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Abstract
The Winograd Schema (WS) has been pro-
posed as a test for measuring commonsense ca-
pabilities of models. Recently, pre-trained lan-
guage model-based approaches have boosted
performance on some WS benchmarks but
the source of improvement is still not clear.
This paper suggests that the apparent progress
on WS may not necessarily reflect progress
in commonsense reasoning. To support this
claim, we first show that the current evaluation
method of WS is sub-optimal and propose a
modification that uses twin sentences for eval-
uation. We also propose two new baselines
that indicate the existence of artifacts in WS
benchmarks. We then develop a method for
evaluating WS-like sentences in a zero-shot
setting to account for the commonsense rea-
soning abilities acquired during the pretrain-
ing and observe that popular language mod-
els perform randomly in this setting when us-
ing our more strict evaluation. We conclude
that the observed progress is mostly due to
the use of supervision in training WS mod-
els, which is not likely to successfully support
all the required commonsense reasoning skills
and knowledge.1

1 Introduction

The Winograd Schema (WS) (Levesque et al.,
2012) was proposed as an alternative to the Tur-
ing test, by virtue of evaluating progress on com-
monsense reasoning. The task is a multi-choice
question akin to coreference resolution. Given a
text snippet with two entities and a pronoun that
refers to one of the entities, select the entity re-
ferred to by the pronoun.2 Consider the following
example:

1. The trophy doesn’t fit into the brown suitcase
because it is too large.

1The code and evaluation are available at: https://gi
thub.com/yanaiela/winograd_square_one

2It can also be a possessive adjective, but for simplicity,
we refer these as pronouns.

Setup Example Answer

Original

twin-1
The trophy doesn’t fit into the
brown suitcase because it is too large. trophy

twin-2
The trophy doesn’t fit into the
brown suitcase because it is too small.

suitcase

Baselines
no-cands doesn’t fit into because it is too large. ?
part-sent because it is too large. ?

Zero-shot

twin-1
The trophy doesn’t fit into the brown suitcase
because the trophy is too [MASK].

large

twin-2
The trophy doesn’t fit into the brown suitcase
because the brown suitcase is too [MASK].

small

Figure 1: Examples from the Winograd Schema Chal-
lenge (top), our proposed modification to these sen-
tences that we use as novel baselines (middle) and the
new formulation of the WS task which allows us to test
LMs in a zero-shot setting (bottom).

The entities are marked in italics, the pronoun in
bold, and the special word3 is underlined. In this
case, it refers to The trophy, since smaller objects
typically fit into larger objects.4

The success of Pretrained Language Models
(PLMs) seems to have advanced models’ common-
sense capabilities by boosting the performance on
WS via simple probability ranking (Trinh and Le,
2018; Brown et al., 2020; Zhou et al., 2020). An-
other advancement was the curation of a large,
crowdsourced dataset for WS, Winogrande (Sak-
aguchi et al., 2019). Models that train on this
dataset are close to human performance. But are we
any closer to achieving commonsense reasoning?

We provide three explanations for the perceived
progress on the WS task: (1) lax evaluation crite-
ria; (2) artifacts in the datasets that remain despite
efforts to remove them, and (3) knowledge and rea-
soning leakage from large training data. Combin-

3Words that change the answer. A detailed explanation is
provided later.

4There has been some theoretical work that analyzed WS
sentences and proposed a framework, the “correlation cal-
culus,” arguing that resolving these problems involves a dis-
course coherence (Bailey et al., 2015; Michael, 2015).

https://github.com/yanaiela/winograd_square_one
https://github.com/yanaiela/winograd_square_one
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ing the effects of these attributes together, we show
that all models we consider perform randomly on
this task. Examples for WS, the proposed control
baselines, and zero-shot instances can be found in
Figure 1.

Our main premise in this work is that, from a
commonsense perspective, the generalization ca-
pabilities models can get from large training data
are limited. Due to the vast number of common-
sense facts (e.g. steel is hard, planets are big), it
is infeasible to learn them all from a limited-scale
training set. However, this knowledge can still be
acquired in different ways, such as self-supervision
(Mitchell et al., 2015), Open IE (Tandon et al.,
2014), collecting statistics from large text corpora
(Elazar et al., 2019), PLMs (Zhou et al., 2020) and
more (Bagherinezhad et al., 2016; Forbes and Choi,
2017). Therefore, we claim that the vast major-
ity of commonsense knowledge a model obtains
should come from sources external to the super-
vised dataset. The supervised training set should
mainly provide a means for learning the format
of the task but not as a source for commonsense
knowledge acquisition. We thus question the ap-
proach, which has recently gained popularity (Sak-
aguchi et al., 2019; Klein and Nabi, 2020), of using
models trained on large datasets for evaluating gen-
eral commonsense reasoning capabilities, like WS.

Contributions. (i) We begin by proposing a gen-
eral evaluation method that makes use of groups
that contain similar inputs, e.g. the twin sentences
in WS (§3). That is, instead of measuring accuracy
by scoring each sentence separately, we suggest
scoring according to the worse score on both inputs:
giving a point only if both sentences are predicted
correctly. This evaluation reduces the risk of suc-
cessful prediction due to artifacts in the data and
better reflects the models’ commonsense reason-
ing abilities. (ii) Next, we extend previous work
(Trichelair et al., 2019) that manually found in the
Winograd Schema Challenge (WSC) associative
examples which can be solved using simple statis-
tics. We propose two automatically constructed
control baselines that distort the sentences to be
nonsensical, on which a score higher than majority
suggests the presence of artifacts (§5). We find that
WSC (Levesque et al., 2012) contains a non-trivial
amount of artifacts, whereas the newly suggested
dataset, WinoGrande (Sakaguchi et al., 2019), con-

tains much less of these.5

(iii) Finally, to bypass the supervised training
step, we propose to directly evaluate PLMs on WS
in a zero-shot setup; this allows for assessing how
many commonsense reasoning capabilities were ac-
quired in the pretraining step. Specifically, this eval-
uation disentangles the commonsense capabilities
of PLMs from the knowledge they acquire from the
training set. Combining our new evaluation method
and taking into account the data artifacts with the
zero-shot setting, we show that all models we con-
sider perform randomly. We then demonstrate us-
ing learning curves of models trained on increasing
amounts of data, that it takes huge amounts of train-
ing instances to make small improvements in the
test set, demonstrating the ineffectiveness of large
training sets in acquiring commonsense reasoning
skills. We interpret these results as evidence that
a lot of the commonsense reasoning capabilities
are learned during fine-tuning, as opposed to the
pre-training step.

Based on our experiments, we conclude that
many of the claims of progress on WS in recent
years are unjustified, and stem from sub-optimal
evaluation, artifacts, and commonsense knowledge
learned from a supervised training set. Neverthe-
less, we suggest that the newly proposed Wino-
grande dataset (Sakaguchi et al., 2019) shouldn’t
be used for training, but it provides good data for
evaluation, and hope that our new evaluation meth-
ods will assist faithful tracking of commonsense
reasoning progress.

2 Background

2.1 WSC and the Twin Sentences

The Winograd Schema Challenge (Levesque et al.,
2012) was constructed to serve as a benchmark
for commonsense reasoning capabilities of mod-
els (similarly to the way Textual Entailment was
proposed to serve as a benchmark for measuring
models’ entailment capabilities (Dagan et al., 2005,
2013)). WSC contains a small test set of 273 ex-
amples, created by experts, and for several years
models were struggling to perform well on it. Each
question involves four key features: 1) two entities
are mentioned in each sentence, and they can be
two males, two females, two inanimate objects, or
two groups of people or objects; 2) a pronoun or

5In Appendix D, we provide details on how AFLITE, the
algorithm that was used to filter examples from Winogrande
operates, and how it is different from our baselines.
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a possessive adjective is used in the example to
refer to one of the entities; 3) the task is to deter-
mine which of the two entities is referred to by the
pronoun, and 4) each sentence contains a special
word which, when replaced, the answer changes.
There are no other limitations on the sentences be-
sides these constraints and, consequently, this test
is considered to be a general commonsense reason-
ing test, unlike other benchmarks, which focus on
specific commonsense capabilities (Rashkin et al.,
2018; Forbes et al., 2019; Sap et al., 2019a,b; Bisk
et al., 2020).

In order to fulfil the fourth feature, each example
was paired with an additional twin sentence, which
only slightly differs from its twin. (Similar test
sets were recently proposed and are referred to
as Counterfactual data (Kaushik et al., 2019) and
Contrast sets (Gardner et al., 2020)). For example,
the twin sentence of Example 1 is:

2. The trophy does not fit into the brown suitcase
because it is too small.

Notice that the special words in these sentences
are large and small, and in this sentence, it refers
to the brown suitcase (as opposed to the trophy in
Example 1). The special word is a key part of WS,
which makes the task hard to solve. These words
were chosen carefully to avoid statistical correla-
tions between the special word and the entities. In
this example, both trophy and suitcase can be small,
which makes the task hard to solve by machines;
and as Levesque et al. puts it: “This helps make the
test Google-proof: having access to a large corpus
of English text would likely not help much (assum-
ing, that answers to the questions have not yet been
posted on the Web, that is)!”

2.2 Progress on WSC

Since WSC was proposed as a benchmark for com-
monsense (Levesque et al., 2012), there were many
attempts to improve performance on this bench-
mark, that involved different approaches including
web queries (Rahman and Ng, 2012; Sharma et al.,
2015; Emami et al., 2018), using external knowl-
edge sources (Sharma, 2019), information extrac-
tion and reasoning (Isaak and Michael, 2016) and
more (Peng et al., 2015; Liu et al., 2017a,b; Fäh-
ndrich et al., 2018; Klein and Nabi, 2019; Zhang
et al., 2019, 2020a).

Newer approaches use LMs to assign a proba-
bility to a sentence by replacing the pronoun with

an entity, one at a time, and pick the more proba-
ble sentence (Trinh and Le, 2018; Opitz and Frank,
2018; Radford et al., 2019; Kocijan et al., 2019).
More recently, sequence to sequence models have
been employed to directly predict the referred en-
tity in a supervised (Raffel et al., 2020), zero-shot
or few-shot setting (Brown et al., 2020). The latest
results of GPT-3 (Brown et al., 2020) are rather im-
pressive, and agree with the premise of this paper,
as the model sees none to a few dozen examples
to learn the format. It is worth noting, though, that
the training corpus of GPT-3 included some of the
WSC questions, and therefore these results should
be taken with a grain of salt. For a comprehensive
review of the progress on approaches and related
datasets of WS, see Kocijan et al. (2020).

Zhou et al. (2020) probed multiple LMs for com-
monsense capabilities in different datasets includ-
ing WSC, by computing the probability the LM
assigns each alternative and choosing the more
probable one. The advantage of this method is its
unsupervised approach; it does not teach the model
any new knowledge. Notably, their evaluation pro-
tocol, which computes the average log probability
of each masked word is problematic, since special
words that get tokenized into more than one word-
piece are still masked independently, thus priming
the model towards a certain answer (§6.1). In this
work, we propose a new evaluation methodology
and show that these models’ performance is ran-
dom. Finally, Zhang et al. (2020b) provided an
analysis of different types of commonsense knowl-
edge needed to solve the different WSC questions,
including properties, eventualities, and quantities.
They also created a new dataset, WinoWhy, which
requires models to distinguish between plausible
and erroneous reasons for the correct answer.

3 A Robust Group Score Evaluation

Many works in recent years have shown that large
neural networks can achieve high performance on
different benchmarks while “being right for the
wrong reasons” (McCoy et al., 2019). These suc-
cesses arise from a variety of reasons such as ar-
tifacts in datasets (Poliak et al., 2018; Tsuchiya,
2018; Gururangan et al., 2018; Kaushik and Lipton,
2018), annotators biases (Geva et al., 2019), etc.
Levesque et al. (2012) proposed to alleviate some
of these issues by using the twin sentences along
with the special word. However, the proposed eval-
uation of WSC scores each twin separately. As



10489

Trichelair et al. (2019) showed that some WSC
instances can be solved using simple correlations,
we argue that the independent scoring may result
in unjustifiably inflated scores. Here, we inspect
a new evaluation that accounts for some of these
artifacts and provide a more robust evaluation for
cases where we have grouped instances (e.g. mini-
mal pairs).

3.1 Group Scoring

Recent studies proposed to augment test instances
with minimal pairs, that either change the original
answer (Kaushik et al., 2019; Gardner et al., 2020),
or keep it intact by using paraphrasing, synonyms,
etc. (Glockner et al., 2018; Shah et al., 2019). Typ-
ically, these works report the results separately on
the new test set, with no reference to the original
test set.

We extend over previous work that proposes
to evaluate pairs (Abdou et al., 2020) or groups
(Elazar et al., 2021) of related instances and assign
a point only if they are all correctly predicted by a
model. Our evaluation framework exploits groups
of minimal-distance instances and results in a more
robust evaluation. Specifically, for an arbitrary scor-
ing function f , and a group of minimal-distance
instances xi, score each of the examples xij in the
group and assign the group its worse-performing
score:6

groupScore(xi) = min
j

f(xij )

The motivation behind this new evaluation is
three-fold: (1) Predicting correctly all examples in
a group provides a more robust measurement, and
indicates a better understanding of the instances; (2)
The lowest scored example is the groups’ “Achilles
heel” and thus makes the success on other examples
suspicious; (3) It lowers the probability of random
predictions (especially in classification tasks), or
the use of shallow heuristics to solve examples. We
note that cases where all examples in a group can
be solved based on some artifact will still lead to
a high score on this group. Therefore this evalua-
tion does not solve the problem of artifacts, but it
reduces the chance of scoring them as correct in
cases where not all the groups’ instances contain
artifacts.7

6The minimum in cases where higher scores indicate better
performance, and maximum otherwise.

7A similar evaluation was used by Zhou et al. (2019), with
the “Exact Match” metric for a multi-label classification task.

In classification tasks, a consequence of this eval-
uation is the change in random performance. For
example, in the case of balanced binary classifica-
tion, the chance accuracy drops from 50% to 25%.

This generic evaluation can be applied not only
in classification tasks but also in other tasks that
use different evaluation metrics such as BLEU and
ROUGE in generation (Papineni et al., 2002; Lin,
2004). For WS, where the task involves a binary
classification, we use group scoring over the twin
sentences, with accuracy as the per-instance scor-
ing function. This yields the paired evaluation that
was recently proposed by Abdou et al. (2020) for
evaluating WSC.

3.2 Other Robust Evaluation Protocols

It is important to note that any WS test set is only
an approximation of the commonsense reasoning
skills required overall. The twin-sentences allow
to test for specific skills (such as the interchange
between small and large with ‘fit’ in Examples 1,
2), but other perturbations are possible which al-
low testing different skills. For instance, Abdou
et al. (2020) proposed several perturbations on the
original sentences that mostly do not change the an-
swer, such as synonymous entity substitution, tense
switch, gender switch, etc. These perturbations
are also reminiscent of the switched protocol of
Trichelair et al. (2019), where models are evaluated
on examples where the candidates can be switched
in the order (which mainly happens with proper
names, but also with inanimate objects), expecting
a consistent prediction from models since the label
does not depend on the entities’ order. Under the
group-scoring evaluation, we expect a model to
succeed on all perturbations from the same group.

4 Setup

Datasets We experiment with two English WS
datasets:

Winograd Schema Challenge (WSC) (Levesque
et al., 2012) contains 273 manually curated exam-
ples. We also report results on the non-associative
examples that were filtered by Trichelair et al.
(2019), named WSC-na.

Winogrande (Sakaguchi et al., 2019) is a recent
crowdsourced dataset that contains WS questions.
Winogrande contains 40,938, 1,267, 1,767 exam-
ples for train, development, and test respectively.
Since the test labels were not published, we report
our results on the development set. We provide



10490

Dataset Setup Single Group

WSC
original 89.71 79.41
no-cands 60.72 40.35
part-sent 64.88 33.88

WSC-na
original 89.45 79.09
no-cands 58.06 34.41
part-sent 59.90 25.00

Winogrande
original 71.49 58.45
no-cands 53.07 31.05
part-sent 53.11 22.34

Table 1: Results of RoBERTa-large trained on Wino-
grande, evaluated on the different datasets in the regu-
lar condition (original) and the two bias-exposing base-
lines. Reporting results both on the original accuracy
(Single), and the group-scoring (Group). Random per-
formance on the single and group-scoring evaluations
are 50% and 25% respectively.

a more detailed description of these datasets and
splits in Appendix A.

Modeling We follow the modeling of Sakaguchi
et al. (2019), which finetunes PLMs as a multiple-
choice problem on Winogrande’s training set. In
this modeling, the pronoun is replaced with either
one of the entities, and the ‘[CLS]’ token repre-
sentation is used for prediction. As such, the in-
put format becomes: [CLS] context [SEP]
entity [SEP], which is encoded once which
each entity to produce a score. We also experi-
ment with another loss that was explored in Liu
et al. (2020) where instead of using a different clas-
sification head, uses the original MLM head for
predictions. We report these results in Appendix
G.

Pre-trained Models We experiment with three
PLM types: BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019) and ALBERT (Lan et al., 2019).
We provide implementation details in Appendix B.

5 Artifacts-Detecting Baselines for WS

WSC was carefully designed by human experts to
minimize the presence of artifacts. For instance,
Example 3 is not considered as a good WS example
since a racecar is more likely to go fast rather than
a school bus.

3. The racecar zoomed by the school bus be-
cause it was going so fast.

However, such correlations are often easy to
miss. As evidence, Trichelair et al. (2019) found
37 sentences to be associative, or non Google-
proof.8 These examples were labeled manually us-
ing crowdsourcing, therefore these are still bound
to what non-experts can catch, and subtler cues may
be hard to spot. Other correlations may be harder
or impossible to detect by humans since they are
the result of spurious correlations (Tu et al., 2020).
These features, which can be learned during pre-
training or fine-tuning, may result in successful
predictions that do not reflect commonsense rea-
soning skills.

To account for these artifacts, we propose two
control baselines, which are likely to achieve ran-
dom performance with an artifacts-free model. A
score above random indicates the presence of arti-
facts.

No-Candidate Baseline This baseline (no-
cands) removes the two candidates (entities) from
the text. For instance, Example 1 will turn into:
“would not fit into because it is too large.”

Partial-Sentence Baseline In this baseline (part-
sent) we split the sentence into two parts, based on
punctuation and discourse markers9 and take only
the part containing the pronoun. For instance, Ex-
ample 1 will be transformed into the following:
“because it is too large.” A similar approach was
used by Trichelair et al. (2019), however, they em-
ployed annotators to manually indicate whether the
partial sentence containing the pronoun is associa-
tive to one of the candidates. Alternatively, we use
a trained model and inspect the overall score on a
dataset.

We note that these two baselines create nonsensi-
cal sentences. Therefore, we expect humans to not
be able to properly solve them. Thus, a model that
achieves higher than random performance on these
baselines over a large enough dataset is suspected
to rely on spurious correlations.

These baselines are reminiscent of previous
works that used part of the input (e.g. the hy-
pothesis only baseline in NLI), to reveal artifacts
in multiple datasets for NLI (Poliak et al., 2018)
and reading comprehension (Kaushik and Lipton,
2018).

8Google-proof is an attribute introduced in Levesque et al.
(2012) that refers to the strength of a test, and the inability to
solve it by having access to a large text corpora.

9‘so’, ‘but’, ‘and’, ‘because’, ‘although’, ‘though’, ‘due’,
‘since’, ‘.’, ‘,’, ‘;’, ‘?’
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ID WSC Trichelair et al. no-cands part-sent

2 The trophy doesn’t fit into the brown suitcase because it is too large. 7 X X

8 The lawyer asked the witness a question, but he was reluctant to repeat it. 7 7 7

72 I couldn’t put the pot on the shelf because it was too tall. X 7 7

185
Sam broke both his ankles and he’s walking with crutches.
But a month or so from now they should be unnecessary. X X X

Table 2: Instances from WSC, along with indication if the manual filtering by Trichelair et al. (2019) marked them
as associative, and whether our proposed baselines predict them correctly using group scoring.

5.1 Results

We retrain the RoBERTa large model from Sak-
aguchi et al. (2019) that was trained on Winogrande
and report the results using the original and the
new group-based evaluations in Table 1. On WSC
this model achieves 89.71% and 79.41% accuracy,
on WSC-na it achieves 89.45% and 79.09%, and
on the dev set of Winogrande, it achieves 71.49%
and 58.45% accuracy, respectively. To make these
evaluations comparable, we filter sentences with
no twin sentences from Winogrande and the single
triplet sentence from WSC, remaining with 568 and
272 instances, respectively (or, 284 and 136 pairs).
The resulting performance on the original Wino-
grande development set is 78.3%.10 The single ac-
curacy score on sentences that have pairs is lower
by almost 7 points than the original set, which
suggests that the sentences with no pair are easier,
and may contain some artifacts. Next, we high-
light the performance difference between the orig-
inal evaluation and the paired, which dropped by
10.30, 10.36, and 13.04 points for WSC, WSC-na,
and Winogrande, respectively. Finally, the results
on our proposed baselines achieve higher perfor-
mance than the random baseline for WSC, and the
no-cands baseline on Winogrande. The no-cands
baseline achieves 40.35%, 34.41%, and 31.05%
on WSC, WSC-na, and Winogrande respectively,
whereas the part-sent baseline achieves 33.88%,
25.00%, and 22.34% accuracy. These results in-
dicate that WSC contains many artifacts (over 15
points above random performance), and even after
the manual filtering of Trichelair et al. (2019) some
statistical correlations remain. On Winogrande,
the no-cands baseline achieves more than 6 points
above random, indicating that it contains fewer ar-
tifacts than WSC and WSC-na, presumably due to
the AFLITE algorithm.

10Compared to 79.3%, reported by Sakaguchi et al. (2019).

5.2 Qualitative Analysis

In Table 2 we inspect some instances from WSC
and indicate if the manual filtering by Trichelair
et al. (2019) found them to be associative, and
whether our proposed baselines predicted them cor-
rectly using group scoring. Although successful
predictions may result from chance (though the
probability that both baselines correctly predicted
both pairs is relatively low - 6.25%), we highlight
some cases we find interesting.

The first example from the table (ID 2) was pre-
dicted correctly by both our baselines, but not by
Trichelair et al. (2019). This may be a case of
memorization of this very popular example, by the
pretrained RoBERTa model which was trained on
many web pages (Emami et al., 2020). We provide
some evidence for this example’s memorization
in Appendix F. Examples ID 8 and 72 were both
predicted incorrectly by our baselines. While the
latter was marked as associative by Trichelair et al.
(2019), our baselines did not predict it correctly,
perhaps for a good reason; since both a pot and
a shelf can be tall, there’s no clear association in
this example. Example ID 185 was predicted cor-
rectly by our baselines, as well as by Trichelair
et al. (2019) since this example is associative: the
word ‘unnecessary’ is more likely to be correlated
with crutches, rather than ankles.

6 Disentanglement of Commonsense
Reasoning and Learned Commonsense

In this section, we wish to disentangle the common-
sense reasoning skills acquired by PLMs during
pretraining, and what they learn during fine-tuning
on a WS dataset. We propose a method that allows
evaluating pretrained Masked Language Models
(MLM) in a zero-shot setting on WS-like questions.
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Model
WSC WSC-na WinoGrande

Single Group Single Group Single Group

random 50.00 25.00 50.00 25.00 50.00 25.00

BERT-base 56.52 15.22 54.79 12.33 53.12 11.11
BERT-large 61.41 23.91 60.27 21.92 55.56 12.50
RoBERTa-base 63.04 27.17 60.27 21.92 56.25 14.58
RoBERTa-large 73.91 47.83 71.23 42.47 54.86 12.50
ALBERT-base 55.43 13.04 55.48 12.33 52.78 7.64
ALBERT-xxlarge 78.80 57.61 77.40 54.79 58.68 20.83

Table 3: Performance of different PLMs evaluated in the zero-shot setup of WS. Single refers to the standard
accuracy over the entire test set, Group refers to group-scoring.

6.1 Zero Shot MLM Evaluation

Previous work proposed to evaluate MLMs in a
zero-shot setting by replacing the pronoun with
masked tokens, corresponding to the number of
tokens the entities are tokenized into. Then, by
inspecting each entity’s probability the more prob-
able entity is selected (Kocijan et al., 2019; Abdou
et al., 2020). However, this approach is problematic
when the entities are of different token lengths or
consist of more than a single token since the model
may be primed towards a certain answer. For in-
stance, consider Example 1’s entities, trophy and
suitcase, in the case they are tokenized into trophy
and suit, case. In this scenario, the MLM will see a
single mask in one case (and estimate the probabil-
ity of trophy), but in the other case, it will see two
masks (assigning the suit and case probabilities).
Since the model has access to the number of tokens
it has to complete, the comparison between these
two options is flawed. Another approach, used by
Zhou et al. (2020) is to calculate the probability of
the entire sentence, by masking a single token at
a time. However, this method is also problematic
when the entities are tokenized into more than a sin-
gle token since unmasked tokens are affecting the
prediction of the masked tokens. For instance, fol-
lowing the same example as before, where suitcase
is tokenized into suit and case, a model that sees
suit is more likely to assign a high probability to
case, therefore staining the probability distribution,
and causing a wrong comparison.

Since properly evaluating MLM on WS sen-
tences with more than a single word that differs be-
tween the sentences is challenging, we filter these
examples. Then, we mask this word, and compare
the probabilities of the two candidates, as was done
in previous work (Goldberg, 2019; Talmor et al.,
2020; Ettinger, 2020). The issue with this approach

is that typically, the candidates are tokenized into
multiple word-pieces, which will result in filtering
a great portion of the data. Instead, we propose
to make use of the special word (the word that is
different between the twin sentences), mask it, and
replace the pronoun with the correct answer. Then,
the model has to decide which of the special words
refers to each entity. Occasionally, there is more
than one special word, or it gets tokenized into
multiple tokens, therefore we discard these sen-
tences. An example of this transformation process
on Example 1 is the following:

4. The trophy would not fit into the brown suit-
case because the trophy is too [MASK].

where ‘[MASK]’ is the token that has to be pre-
dicted between the two original special words:
‘large’ or ‘small’. The twin sentence of this ex-
ample would accordingly be the same but with the
entity ‘the trophy’ replaced with ‘the brown suit-
case’, and the correct answer would change from
‘large’ to ‘small’.

One potential pitfall of this formulation is that
it is not faithful to the original WS, and tests a dif-
ferent mechanism. To test the difference between
these formulations, we train the RoBERTa large
model on Winogrande on our transformed Wino-
grande data, and compare it to the results of the
same model, trained on the original setup. We
make sure to only use sentences that can be trans-
formed, assuring to train both models on the same
subset. The model’s performance on the original
setup achieves 66.10% and 55.93% on the original
and paired evaluation development set, whereas the
model trained on the transformed setup achieves
70.06% and 64.97%. The latter achieves higher
performance, suggesting that our transformation
may be preferable in modeling, or easier than the
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original setup. Since this modeling is easier for the
model, the results provide a higher bound of the
original results, making the following results even
more alarming.

We transform WSC, WSC-na, and the Wino-
grande dev set with the proposed method and re-
main with 226, 180, and 354 examples, respec-
tively. We then evaluate the pre-trained LMs
described in Section 4, and report the results
in Table 3. We note that the overall perfor-
mance is much lower compared to the finetuned
model, as expected. Next, the performance on the
group-scoring on WSC-na is relatively low, except
for RoBERTa-large and ALBERT-xxlarge, which
achieve 42.47 and 54.79, high above random per-
formance. On the other hand, the performance on
Winogrande, across all models is below random
performance (best result by ALBERT-xxlarge, of
20.83%), indicating poor commonsense capabili-
ties of these models. Since we found in the previ-
ous Section (§5) that WSC and WSC-na have many
artifacts, we take the results on Winogrande to bet-
ter reflect commonsense reasoning skills. Recall
that the comparison between the two formulations
suggested that our new formulation should perform
better, a fact that makes the random predictions in
the zero-shot setup even more remarkable.

7 Progress in Commonsense Reasoning?

The large performance gap may not seem surpris-
ing. In most tasks in NLP, we do not expect a
PLM to do well on new tasks out of the box and
expect a supervised dataset to provide the required
skills. However, we claim that for commonsense
tasks, this argument does not hold. Since common-
sense reasoning skills and knowledge are huge, it
is not likely to acquire all that information through
supervision. Consider the following WS instances:

5. The large ball crashed right through the table
because it was made of steel.

6. I bought a steel property at the same time
as my wooden property. The _ property was
harder.

Examples 5 and 611 come from WSC and Wino-
grande training set, respectively. The fact that steel
is a strong material is part of the knowledge needed
to solve Example 5. However, a model that is
trained on Example 6 may pick up this fact. Will

11Winogrande was collected with ‘_’ instead of pronouns.
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Figure 2: Learning curves for the large versions of
BERT, RoBERTa, and ALBERT models, trained on
increasing amounts of data. This figure differs from
the Winogrande leaderboard. We explain the source of
these differences in Appendix E.

this training instance also teach the model facts
about other materials, such as styrofoam?

To quantify the effect of training on the success
in solving WS questions, we re-split Winogrande
training set to leave enough data for testing and use
the rest for training. From the remaining training
set, we create multiple training splits, increasing in
size, to study the effect of increasing amounts of
data on the overall performance. We use the orig-
inal development set to pick the best models. We
report learning curves with the different models,
where each point is the average score of three runs,
in Figure 2.12 We report the number of correct
pairs predicted correctly on the y-axis as a func-
tion of the training size. These curves indicate that
the inspected models obtained no commonsense
reasoning capabilities in the pretraining step, and
are slowly improving their performance the more
data they are trained on. However, except for a
sudden improvement with 500 examples for AL-
BERT, the slope increases incredibly slowly and
requires a significant amount of additional train-
ing instances for small improvements (BERT and
RoBERTa’s slopes are more moderate). We con-
clude that training data is mostly non-beneficial for
generalize commonsense reasoning, and models
should acquire it using other methods.

We note that the initial fast increase in AL-
BERT’s performance is interesting, and may be
due to another explanation; that is commonsense
reasoning is composed of commonsense knowl-
edge (e.g. steel is hard), and reasoning (comparing

12Full numeric results, along with standard deviations are
reported in Appendix C.
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between objects sizes). Some of the knowledge
may be encoded in these models, and reasoning
can be taught. However, if that’s the case, datasets
should account for that, with careful splits. We
leave the answer to this question to future work.
Overall, this increase is nevertheless rather mod-
erate, and once a model passes this point (about
2000 examples), the performance increases slowly,
which goes in line with our claims.

A potential explanation for the sudden perfor-
mance improvement with finetuning, and the lower
baselines scores on Winogrande, may arise from
the unnaturalness aspect of this dataset. For in-
stance, we find Example 5 from WSC a more nat-
ural sentence than Example 6 (from Winogrande).
Thus, in the case of several less-natural occurring
sentences in Winogrande, the random results of
our baselines may be explained due to this fact,
and the finetuning procedure may contribute to the
model’s adaptation of that language. We leave the
assessment of this hypothesis to future work.

8 Conclusions

In this work, we begin by discussing the current
evaluation of WS and propose an additional evalua-
tion metric, group-scoring, that credits a model
with the worse performing instance of a group.
While we focus here on WS, we propose to use
this evaluation in other tasks, where minimal pairs
are available (Kaushik et al., 2019; Gardner et al.,
2020; Warstadt et al., 2020), as a more reliable
evaluation metric. We then propose two new con-
trol baselines that account for artifacts in WS data
and show that WSC contains many artifacts, while
Winogrande consists much less of them.

Finally, we propose a method to evaluate MLMs
on WS sentences in a zero-shot setting. We show
that the performance of popular MLMs is random
and that models improve gradually the more train-
ing data they see. We conclude that the use of large
training sets is not always desirable, especially in
commonsense reasoning settings, and call future
work to find other methods to improve our models’
commonsense abilities.
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A Detailed Setup

Datasets We report our results on two datasets:
Winograd Schema Challenge (WSC) (Levesque

et al., 2012) contains 273 manually curated exam-
ples. Each example is paired with a twin-sentence,
meaning that there’s a special word that is changed
between the two sentences, that changes the core-
ferring entity. Trichelair et al. (2019) have labeled
the original WSC examples, and found 37 exam-
ples to be associative Trichelair et al. (2019). We
thus also use the non-associative subset which ex-
cludes the associative examples. We refer to this
subset as WSC-na

Winogrande (Sakaguchi et al., 2019) is a recent
crowdsourced dataset that contains WS questions.
Winogrande is much larger than WSC and con-
tains 9,248, 1,267, 1,767 examples for train, de-
velopment, and test respectively. Winogrande was
filtered from ‘biases’ (or artifacts) using their pro-
posed AFLITE algorithm, which produced the men-
tioned challenging dataset. However, the authors
also release and use the ‘biased’ instances for train-
ing, making a total of 40,938 training instances.

Pre-trained Models We experiments with multi-
ple pre-trained models: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019) and ALBERT (Lan
et al., 2019). These models are large Transformer-
based architectures (Vaswani et al., 2017), that are
trained on the Masked Language Modeling task,
which is predicting the masked word in a given
context. These models are pretrained on huge
amounts of text such as Wikipedia, the book cor-
pus (Zhu et al., 2015), parts of CommonCrawl,
and more. Specifically, we conduct our experi-
ments with BERT-large-cased, RoBERT-Large, and
ALBERT-XXLarge-V2, which have 335M, 335M,
and 223M parameters, respectively.

B Implementation Details

We implemented the experiments with the hugging-
face package (Wolf et al., 2020). Following the
previous work (Sakaguchi et al., 2019), on all our
experiments, we set the learning rate to be 1e-5,
batch size to be 8, and trained the models for 8
epochs. Adam (Kingma and Ba, 2015) is used as
the optimizer. We optimize all models with the
cross-entropy loss function. We trained our model
with RTX 2080, and the training time is 13, 14, and
62 minutes per epoch on the largest training set
Winogrande (10) for BERT-large, RoBERTa-large,

and Albert-XXL-v2, respectively. As the evalua-
tion is conducted on the dev set, we do not use it
to select the best model. Instead, we report the per-
formance with the final model, which is converged
based on our observation.

C Full Learning Curves Results

The full results from Figure 2, along with the stan-
dard deviations, are reported in Table 4.

D AFLITE Details

AFLITE (Sakaguchi et al., 2019), an algorithm pro-
posed for reducing datasets’ artifacts was used to
create Winogrande (Sakaguchi et al., 2019). It
works as follows: a RoBERTa model (Liu et al.,
2019) is finetuned on a random subset of the data
to train a ‘weak’ model of the task. Then, the rest
of the instances are encoded using the model’s en-
coder. Then, for multiple iterations, a set of weak
classifiers (linear) are trained on a subset of the
encoded data and predict the rest. If more than k
classifier predicted correctly an instance’s label, it
is discarded from the final dataset. This process
is repeated multiple times until reaching a satisfy-
ing dataset size (which is controlled by predefined
hyperparameters).

Although this algorithm filter examples that are
‘easy’, as a set of linear models that were trained
on a medium quality representation managed to
predict the correct answer, it is unclear how artifact-
free the dataset is. In contrast, our proposed base-
line methods directly detect artifacts the classifica-
tion model may rely on, by presenting challenging
perturbations on which a model is not likely to
succeed above random. Thus, our procedure is in-
herently different than the general-purpose AFLITE

filtering algorithm.

E Comparison to Winogrande
Leaderboard

We note that Figure 2 differs from the Winogrande
leaderboard in multiple ways: first, we compare
different models than the ones that appear on the
leaderboard. Specifically, the to-date leading sub-
mission (accurate as of March 21st, 2021), UNI-
CORN, does not provide details about the model,
except it is a T5 based model, trained on a collec-
tion of datasets. Since the content of these datasets
is not publicly available, it is impossible to assess
the quality of this submission. For instance, if one

https://leaderboard.allenai.org/winogrande/submissions/public
https://leaderboard.allenai.org/winogrande/submissions/public
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# Training
BERT RoBERTa ALBERT

Single Group Single Group Single Group

0 52.99 (0.00) 8.67 (0.00) 56.39 (0.00) 16.61 (0.00) 55.55 (0.00) 17.23 (0.00)
100 53.47 (0.75) 11.71 (0.75) 52.78 (0.75) 10.22 (4.48) 58.24 (1.49) 19.89 (2.74)
500 49.31 (1.87) 12.42 (1.74) 49.65 (0.50) 14.17 (1.99) 60.07 (0.50) 32.35 (1.27)

1,000 51.39 (0.99) 15.33 (0.75) 50.35 (0.37) 16.33 (0.50) 62.50 (0.62) 42.89 (0.25)
2,000 51.39 (0.87) 22.32 (3.49) 49.65 (0.25) 16.35 (1.49) 62.85 (2.36) 53.27 (3.24)
4,000 48.96 (2.61) 21.73 (2.49) 49.65 (0.50) 18.94 (1.24) 67.36 (1.12) 55.72 (2.49)
6,000 50.35 (0.50) 23.73 (0.50) 59.72 (1.86) 38.85 (2.99) 67.71 (2.86) 52.16 (3.73)
8,000 48.26 (1.24) 29.27 (0.75) 50.35 (1.37) 39.32 (1.99) 67.36 (0.50) 55.43 (0.25)

10,000 51.39 (1.12) 31.85 (1.99) 62.85 (0.12) 52.27 (0.99) 73.76 (1.76) 59.98 (1.94)
12,000 50.00 (1.62) 25.68 (1.49) 62.85 (0.50) 51.24 (0.50) 72.22 (1.33) 57.28 (0.54)
14,000 52.08 (0.50) 32.31 (3.24) 62.15 (1.49) 52.31 (0.75) 75.61 (0.63) 62.15 (2.24)
16,000 54.86 (0.75) 39.31 (1.99) 60.42 (2.11) 53.14 (3.24) 76.82 (1.15) 64.21 (1.42)

Table 4: Effect of the training data size on different models performance. We report results on BERT, RoBERTa
and ALBERT, all with their largest variants.

of these datasets contains other commonsense rea-
soning datasets, the model may have picked up
on commonsense reasoning skills which are also
tested for in Winogrande. Second, the leaderboard
uses the original evaluation, based on the accu-
racy of single instances. As we claim in Section 3,
this evaluation is sub-optimal and causes an over-
estimation of the actual performance of models.
Moreover, our analyses were done on the develop-
ment set, as opposed to the reported test set perfor-
mance, since the test set is not publicly available.
Finally, the leaderboard presents a learning curve
of 5 training sizes, as we report the results over 12
different training sizes.

F Elaborate Analysis

In Section 5.2 we showcase some examples from
WSC and provide possible explanations for which
our baselines (§5) are able to solve them. Here,
we provide additional evidence that supports our
claim. We do so for the example where both base-
lines predict the correct answer, but the manual
inspection from Trichelair et al. (2019) does not
consider it to be associative. We emphasize that
this example is not associative per se, and thus the
annotation from Trichelair et al. (2019) was correct,
but the pretrained model, which was trained on the
web, may have caught up statistical cues that help
it predict these examples correctly, even with par-
tial information. For completeness, we repeat the
example here:

7. The trophy doesn’t fit into the brown suitcase

because it is too large.

Example 7 is a popular example that is often
given when describing the task in the media. As
evidence, we search for this sentence in Google
and found it in multiple websites:

• https://theness.com/neurologic
ablog/index.php/a-tougher-tu
ring-test/

• https://www.eitdigital.eu/ne
wsroom/blog/article/whats-too-
big-the-trophy-or-the-suitca
se/

• https://cmte.ieee.org/futuredi
rections/2014/08/20/whats-too-
big-the-trophy-or-the-suitca
se/

Next, we search for these websites in Common
Crawl13, the February 2019 version that was re-
ported to be part of RoBERTa’s training data (Liu
et al., 2019). We use an index server14 that al-
lows querying a specific index and look specific
websites. We find that the first two websites are
included in this index. Although we cannot guar-
antee that these websites were part of RoBERTa’s
training data since it was not published, the proba-
bility that several examples from WSC were part
of the large training data of RoBERTa (and later
models), with these websites, or other, is high.

13https://commoncrawl.org/
14http://index.commoncrawl.org/CC-MAIN-

https://theness.com/neurologicablog/index.php/a-tougher-turing-test/
https://theness.com/neurologicablog/index.php/a-tougher-turing-test/
https://theness.com/neurologicablog/index.php/a-tougher-turing-test/
https://www.eitdigital.eu/newsroom/blog/article/whats-too-big-the-trophy-or-the-suitcase/
https://www.eitdigital.eu/newsroom/blog/article/whats-too-big-the-trophy-or-the-suitcase/
https://www.eitdigital.eu/newsroom/blog/article/whats-too-big-the-trophy-or-the-suitcase/
https://www.eitdigital.eu/newsroom/blog/article/whats-too-big-the-trophy-or-the-suitcase/
https://cmte.ieee.org/futuredirections/2014/08/20/whats-too-big-the-trophy-or-the-suitcase/
https://cmte.ieee.org/futuredirections/2014/08/20/whats-too-big-the-trophy-or-the-suitcase/
https://cmte.ieee.org/futuredirections/2014/08/20/whats-too-big-the-trophy-or-the-suitcase/
https://cmte.ieee.org/futuredirections/2014/08/20/whats-too-big-the-trophy-or-the-suitcase/
https://commoncrawl.org/
http://index.commoncrawl.org/CC-MAIN-2019-09/
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# Training
BERT RoBERTa ALBERT

Single Group Single Group Single Group

0 52.99 (0.00) 8.67 (0.00) 56.39 (0.00) 16.61 (0.00) 55.55 (0.00) 17.23 (0.00)
100 54.39 (1.59) 12.28 (2.39) 55.46 (0.18) 17.61 (1.46) 56.14 (1.12) 17.54 (3.73)
500 51.32 (0.37) 10.53 (2.14) 55.63 (1.67) 25.00 (3.27) 61.97 (1.37) 34.15 (1.74)

1,000 51.75 (0.63) 12.28 (0.89) 58.27 (2.03) 35.56 (3.27) 62.85 (0.12) 34.86 (0.25)
2,000 54.93 (0.37) 14.44 (1.33) 57.92 (1.09) 35.21 (3.16) 61.44 (0.75) 34.51 (0.50)
4,000 52.46 (0.71) 16.55 (2.00) 61.09 (1.84) 37.32 (2.67) 64.08 (2.49) 40.49 (2.32)
6,000 53.87 (1.57) 20.07 (1.53) 59.15 (0.62) 37.32 (1.51) 68.66 (1.12) 49.65 (0.75)
8,000 53.69 (1.17) 22.89 (1.08) 62.15 (0.98) 39.44 (1.27) 68.13 (2.74) 50.70 (3.73)

10,000 53.87 (0.51) 25.00 (1.61) 63.56 (1.24) 45.77 (2.21) 70.42 (1.49) 53.17 (0.50)
12,000 50.17 (1.50) 23.94 (2.46) 64.26 (1.07) 45.42 (3.27) 69.54 (0.51) 52.46 (0.50)
14,000 52.82 (2.00) 27.11 (3.86) 63.38 (1.25) 44.72 (2.99) 67.61 (0.97) 53.17 (1.81)
16,000 53.69 (0.67) 27.11 (0.89) 61.09 (0.57) 41.67 (1.77) 70.77 (0.75) 55.28 (1.23)

Table 5: Effect of the training data size on different models performance. We report results on BERT, RoBERTa
and ALBERT, all with their largest variants.

Dataset Setup Single Group

WSC
original 89.71 80.88
no-cands 60.96 29.82
part-sent 59.09 22.31

WSC-na
original 90.00 81.82
no-cands 59.14 25.81
part-sent 56.77 16.67

Winogrande
original 70.95 54.23
no-cands 54.87 17.69
part-sent 54.43 14.18

Table 6: Results of RoBERTa-large trained on Wino-
grande, evaluated on the different datasets in the regu-
lar condition (original) and the two bias-exposing base-
lines using the MC-MLM loss (Liu et al., 2020). Re-
porting results both on the original accuracy (Single),
and the group-scoring (Group). Random performance
on the single and group-scoring evaluations are 50%
and 25% respectively.

G MLM results

Here we report the results for the MC-MLM loss
that was explored in Liu et al. (2020), where in-
stead of training a new head for the classification
task, it uses the original MLM head and scores the
different candidates instead of the pronoun. We run
all experiments including fine-tuning, and report
the results in this section.

The artifacts experiment results are detailed in
Table 6. Although the results on the standard set-

2019-09/

ting (original) are similar to the ones when using a
dedicated head (Table 1), this model appears to rely
less on artifacts: the no-cands baseline still perform
better than random on WSC, but the other baseline
and the other evaluations perform randomly.

Finally, we repeat the learning curves experiment
using the MC-MLM loss, on increasing amounts of
data, where for each training size we train 3 models
and report the mean and std, and report the results
in Table 5. Here, in contrast to the trends shown
in Liu et al. (2020), we observe generally worse
results using the MC-MLM loss. One source of dif-
ference is that Liu et al. (2020) repeated the exper-
iments many more times while performing a grid
search over different hyperparameters, while we
used the same default hyperparameters for all exper-
iments. Another source of difference is the differ-
ent training and evaluation splits used in our studies.
We conclude that nevertheless, the trends remain
the same, and the slopes of both methods are slow
to increase, and thus strengthens our claims about
the limited usefulness of training data for WS.

http://index.commoncrawl.org/CC-MAIN-2019-09/
http://index.commoncrawl.org/CC-MAIN-2019-09/
http://index.commoncrawl.org/CC-MAIN-2019-09/
http://index.commoncrawl.org/CC-MAIN-2019-09/
http://index.commoncrawl.org/CC-MAIN-2019-09/
http://index.commoncrawl.org/CC-MAIN-2019-09/
http://index.commoncrawl.org/CC-MAIN-2019-09/
http://index.commoncrawl.org/CC-MAIN-2019-09/
http://index.commoncrawl.org/CC-MAIN-2019-09/
http://index.commoncrawl.org/CC-MAIN-2019-09/
http://index.commoncrawl.org/CC-MAIN-2019-09/
http://index.commoncrawl.org/CC-MAIN-2019-09/

