE is to assign quality la-
bels (OK or BAD) to each machine-translated word,
indicating whether that word is a translation error
or not. Additionally, current systems also classify
source words to denote words in the original sen-
tence that have been mistranslated or omitted in the
target. On the other hand, sentence-level QE aims
at predicting the quality of the whole translated
sentence, either in terms of how many edit opera-
tions are required to fix it (HTER) or in terms of
human judgments (DA). Similarly, document-level
QE systems predict a single outcome (a real score
or a ranking index) for an entire document.

Transformers. The multi-head attention mech-
anism is the bedrock on which transformers are
built. They are responsible for contextualizing
the information within and across input sentences
dynamically (Vaswani et al., 2017). Concretely,
given as input a matrix Q ∈ Rn×d containing d-
dimensional representations for n queries, and ma-
trices K,V ∈ Rm×d for m keys and values, the
scaled dot-product attention at a single head is
computed as:

att(Q,K,V ) = π

(
QK>√

d

)
︸ ︷︷ ︸
Z∈Rn×m

V ∈ Rn×d. (1)

The π transformation maps rows to distributions,
with softmax being the most common choice,
π(Z)ij = softmax(zi)j . Multi-head attention is
computed by evoking Eq. 1 in parallel for each
head h:

headh(Q,K,V ) = att(QWQ
h ,KWK

h ,V W V
h ),

where WQ
h , WK

h , W V
h are learned linear trans-

formations. The output of the multi-head attention
module is the concatenation of all k heads followed
by a learnable linear transformation WO:

mh-att(Q,K,V ) = concat(head1, ..., headk)WO.

This way, heads have the capability of learning
specialized phenomena. Transformers with only
encoder-blocks, such as BERT (Devlin et al., 2019)
and XLM-RoBERTa (Conneau et al., 2020), have
only the encoder self-attention, and thus m = n.

Explainability in NLP. There is a large body of
work on the analysis and interpretation of models
in NLP. Some of these models are built on top of
attention mechanisms, which automatically learn
a weighted representation of input features. At-
tention weights provide plausible, but not always
faithful, explanations (Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019). In contrast, ratio-
nalizers with hard attention are arguably more
faithful but require stochastic networks (Lei et al.,
2016; Bastings et al., 2019), with recent works
avoiding stochasticity via sparse deterministic se-
lections (Guerreiro and Martins, 2021). Other
approaches seek local explanations by consider-
ing gradient measures (Arras et al., 2016; Bast-
ings and Filippova, 2020), or by perturbing the
input and querying the classifier in a post-hoc man-
ner (Ribeiro et al., 2016; Kim et al., 2020). Since
transformers are composed of several layers and
attention heads, many works analyze and improve
the multi-head attention mechanism directly to pro-
duce better explanations (Kobayashi et al., 2020;
Hao et al., 2021). More elaborated methods con-
sider the entire flow of information coming from
attention weights, hidden states, or gradients to in-
terpret the model’s decision (De Cao et al., 2020;
Abnar and Zuidema, 2020; Voita et al., 2021).

3 Constrained Track

The goal of the constrained track is to identify ma-
chine translation errors without explicit word-level
annotation. More precisely, it aims at performing
word-level quality estimation by casting the task
as a prediction explainability problem. In the con-
text of QE, explanations can be seen as highlights,
representing the relevance of input words w.r.t. the
model’s prediction via continuous scores. We next
describe the datasets, models, and explainability
methods that we used for this track.

3.1 Datasets

Seeking to improve the performance of our mod-
els on the zero-shot language pairs (LPs), we
used all language pairs from the MLQE-PE
dataset (Fomicheva et al., 2020) to train our models
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Figure 1: General architecture of our models for the
constrained track. L represents the number of layers.
Nsrc and Nhyp represent the number of words in the
source and hypothesis sentences, respectively. N =
Nsrc +Nhyp is the number of words after concatenating
the two sentences. D is the size of hidden vectors.

for both tracks. For RO-EN and ET-EN, we eval-
uated our models on the validation set of these
LPs. For the two zero-shot LPs, DE-ZH and RU-DE,
we used the 20 sentences made available by the
shared task and the validation sets of EN-ZH and
EN-DE to improve the robustness of the evaluation
of explanations w.r.t. the target language. We used
word-level labels to train word-level models for
the unconstrained track only. For sentence-level
models, we supervise our models using DA scores.

3.2 Sentence-level Models

Since QE is a fundamental tool in many MT
pipelines, we focus our efforts on designing and ex-
plaining QE systems with high sentence-level per-
formance. Therefore, we opted to follow the recent
trend in this area (Kepler et al., 2019b; Ranasinghe
et al., 2020a) and employed two pre-trained multi-
lingual language models as the feature extractors
for our models: XLM-RoBERTa and RemBERT.

The overall architecture of our models is shown
in Figure 1. The tokenized source s = 〈s1, ..., sN 〉
and hypothesis t = 〈t1, ..., tM 〉 sentences are con-
catenated and passed as input to the encoder, which
produces hidden state vectors H0, ...,HL for each
layer 0 ≤ ` ≤ L, where Hi ∈ R(N+M)×d. Next,
all hidden states are fed to a scalar mix module (Pe-
ters et al., 2018) that learns a weighted sum of the
hidden states of each layer of the encoder, produc-
ing a new sequence of aggregated hidden states
HL+1. We split HL+1 into source Hsrc ∈ RN×d

and hypothesis hidden states Hhyp ∈ RM×d,

which are independently passed to an average pool-
ing layer to get their sentence representations hsrc

and hhyp. We merge both representations via a
convex combination with α = 0.5 to encourage
the model to use both source and hypothesis con-
texts. Finally, we pass the combined vector to a
2-layered feed-forward module in order to get a
sentence score prediction ŷ ∈ R. Moreover, at-
tention matrices A1, ...,AL are also recovered as
a by-product of the forward propagation, where
Ai ∈ R(N+M)×(N+M). The hyperparameters used
for training can be found in §B.

XLM-RoBERTa as encoder. We set a XLM-
RoBERTa Large (XLM-R, Conneau et al. 2020) as
the encoder layer.2 XLM-R is a cross-lingual trans-
former pre-trained on massive amounts of multi-
lingual data. It consists of 24 encoder blocks with
16 attention heads each. Following (Zerva et al.,
2021) we train our complete model on DAs by
using adapters for the XLM-R encoder (Houlsby
et al., 2019; Pfeiffer et al., 2020) to adapt it to the
domain specific data of the QE task with minimal
training effort.

XLM-RoBERTa for zero-shot LPs. To im-
prove the robustness of XLM-R on out-of-domain
data, we used an XLM-RoBERTa Large model
that was trained with DA’s from the metrics shared
task.3 Next, we set it as the encoder layer, and
adapted it for predicting DAs from the MLQE cor-
pus as in (Zerva et al., 2021). Altogether, the data
from the Metrics shared task encompasses 30 lan-
guage pairs from the news domain—yet, the zero-
shot LPs are not included in this set. The hyperpa-
rameters and the training regime of this model are
the same as the previously described XLM-R. We
denote this model as XLM-R-M from here on.

RemBERT as encoder. We replace the XLM-R
by a RemBERT model as the encoder layer (Chung
et al., 2021).4 Multilingual BERT (Devlin et al.,
2019) has been shown to provide complementary
performance to XLM-based models for sentence-
level and word-level QE (Kepler et al., 2019a). We
opted to use RemBERT since it can be seen as
a larger multilingual BERT with decoupled input
and output embeddings, which helps to accelerate

2https://huggingface.co/
xlm-roberta-large

3https://huggingface.co/Unbabel/
xlm-roberta-wmt-metrics-da

4https://huggingface.co/google/rembert

https://huggingface.co/xlm-roberta-large
https://huggingface.co/xlm-roberta-large
https://huggingface.co/Unbabel/xlm-roberta-wmt-metrics-da
https://huggingface.co/Unbabel/xlm-roberta-wmt-metrics-da
https://huggingface.co/google/rembert
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ENCODER RO-EN ET-EN DE-ZH RU-DE

OpenKiwi 0.820 0.757 0.395 0.176
XLM-R 0.878 0.756 0.521 0.563
XLM-R-M 0.877 0.780 0.797 0.352
RemBERT 0.883 0.762 -0.002 0.505

Table 1: Pearson correlation of our sentence-level QE
systems by varying the model used as the encoder layer.

training. It consists of 32 encoder blocks with 18
attention heads each. Rather than aggregating lay-
ers with the scalar mix layer, we perform average
pooling over the hidden states of the last layer of
RemBERT. For training, we simply finetune the
whole model with small learning rates.

Results. Table 1 summarizes the performance of
our sentence-level models on the validation set in
terms of Pearson correlation for each language pair
evaluated in the shared task. For completeness,
we show results for the 20 sentences made avail-
able by the shared task for DE-ZH and RU-DE. We
also include OpenKiwi with a XLM-R Large as
the encoder for comparison. We note that results
for DE-ZH and RU-DE are noisy due to the small
amount of validation data available for these LPs.

3.3 Explainability Methods
Several explainability methods can be used to ex-
tract highlights from a trained model in a post-hoc
fashion. It is also possible to design a model that
is explainable by construction, such as rationaliz-
ers (Lei et al., 2016; Bastings et al., 2019). We
investigate rationalizers, attention, gradient, and
perturbation-based methods for this shared task.

Attention-based methods. Since the backbone
of our models consists of pre-trained multilingual
transformers, we studied their main component—
the multi-head attention mechanism—expecting
to find interpretability patterns that assign higher
scores to words associated with translation errors.
We extracted the following explanations from the
multi-head attention mechanism:

• Attention weights: average the attention matrix
A row-wise for all heads in all layers, amounting
to a total of 24× 16 = 384 and 32× 18 = 576
explanation vectors a ∈ RN+M for XLM-R and
RemBERT-based models, respectively.

• Cross-attention weights: by manual inspection
of attention weights, we noticed that some at-
tention heads learn plausible connections from

source-to-hypothesis and hypothesis-to-source.
Therefore, instead of computing a row-wise av-
erage of the entire attention matrix, we average
only cross-alignment rows.5

• Attention × Norm: following the findings
of Kobayashi et al. (2020), we scale attention
weights by the norm of value vectors

∥∥V W V
h

∥∥
2
.

Gradient-based methods. Explanations ex-
tracted by storing gradients computed during the
backward propagation is a standard tool used to
interpret NLP models. For this shared task, we
investigate the following gradient-based methods:6

• Gradient × Hidden States: we compute gradi-
ents w.r.t. the hidden states of each layer, and
multiply the resultant vectors by the hidden state
vectors themselves: ∇Hi ×Hi ∈ RN+M , for
0 ≤ i ≤ L+ 1.

• Gradient × Attention: the same as before, but
we use the output of the multi-head attention
module instead of the hidden states.

• Integrated Gradients: we extract integrated gra-
dient explanations w.r.t. the hidden states of each
layer. We use a zero-vector as the baseline. We
map gradients to explainability scores by normal-
izing them by their L2 norm and summing the
hidden dimensions: 1>∇Hi/ ‖∇Hi‖2.

Perturbation-based methods. As baselines, we
also extracted explanations using LIME (Ribeiro
et al., 2016) and a leave-one-out strategy, where
we replace the “erased” token by the <mask> to-
ken, which is used for the masked-language model
training of XLM-R and RemBERT.

Rationalizers. We append a differentiable binary
mask layer (Bastings et al., 2019) on top of the
XLM-R model in order to select which tokens are
passed on for an estimator for the prediction of a
sentence-level score. For each instance, we take
the model representations from the scalar-mix layer
and pass it to an encoder module, in which we sam-
ple a binary mask z ∈ [0, 1]N+M from a relaxed
Bernoulli distribution (Maddison et al., 2017; Jang
et al., 2017), and pass z � [s; t] to an estimator
module, which re-embeds the masked input and

5Note that we can get cross-attentions from XLM-R and
RemBERT by selecting only the words of the source that
attend to the hypothesis and vice-versa.

6Our implementation is based on Captum: https://
captum.ai/

https://captum.ai/
https://captum.ai/
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RO-EN ET-EN

ENCODER Source Target Source Target

OpenKiwi 0.581 0.620 0.488 0.554
XLM-R 0.610 0.644 0.503 0.559
XLM-R-M 0.636 0.667 0.464 0.530
RemBERT 0.624 0.659 0.474 0.555

DE-ZH RU-DE

ENCODER Source Target Source Target

OpenKiwi 0.271 0.184 0.243 0.029
XLM-R 0.230 0.312 0.273 0.061
XLM-R-M 0.262 0.336 0.343 0.179
RemBERT 0.173 0.211 0.247 0.201

Table 2: Source and target MCC results of our word-
level QE systems by varying the model used as the
encoder layer. The values of λ for each model are:
103, 104, 104, 104.

pass it to a linear output layer. Therefore, good
explanations z will aid the estimator in producing
good sentence-level scores. In training time, the
parameters of the encoder and the estimator are
jointly trained. In test time, we do not sample the
binary masks. Instead, we use the relaxed Bernoulli
distribution probabilities as explanations.

4 Unconstrained Track

In this track, we opted to use word-level anno-
tation by incorporating a word-level loss to our
previous models. To do this, we apply a map
from word pieces to tokens after the scalar mix
layer and pass the hidden vectors of each token
through a feed-forward layer with a sigmoid acti-
vation to predict scores ŷi ∈ [0, 1]. We weight the
word-level loss by λ and sum it with the sentence-
level loss. As baseline, we train a XLM-R Large
model using OpenKiwi with the default hyperpa-
rameters. For all word-level models, we train with
λ ∈ {103, 104, 105} and save the checkpoint with
the best performance on the validation set.

Results. Table 2 shows the results of our word-
level models on the validation set in terms of
Matthews correlation coefficient (MCC) for each
LP evaluated in the shared task. For completeness,
we include the results for the 20 available sentences
for DE-ZH and RU-DE.

5 Experimental Results

Although we can regard the extracted explanations
as errors in the translation output, an analogous
evaluation of word-level QE is not straightforward
since the standard metrics require binary labels

rather than continuous scores. Therefore, the ex-
planations are evaluated against the ground-truth
word-level labels in terms of the Area Under the
Curve (AUC), Average Precision (AP), and Recall
at Top-K (R@K) metrics only on the subset of
translations that contain errors.

Furthermore, since all of our models use sub-
word tokenization, to get explanations for an entire
word, we tried aggregating the scores of its word
pieces by taking the sum, mean, or max, and we
found that taking the sum performs better overall.

5.1 Constrained Track

Attention heads are better alone. We found
that some attention heads (mostly at upper layers)
learned to focus on words associated with BAD tags,
achieving great performance in terms of AUC and
AP on the validation set. We show in Figure 2 the
target AUC of different attention heads per layer as
a heatmap for RO-EN, with darker colors indicating
higher results.7 We can see that attention heads in
layers 18 and 19 perform better than other layers
in general, and that some attention heads solely
outperform the average of all attention heads for
all respective layers. For example, the attention
head 3 at layer 18 achieves an AUC score of 0.79,
while the average of all attention heads from layer
18 gets an AUC score of 0.74 (5 points difference).
The findings are similar for source AUC, with the
exception that attention heads at lower layers also
seem to achieve comparable, yet not better, results.
This behavior was also noted by Fomicheva et al.
(2021b), with the difference that we analyzed at-
tention heads independently rather than averaging
them at each layer. Kobayashi et al. (2020) also
arrive at similar findings but in terms of alignment
error rate in a neural machine translation context.

Attention × Norm outperforms other explain-
ers. By scaling attention probabilities by the L2
norm of value vectors, we improved the perfor-
mance further. All of our best results consist of
attention-based explainers, with the majority being
the explanations that consider the norm of value
vectors. We show the results of our best explainers
on the validation set of RO-EN in Table 3 using
XLM-R as encoder.8 When using XLM-R-M or
RemBERT as encoder the results are similar, ex-
cept that the best explainer comes from different
attention heads at different upper layers.

7We got similar findings for ET-EN.
8Results for ET-EN follow the same trend (see §C).
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Figure 2: Target AUC of different attention heads at each layer of our XLM-R model for RO-EN. The last tick on
the y-axis represents the average of all attention heads.

Source Target

EXPLAINER AUC AP R@K AUC AP R@K

Attention 0.7445 0.6353 0.5164 0.7894 0.7189 0.6054
Cross-attention 0.7514 0.6345 0.5170 0.8066 0.7378 0.6293
Attention × Norm 0.7851 0.6875 0.5701 0.8136 0.7432 0.6342
Gradient × Hidden States 0.6949 0.5629 0.4399 0.6780 0.5388 0.4044
Gradient × Attention 0.7104 0.5942 0.4913 0.7618 0.6747 0.5628
Integrated Gradients 0.6539 0.5251 0.4059 0.6560 0.5148 0.3853
LIME 0.6470 0.5160 0.3922 0.5892 0.4576 0.3300
Leave-one-out 0.6970 0.5673 0.4409 0.5921 0.4752 0.3567
Relaxed-Bernoulli Rationalizer 0.4803 0.3638 0.2483 0.5434 0.4043 0.2914

Table 3: Constrained track results for different explainability methods on the validation set of RO-EN using XLM-R
as encoder.

Overall, we observed that attention methods out-
perform gradient and perturbation methods by a
considerable margin, and gradients w.r.t. attention
outputs yield better results than gradients w.r.t. hid-
den states, indicating that the information stored in
attention heads is valuable. In Figure 3 we show the
attention map of two attention heads that perform
well in terms of source AUC and target AUC on the
validation set of RO-EN. We noted qualitatively that
attention-heads that perform well on source AUC
usually focus on cross-sentence tokens,9 whereas
attention-heads that have good results in terms of
target AUC usually focus on hypothesis tokens.

9Cross-sentence tokens are hypoehsis tokens attended by
source tokens and also source tokens attended by hypoehsis
tokens.

Lastly, our strategy of appending a bottleneck layer
acting as rationalizer did not work well, achieving
worse results than perturbation-based methods.

Figure 3: Example of two attention maps from partic-
ular heads that perform well on source AUC (left) and
target AUC (right) for RO-EN.
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Source (constrained) Target (constrained) Source (unconstrained) Target (unconstrained)

LP ENCODER AUC AP R@K AUC AP R@K AUC AP R@K AUC AP R@K

R
O

-E
N

OpenKiwi - - - - - - 0.907 0.811 0.704 0.921 0.826 0.718
XLM-R 0.785 0.687 0.570 0.814 0.743 0.634 0.914 0.825 0.722 0.928 0.851 0.764
XLM-R-M 0.753 0.661 0.548 0.769 0.693 0.593 0.913 0.826 0.724 0.926 0.851 0.761
RemBERT 0.784 0.699 0.590 0.790 0.686 0.572 0.918 0.831 0.731 0.934 0.862 0.769
Ensemble 0.807 0.720 0.607 0.842 0.772 0.662 0.927 0.844 0.744 0.942 0.874 0.786

E
T-

E
N

OpenKiwi - - - - - - 0.848 0.749 0.635 0.873 0.798 0.692
XLM-R 0.733 0.618 0.486 0.740 0.648 0.530 0.858 0.768 0.656 0.881 0.814 0.711
XLM-R-M 0.623 0.504 0.367 0.712 0.625 0.513 0.854 0.751 0.630 0.875 0.804 0.704
RemBERT 0.750 0.638 0.523 0.708 0.595 0.476 0.851 0.747 0.631 0.881 0.806 0.703
Ensemble 0.744 0.637 0.509 0.764 0.680 0.569 0.870 0.778 0.668 0.896 0.832 0.735

D
E

-Z
H

OpenKiwi - - - - - - 0.721 0.616 0.545 0.648 0.483 0.356
XLM-R 0.720 0.465 0.288 0.683 0.542 0.406 0.674 0.486 0.298 0.650 0.511 0.352
XLM-R-M 0.773 0.609 0.454 0.697 0.545 0.427 0.711 0.574 0.463 0.712 0.595 0.468
RemBERT 0.762 0.579 0.405 0.692 0.470 0.358 0.619 0.443 0.341 0.585 0.445 0.354
Ensemble 0.792 0.581 0.440 0.711 0.575 0.477 0.745 0.635 0.548 0.705 0.575 0.418

R
U

-D
E

OpenKiwi - - - - - - 0.727 0.620 0.559 0.620 0.409 0.359
XLM-R 0.719 0.400 0.316 0.822 0.500 0.335 0.729 0.604 0.485 0.623 0.369 0.282
XLM-R-M 0.743 0.529 0.425 0.838 0.532 0.369 0.740 0.645 0.545 0.640 0.470 0.447
RemBERT 0.776 0.646 0.550 0.826 0.537 0.418 0.802 0.712 0.607 0.721 0.504 0.393
Ensemble 0.804 0.604 0.459 0.855 0.628 0.514 0.799 0.716 0.616 0.719 0.521 0.439

Table 4: Constrained (left) and unconstrained (right) track results on the validation set for all LPs using the Atten-
tion × Norm explainer.

Results for all LPs. We show the results on the
validation set for all LPs in Table 4 (left) with the
best Attention× Norm explanations for each tested
encoder. We also report results of ensembled expla-
nations, which are obtained by simply averaging se-
lected Attention×Norm explanations from models
with different encoders. When comparing single
encoders for in-domain LPs, we see that explana-
tions from our XLM-R-based model achieved the
best results for source and target metrics on RO-EN,
with competitive results on ET-EN, for which expla-
nations from a RemBERT-based model ranked first
for source metrics. Despite being a simple strategy,
we usually got ∼2 more points of AUC, AP, and
R@K by averaging attention explanations. We note
that explanations from XLM-R-M and RemBERT
perform well on the 20 sentences made available by
the shared task for zero-shot LPs. Between XLM-R
and XLM-R-M, explanations from the latter lead to
better results for both DE-ZH and RU-DE, suggest-
ing that the additional data from the Metrics shared
task might help to improve the robustness for zero-
shot LPs. Ensembling explanations also leads to
higher performance for zero-shot LPs. However,
we note that results for DE-ZH and RU-DE are noisy
due to the small amount of validation data.

5.2 Unconstrained Track
In this track, we used the predicted probabilities of
BAD tags from supervised word-level QE models

Source Target

LP AUC AP R@K AUC AP R@K

RO-EN 0.856 0.727 0.621 0.881 0.783 0.678
ET-EN 0.863 0.757 0.640 0.824 0.740 0.630
DE-ZH 0.731 0.495 0.356 0.707 0.475 0.336
RU-DE 0.770 0.626 0.518 0.755 0.581 0.468

RO-EN 0.934 0.813 0.708 0.940 0.844 0.745
ET-EN 0.935 0.854 0.768 0.922 0.851 0.762
DE-ZH 0.668 0.468 0.322 0.673 0.500 0.369
RU-DE 0.848 0.709 0.593 0.806 0.633 0.515

Table 5: Official test set results for constrained (top)
and unconstrained (bottom) tracks.

as explanation scores. The results are shown in
Table 4 (right). As found in the constrained track,
XLM-R and RemBERT-based models perform bet-
ter for in-domain LPs, while XLM-R-M and Rem-
BERT lead to better results for zero-shot LPs. Con-
sistent with our findings in the constrained track,
ensembling explanations also reflects in improve-
ments in this track.

6 Official results

The official results of the shared task are shown
in Table 5 for all LPs. Our final submissions con-
sist of ensembled explanations since they proved
to perform better for all LPs in both tracks. More
specifically, we ensembled Attention × Norm ex-
plainers from the models shown in Table 4 (left) for
the constrained track; and we ensembled the pre-
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dicted probabilities of BAD tags from the models
shown in Table 4 (right) for the unconstrained track.
Overall, results for the unconstrained track are su-
perior to those obtained in the constrained track.
However, the opposite is true for DE-ZH, suggest-
ing that extracting rationales from a sentence-level
QE model is a promising weak-supervised strategy
to identify translation errors.

7 Conclusion

Final remarks. We have shown that the multi-
head mechanism—the bedrock on which transform-
ers are built—is able to learn the importance of
tokens associated with BAD tags. Furthermore,
composing explanations in the form of attention
probabilities scaled by the norm of value vectors
leads to further improvements (Kobayashi et al.,
2020). Ensembling these explanations yields the
best results overall for all tested metrics on all LPs,
including zero-shot ones.

Future work. Transformers are composed of
many parameters across a vast amount of heads
and layers. Strategies that explore how explana-
tions are formed as we move to upper layers are
promising, such as computing attention flows and
differentiable binary masks per layer (Abnar and
Zuidema, 2020; De Cao et al., 2020). Moreover,
as shown in Figure 4, we noticed that our best ex-
plainers suffer on sentences with higher quality,
likely due to the low number of translation errors
for those sentences. A simple way to circumvent
this problem is to force the explainer to “focus”
on words associated with lower scores (or to the
BAD class in a classification setting). Thus, strate-
gies such as framing the prediction of DA scores
as a classification problem or inducing class-wise
rationalizers (Chang et al., 2019) can be helpful.

This shared task focused only on the intersec-
tion between explainability and Quality Estima-
tion, yet for future work we plan to apply ex-
plainability methods to recent MT metrics such
as COMET (Rei et al., 2020a,b; Glushkova et al.,
2021) and BLEURT (Sellam et al., 2020a,b).
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A Computing infrastructure

Our infrastructure consists of 5 machines with the specifications shown in Table 6. The machines were
used interchangeably, and all experiments were executed in a single GPU. Despite having machines with
different specifications, we did not observe large differences in the execution time of our models across
distinct machines.

# GPU CPU

1 4 × Titan Xp - 12GB 16 × AMD Ryzen 1950X @ 3.40GHz - 128GB
2 4 × GTX 1080 Ti - 12GB 8 × Intel i7-9800X @ 3.80GHz - 128GB
3 3 × RTX 2080 Ti - 12GB 12 × AMD Ryzen 2920X @ 3.50GHz - 128GB
4 3 × RTX 2080 Ti - 12GB 12 × AMD Ryzen 2920X @ 3.50GHz - 128GB
5.1 4 × Quadro RTX 6000 - 24GB 12 × Intel Xeon Silver 4214 @ 2.20GHz - 256GB
5.2 4 × RTX 2080 Ti - 12GB 12 × Intel Xeon Silver 4214 @ 2.20GHz - 256GB

Table 6: Computing infrastructure.

B Training hyperparameters

The hyperparameters used for training are shown in Table 7.

HYPERPARAM. XLM-R XLM-R-M REMBERT

Feed-forward size 1024 1024 1024
Batch size 2 2 1
Optimizer Adam Adam Adam
Number of epochs 10 10 10
Early stopping patience 3 3 3
Encoder learning rate 1× 10−4 1× 10−4 3× 10−5

Feed-forward learning rate 1× 10−4 1× 10−4 1× 10−5

Gradient accumulation 4 4 8
Dropout 0.05 0.05 0.05

Table 7: Hyperparmeters used for training sentence (constrained) and word-level (unconstrained) QE systems.

C Full results for the constrained track

Following the analysis described in §5.1, we report the best results for each explainability method for
XLM-R-based models in Table 8 on the validation set of RO-EN and Table 9 on the validation set of ET-EN.
We also report the best explainers based on Attention × Norm for XLM-R-M and RemBERT-based
models. For explainability methods based on attention weights, we show two attention heads: one with
the best performance on source AUC and another with the best performance on target AUC. Besides
submitting ensembled explanations, we also made submissions with Attention × Norm heads that achieve
the top performance on the validation set of RO-EN and ET-EN.
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Source Target

# ENCODER EXPLAINER AUC AP R@K AUC AP R@K

1 XLM-R Attention - Layer 18 - Head 3 0.6555 0.4569 0.3509 0.7894 0.7189 0.6054
2 XLM-R Attention - Layer 18 - Head 0 0.7445 0.6353 0.5164 0.7462 0.6488 0.5197
3 XLM-R Cross-attention - Layer 18 - Head 3 0.7092 0.5461 0.4139 0.8066 0.7378 0.6293
4 XLM-R Cross-attention - Layer 18 - Head 0 0.7514 0.6345 0.5170 0.7374 0.6254 0.4883
5 XLM-R Attention × Norm - Layer 18 - Head 3 0.7178 0.5686 0.4372 0.8136 0.7432 0.6342
6 XLM-R Attention × Norm - Layer 19 - Head 2 0.7851 0.6875 0.5701 0.8099 0.7301 0.6153
7 XLM-R Gradient × Hidden States - Layer 15 0.6949 0.5629 0.4399 0.6780 0.5388 0.4044
8 XLM-R Gradient × Attention - Layer 17 0.7104 0.5942 0.4913 0.7618 0.6747 0.5628
9 XLM-R Integrated Gradients - Layer 15 0.6539 0.5251 0.4059 0.6560 0.5148 0.3853

10 XLM-R LIME 0.6470 0.5160 0.3922 0.5892 0.4576 0.3300
11 XLM-R Leave-one-out 0.6970 0.5673 0.4409 0.5921 0.4752 0.3567
12 XLM-R Relaxed-Bernoulli Rationalizer 0.4803 0.3638 0.2483 0.5434 0.4043 0.2914
13 XLM-R-M Attention × Norm - Layer 23 - Head 3 0.6993 0.5824 0.4571 0.7686 0.6932 0.5932
14 XLM-R-M Attention × Norm - Layer 23 - Head 1 0.7530 0.6612 0.5479 0.7612 0.6841 0.5802
15 RemBERT Attention × Norm - Layer 23 0.7824 0.6987 0.5901 0.7904 0.6865 0.5723
16 RemBERT Attention × Norm - Layer 22 - Head 5 0.7842 0.6822 0.5752 0.7167 0.5549 0.4278

1 Ensemble (5) + (6) + (15) 0.8043 0.7137 0.5970 0.8398 0.7695 0.6606
2 Ensemble (5) + (6) + (14) + (15) 0.8074 0.7203 0.6071 0.8421 0.7725 0.6624

Table 8: Full constrained track results on the validation set of RO-EN.

Source Target

# ENCODER EXPLAINER AUC AP R@K AUC AP R@K

1 XLM-R Attention - Layer 18 - Head 3 0.6406 0.5205 0.3811 0.7094 0.6210 0.5037
2 XLM-R Attention - Layer 18 - Head 0 0.6656 0.5619 0.4438 0.7055 0.6011 0.4779
3 XLM-R Cross-attention - Layer 18 - Head 3 0.6587 0.5335 0.3947 0.7270 0.6396 0.5226
4 XLM-R Cross-attention - Layer 17 - Head 13 0.7090 0.5927 0.4673 0.6788 0.5760 0.4599
5 XLM-R Attention × Norm - Layer 18 - Head 3 0.6697 0.5540 0.4228 0.7257 0.6373 0.5200
6 XLM-R Attention × Norm - Layer 19 - Head 2 0.7335 0.6181 0.4857 0.7404 0.6477 0.5303
7 XLM-R Gradient × Hidden States - Layer 14 0.6567 0.5403 0.4156 0.6041 0.4837 0.3619
8 XLM-R Gradient × Attention - Layer 17 0.6613 0.5597 0.4322 0.6891 0.5983 0.4798
9 XLM-R Integrated Gradients - Layer 15 0.6194 0.4995 0.3699 0.5705 0.4649 0.3489

10 XLM-R LIME 0.6221 0.4968 0.3606 0.5405 0.4297 0.3222
11 XLM-R Leave-one-out 0.6584 0.5375 0.4082 0.5493 0.4494 0.3412
12 XLM-R Relaxed-Bernoulli Rationalizer 0.4933 0.3794 0.2481 0.5406 0.4277 0.3211
13 XLM-R-M Attention × Norm - Layer 21 - Head 8 0.6235 0.5041 0.3670 0.7122 0.6254 0.5133
14 XLM-R-M Attention × Norm - Layer 21 - Head 9 0.5510 0.4106 0.2738 0.7068 0.6175 0.5059
15 RemBERT Attention × Norm - Layer 23 0.7465 0.6382 0.5229 0.7085 0.5954 0.4756
16 RemBERT Attention × Norm - Layer 23 - Head 8 0.7501 0.6203 0.4912 0.6758 0.5486 0.4418

1 Ensemble (5) + (6) + (15) 0.7467 0.6368 0.5113 0.7545 0.6662 0.5512
2 Ensemble (5) + (6) + (14) + (15) 0.7441 0.6366 0.5089 0.7639 0.6805 0.5688

Table 9: Full constrained track results on the validation set of ET-EN.


