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Abstract

Word Sense Disambiguation (WSD) aims to
automatically identify the exact meaning of
one word according to its context. Existing su-
pervised models struggle to make correct pre-
dictions on rare word senses due to limited
training data and can only select the best defini-
tion sentence from one predefined word sense
inventory (e.g., WordNet). To address the data
sparsity problem and generalize the model to
be independent of one predefined inventory,
we propose a gloss alignment algorithm that
can align definition sentences (glosses) with
the same meaning from different sense inven-
tories to collect rich lexical knowledge. We
then train a model to identify semantic equiv-
alence between a target word in context and
one of its glosses using these aligned invento-
ries, which exhibits strong transfer capability
to many WSD tasks1. Experiments on bench-
mark datasets show that the proposed method
improves predictions on both frequent and
rare word senses, outperforming prior work by
1.2% on the All-Words WSD Task and 4.3%
on the Low-Shot WSD Task. Evaluation on
WiC Task also indicates that our method can
better capture word meanings in context.

1 Introduction

Human language is inherently ambiguous since
words can have various meanings in different con-
texts. Word Sense Disambiguation (WSD) aims
to automatically identify the correct sense (mean-
ing) of the target word within a context sentence,
which is essential to many downstream tasks such
as machine translation and information extraction.
Recently, many approaches have achieved state-of-
the-art performance on WSD by fine-tuning lan-
guage models pretrained with massive text data

1Models and code are available at https://github.
com/wenlinyao/EMNLP21-ConnectTheDots. We
will also release the checkpoint of the pretrained model for
reproducibility.

on task-specific datasets (Blevins and Zettlemoyer,
2020; Yap et al., 2020).

However, fine-tuning a WSD model using task-
specific resources could limit its applicability and
may cause two major problems. First, the perfor-
mance of models decreases significantly when pre-
dicting on rare and zero-shot word senses (Kumar
et al., 2019; Choubey and Huang, 2020; Blevins
et al., 2021) because there are no sufficient support-
ing examples in training data. Second, the trained
models are often inventory-dependent which can
only select the best definition from one predefined
word sense inventory (mainly WordNet) that hu-
man annotations are based upon.

In this paper, we overcome these limitations by
leveraging abundant lexical knowledge from var-
ious word sense inventories. As we know, dictio-
naries that are compiled by experts contain rich
sense knowledge of words. Moreover, a dictio-
nary usually provides several example sentences
for each word sense to illustrate its usage, which
can be viewed as context sentences of that word
sense. Since a word’s sense (meaning) can be de-
termined by its context, the word itself in a given
context and the definition sentence corresponding
to the correct sense are merely two surrogates of
the same meaning (semantically equivalent). Fur-
thermore, we observe that different dictionaries
normally summarize meanings of a word to a close
number of word senses, where definition sentences
(glosses) from different dictionaries are different
expressions of the same bunch of meanings. For
example, Figure 1 lists glosses retrieved from three
dictionaries for verb word search. We can see that
glosses with the same color have the same meaning
and can be aligned across different dictionaries.

Based on this observation, we propose a gloss
alignment algorithm to leverage abundant lexical
knowledge from various word sense inventories.
We convert the problem of aligning two groups of
glosses according to meanings to an optimization

https://github.com/wenlinyao/EMNLP21-ConnectTheDots
https://github.com/wenlinyao/EMNLP21-ConnectTheDots
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• to carefully look for someone or 
something in (something)

• to carefully look through the clothing 
of (someone) for something that may 
be hidden

• to use a computer to find information 
in (a database, network, Web site, etc.)

• to look carefully at (something) in 
order to get information about it

Webster
• to try to find someone or something by 

looking very carefully 
• to use a computer to find information 
• if someone in authority searches you or 

the things you are carrying, they look for 
things you might be hiding 

• to examine something carefully in order to 
find something out, decide something etc. 

Longman
• If you search for something or someone, you 

look carefully for them.
• If a police officer or someone else in authority 

searches you, they look carefully to see 
whether you have something hidden on you.

• If you search for information on a computer, 
you give the computer an instruction to find 
that information.

Collins

Figure 1: Definition sentences of word search retrieved from three dictionaries: Longman Dictionary of Contem-
porary English, Merriam-Webster’s Advanced Learner’s Dictionary, and Collins COBUILD Advanced Dictionary.

problem – Maximum Weighted Graph Matching –
to find the best matching that maximizes the overall
textual similarity. In this way, we can gather gen-
eral semantic equivalence knowledge from various
dictionaries as a whole for all word senses, espe-
cially for rare senses that are less frequently seen
in human-annotated data.

To make use of the derived semantic equivalence
knowledge, we adopt a transfer learning approach
that first pretrains a general semantic equivalence
recognizer by contrasting the word representations
in example sentences with the sentence representa-
tions of positive glosses or negative glosses. The
general model can be directly applied to down-
stream WSD tasks or further fine-tuned on the task-
specific dataset to get an expert model. We test our
two-stage transfer learning scheme on two WSD
benchmark tasks, i.e., the standard task (Raganato
et al., 2017b) that focuses on all-words WSD and
FEWS (Blevins et al., 2021) task that emphasizes
low-shot (including few-shot and zero-shot) WSD.
Experimental results show that the general model
(without fine-tuning) surpasses the supervised base-
line by 13.1% on zero-shot word senses. After
further fine-tuning with build-in training data, the
expert model outperforms the previous state-of-
the-art model by 1.2% on all-words WSD tasks
and 4.3% on low-shot WSD tasks. Adding seman-
tic equivalence knowledge to the Word-in-Context
(WiC) task (Pilehvar and Camacho-Collados, 2019)
also improves the accuracy of RoBERTaLarge (Liu
et al., 2019) by 6%, which even outperforms the
9X larger T5 model (Raffel et al., 2020).

Overall, the major contributions of our work are
two-fold. 1) We propose a gloss alignment algo-
rithm that can integrate lexical knowledge from
different word sense inventories to train a general
semantic equivalence recognizer. 2) Without us-
ing task-specific training data, the general model
not only performs well on overall word senses

but demonstrates strong applicability to low-shot
senses. The general model can turn into an expert
model to achieve new state-of-the-art performance
after further fine-tuning.

2 Related Work

Supervised WSD Approaches. Most existing
WSD models are learned in a supervised manner
and depend on human-annotated data. For exam-
ple, Raganato et al. (2017a) regarded WSD as a se-
quence labeling task and trained a BiLSTM model
with self-attention using multiple auxiliary losses.
Luo et al. (2018a) introduced a hierarchical co-
attention mechanism to generate gloss and con-
text representations that can attend to each other.
More recently, several BERT-based models have
achieved new state-of-the-art performance on WSD
by fine-tuning a pretrained language model. Gloss-
BERT (Huang et al., 2019) appends each gloss to a
given context sentence to create pseudo sentences
and predicts them as either positive or negative de-
pending on whether the sense corresponds to the
correct sense or not. Bi-Encoder Model (BEM)
(Blevins and Zettlemoyer, 2020) represents the tar-
get words and senses in the same embedding space
using a context encoder and a gloss encoder but op-
timizes on each word individually. Yap et al. (2020)
formulated WSD as a relevance ranking task and
fine-tuned BERT to select the most probable sense
definition from candidate senses. The neural ar-
chitecture of our semantic equivalence recognizer
realizes the benefits of GlossBERT and BEM.
Knowledge-Based WSD Approaches. Closely
related to our work, many knowledge-based ap-
proaches rely on Lexical Knowledge Bases (LKB),
such as Wikipedia and WordNet, to enhance repre-
sentations of word senses. BabelNet (Navigli and
Ponzetto, 2010) creates a resource by automatically
mapping encyclopedic knowledge (Wikipedia) to
lexicographic knowledge (WordNet) with the aid
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Figure 2: Overview of our approach. The left part illustrates the gloss alignment algorithm where each blue circle
is a gloss containing one definition sentence and several example sentences. The right part is our model architecture
to predict the semantic equivalence of a word in context and a gloss by comparing their representations obtained
from a shared transformer encoder. Task-specific WSD datasets can be further used to fine-tune our model.

of Machine Translation. Lesk (Basile et al., 2014)
relies on a word-level similarity function to mea-
sure the semantic overlap between the context of
a word and each sense definition. SENSEMBERT
(Scarlini et al., 2020a) produces high-quality latent
semantic representations of word meanings by in-
corporating knowledge contained in BabelNet into
language models. Other approaches try to learn
better gloss embeddings by considering the Word-
Net graph structure (e.g., hypernyms, hyponyms,
synonyms, etc.) (Luo et al., 2018b; Loureiro and
Jorge, 2019; Kumar et al., 2019; Bevilacqua and
Navigli, 2020). For example, Kumar et al. (2019)
proposed EWISE to improve model’s performance
on rare or unseen senses by learning knowledge
graph embeddings from WordNet. Building upon
EWISE, Bevilacqua and Navigli (2020) developed
a hybrid approach that incorporates more lexical
knowledge (e.g., hypernymy, meronymy, similarity
in WordNet) into the model through synset graph
embeddings.

3 Overview of Our Approach

Figure 2 shows the overview of our approach. We
first collect all word glosses and corresponding
example sentences from six word sense invento-
ries. We next apply the gloss alignment algorithm
to find the best matching between two groups of
glosses retrieved from two different inventories for
every common keyword. By contrasting example
sentences with the correct glosses and incorrect
glosses within each inventory or across different
inventories, we automatically gather rich supervi-
sion for pretraining a universal binary classifier that
can determine whether the keyword in the context
sentence (example sentence) and a gloss are seman-
tically equivalent or not. The pretrained general
model can be directly used in downstream WSD
tasks or further fine-tuned to get an expert model.

Inventory Words Glosses ES Gls/W ES/W
Oxford 52.5K 86.2K 96.8K 1.6 1.8
Webster 39.8K 72.5K 100.6K 1.8 2.5
Collins 34.4K 61.4K 89.5K 1.8 2.6
Cambridge 36.6K 67.0K 64.9K 1.8 1.8
Longman 36.9K 63.8K 70.2K 1.7 1.9
WordNet 147.3K 206.9K 47.4K 1.4 0.3

Table 1: Statistics of six word sense inventories used
(phrases are included in word counting). ES: Example
Sentences; Gls/W: average glosses per word; ES/W: av-
erage example sentences per word.

4 Aligning Glosses across Word Sense
Inventories

4.1 Data Collection

We collected word sense inventory data by query-
ing WordNet 3.0 (Miller, 1995) and the elec-
tronic edition of five professional dictionaries for
advanced English learners: Oxford Advanced
Learner’s Dictionary (Turnbull, 2010), Merriam-
Webster’s Advanced Learner’s Dictionary (Perrault,
2008), Collins COBUILD Advanced Dictionary
(Sinclair, 2008), Cambridge Advanced Learner’s
Dictionary (Walter, 2008), and Longman Dictio-
nary of Contemporary English (Summers, 2003).
Advanced learners’ dictionaries have a good charac-
teristic that they usually provide abundant example
sentences to illustrate the usage of different word
senses in context, making it possible to generate
strong supervision for training a classifier. Table 1
shows statistics of six word sense inventories used.
In total, we collected 557.8K glosses and 469.4K
example sentences.

4.2 Gloss Alignment as a Maximum-weight
Matching Problem

Each word sense inventory is a lexical knowledge
bank that provides example sentences for illustrat-
ing word senses, including senses less frequently
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seen in the real world. Moreover, we observe that
different inventories usually provide parallel ex-
planations of meanings for a given word (Figure
1). Thus, if we can align explanations (glosses)
from different inventories according to meanings,
we can significantly expand lexical knowledge ac-
quired, especially for rare word senses. Essentially,
finding the best alignment between two groups of
glosses can be converted to Maximum-weight Bi-
partite Matching Problem (Cormen et al., 2009;
Duan and Pettie, 2014) that aims to find a matching
in a weighted bipartite graph that maximizes the
sum of weights of the edges.

4.3 Problem Formulation

Given a keyword, suppose we retrieved two word
sense sets S1 and S2 from two inventories, where
each set consists of a list of definition sentences
(glosses). Given a reward function r: S1×S2 → R,
we want to find a matching2 f : S1 → S2 such that
the total rewards

∑
a∈S1,f(a)∈S2

r(a, f(a)) is max-
imized. By finding the matching f , we will know
the best alignment between two word sense sets S1

and S2. In this paper, we use the sentence-level
textual similarity as the reward function to find the
best word sense alignment. To measure the tex-
tual similarity between two definition sentences,
we apply a pretrained model SBERT (Reimers and
Gurevych, 2019) that has achieved state-of-the-art
performance on many Semantic Textual Similarity
(STS) tasks and Paraphrase Detection tasks. Specif-
ically, we apply SBERT to S1 and S2 to get sen-
tence embeddings and then calculate cosine simi-
larity as the reward function.

4.4 Solving Bipartite Graph Matching by
Linear Programming

The Maximum-weight Graph Matching problem
can be solved by Linear Programming (Matousek
and Gärtner, 2007; Cormen et al., 2009). For sim-
plicity, let weight wij denotes the textural similarity
score between the ith definition sentence in S1 and
the jth definition sentence in S2. We next introduce
another variable xij for each edge (i, j). xij = 1
if the edge between i and j is contained in the
matching and xij = 0 otherwise. The total weight
of the matching is

∑
(i,j)∈S1×S2

wijxij . To reflect
every vertex is in exactly one edge in the match-

2Note that unbalanced matching (i.e., S1 and S2 are differ-
ent in size) can be reduced to balanced matching by adding
new vertices to the smaller part and assigning weight 0 to
edges pointing to them.

ing, we add constraints
∑

j∈S2
xij = 1 for i ∈ S1,

and
∑

i∈S1
xij = 1 for j ∈ S2, to guarantee that

the variable x represents a perfect matching. Our
goal is to find a maximum-weight perfect matching
such that above constraints are satisfied. To sum
up, aligning glosses between two word sense inven-
tories is equivalent to solving the following linear
integer programming problem:

max
{xij}

∑
(i,j)∈S1×S2

wijxij

s.t.
∑
j∈S2

xij = 1, i ∈ S1∑
i∈S1

xij = 1, j ∈ S2

xij ∈ {0, 1}, i ∈ S1, j ∈ S2

In our implementation, we consider all possible
inventory combinations (select two from six) and
apply the gloss alignment solver3 to all common
words shared by two inventories. For each word,
the gloss alignment solver is only applied to glosses
under the same POS category. Overall, we obtain
704K gloss alignment links.

4.5 Positive and Negative Training Instances

For a given word, the gloss alignment algorithm
provides us the linking from word sense set S1

in one inventory to S2 in another inventory. Two
glosses (e.g., g ∈ S1 and g′ ∈ S2) have the same
meaning if they are aligned by the algorithm or
have a different meaning if they are not aligned.
So we can pair the definition sentence of g (g′) to
each example sentence in g′ (g) to generate gloss-
context pairs for training the semantic equivalence
recognizer. Pairs are labeled as positive if g and g′

are aligned or negative otherwise4. In experiments,
we only consider aligned gloss pairs with textual
similarities above a threshold (see Section 6.1) to
further improve the quality of supervision. In to-
tal, we generate 421K positive and 538K negative
gloss-context pairs across different inventories.

Pairs are also generated by contrasting glosses
within each inventory individually. In detail, for
every word in an inventory, we pair the gloss sen-
tence with its example sentences to get positive
gloss-context pairs or pair the gloss sentence with
example sentences from another gloss within the

3Our implementation is based on Scipy library (https:
//www.scipy.org/).

4If S1 and S2 have a different number of glosses for a
given word, we ignore the extra glosses that are not aligned.

https://www.scipy.org/
https://www.scipy.org/
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inventory to get negative gloss-context pairs5. We
generate 1.3M positive and 418K negative gloss-
context pairs in this way. Similarly, we also gen-
erate context-context pairs by contrasting example
sentences in two glosses to reflect the task setting
of WiC (Section 6.3).

5 A Unified Neural Model for
Recognizing Semantic Equivalence

5.1 Model Architecture
This section introduces our model architecture (the
right part of Figure 2) for recognizing semantic
equivalence. Inspired by Blevins and Zettlemoyer
(2020), our model first uses an encoder to get the
semantic representation of the target word (within
its context sentence) or the gloss sentence. Next, by
comparing two representations, our model predicts
whether they are semantically equivalent or not.
Semantic Encoder. We apply a pretrained BERT
model to get the contextual word representation of
the target word (with its context) or the sentence
representation of the gloss sentence. Specifically,
given an input sentence S padded by the start sym-
bol [CLS] and the end symbol [SEP], we first
obtain N contextualized embeddings {oi}Ni=1 for
all tokens {ti}Ni=1 using BERT. We next select the
contextualized embedding at the target word posi-
tion6 when S is a context sentence, or select the
first output embedding o0 (corresponding to the
special token [CLS]) as the sentence representa-
tion when S is a gloss sentence.
Learning Objective. After deriving embeddings
using BERT, both representations u and v, together
with element-wise difference |u− v| and element-
wise multiplication u · v are concatenated and mul-
tiplied with the trained weight Wt ∈ R4n×2 with a
softmax prediction layer for binary classification
(semantically equivalent or not):

p = softmax(Wt[u, v, |u− v|, u · v])

where n is the dimension of the embeddings. Our
experiments consider two model sizes: SemEq-
Base that is initialized with the pretrained
BERTBase (Devlin et al., 2019) model with 12
transformer block layers, 768 hidden size, 12 self-
attention heads and SemEq-Large that is initial-
ized with the pretrained RoBERTaLarge (Liu et al.,

5We only contrast to glosses having the same POS tag to
get negative instances.

6If the target word is a phrase or the target word is to-
kenized into multiple subword pieces by the tokenizer, we
average all subword embeddings to get its representation.

Noun Verb Adj Adv ALL
Percentage 55.6% 20.6% 20.2% 2.5% 100%
Accuracy 0.90 0.81 0.88 0.85 0.87

Table 2: Accuracy of the Gloss Alignment Algorithm.

2019) model with 24 transformer block layers,
1024 hidden size, 16 self-attention heads7. We
train our model using binary cross-entropy loss and
AdamW (Loshchilov and Hutter, 2018) optimizer
with initial learning rate {1e-5, 5e-6, 2e-6}, 0.2
dropout, batch size 64 and 10 training epochs.

6 Evaluation

6.1 Accuracy of the Gloss Alignment
Algorithm

To evaluate the accuracy of the gloss alignment
algorithm, we randomly sample 1,000 gloss pairs
from 704K alignments and ask two human annota-
tors to judge whether two gloss sentences refer to
the same meaning or not. Two annotators labeled
200 gloss pairs in common and agreed on 94%
(188) of them, achieving the kappa inter-agreement
score of 0.74. One gloss pair is regarded as cor-
rect when both annotators label it as correct, and
the remaining 800 gloss pairs were evenly allo-
cated to two annotators to label. Table 2 shows
the accuracy of the gloss alignment algorithm on
each POS type based on human annotations. The
accuracy on Noun, Verb, Adjective and Adverb
words is 0.90, 0.81, 0.88 and 0.85, respectively,
with an overall accuracy of 0.87. In experiments,
we apply a threshold of 0.6 to alignment results
and only consider aligned gloss pairs with textual
similarities above it, which can further improve
gloss alignment accuracy to 0.98 based on human
annotations. In this way, we can significantly im-
prove the quality of training data that are generated
from the automatically aligned dictionaries.

6.2 Experiments on WSD

We evaluate our model on two WSD datasets, i.e.,
WSD tasks standardized by Raganato et al. (2017b)
that focuses on all-words WSD evaluation and
FEWS dataset proposed by Blevins et al. (2021)
that emphasizes low-shot WSD evaluation. Since
both datasets are annotated using word senses in
WordNet 3.0 (Miller, 1995), we pair the context
sentence with the annotated gloss in WordNet 3.0

7Our implementation was based on https://github.
com/huggingface/transformers.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Model difference Dev Test Concatenation of all Datasets
Models TS IK GS MS SE07 SE2 SE3 SE13 SE15 Noun Verb Adj Adv ALL

1 Most Frequent Sense 3 - - - 54.5 65.6 66.0 63.8 67.1 67.7 49.8 73.1 80.5 65.5
2 Leskemb (2014) 3 - 3 - 56.7 63.0 63.7 66.2 64.6 70.0 51.1 51.7 80.6 64.2
3 BiLSTM (2017a) 3 - - - - 71.1 68.4 64.8 68.3 69.5 55.9 76.2 82.4 68.4
4 HCAN (2018a) 3 - - - - 72.8 70.3 68.5 72.8 72.7 58.2 77.4 84.1 71.1
5 EWISE (2019) 3 - 3 - 67.3 73.8 71.1 69.4 74.5 74.0 60.2 78.0 82.1 71.8
6 LMMSBERT (2019) 3 - 3 L 68.1 76.3 75.6 75.1 77.0 - - - - 75.4
7 GlossBERT (2019) 3 - - B 72.5 77.7 75.2 76.1 80.4 79.3 66.9 78.2 86.4 77.0
8 BEM (2020) 3 - - B 74.5 79.4 77.4 79.7 81.7 81.4 68.5 83.0 87.9 79.0
9 AdaptBERTLarge (2020) 3 S - L 72.7 79.8 77.8 79.7 84.4 82.6 68.5 82.1 86.4 79.5
10 EWISER (2020) 3 S 3 L 75.2 80.8 79.0 80.7 81.8 82.9 69.4 83.6 87.3 80.1
11 SemEq-Base 3 - - B 72.7 79.0 77.2 78.0 80.8 81.0 67.1 81.7 86.7 78.2
Ours: Data Augmentation
12 SemEq-Base 3 M - B 73.2 81.2 77.7 79.1 81.5 81.9 68.9 83.2 87.6 79.4
Ours: Transfer Learning
13 SemEq-Base-General - M - B 65.7 75.3 70.9 78.0 79.8 78.2 61.3 81.2 80.3 74.8
14 SemEq-Base-Expert 3 M - B 74.1 81.0 78.5 79.9 82.6 82.5 69.9 82.5 88.4 79.9
15 SemEq-Large-General - M - L 65.1 76.1 74.3 78.0 83.0 79.1 64.7 82.3 81.8 76.4
16 SemEq-Large-Expert 3 M - L 74.9 81.8 79.6 81.2 81.8 83.2 71.1 83.2 87.9 80.7

Table 3: F1-score (%) on All-Words WSD benchmark datasets. We distinguish models based on 1) using the
Training Set (TS) SemCor or not, 2) using single (S) Inventory Knowledge (IK) (i.e., WordNet) or our multi-
source (M) inventory knowledge, 3) using WordNet synset Graph Structures (GS) or not, and 4) transformer
Model Size (MS) of Base (B) or Large (L). Baseline systems are: Leskemb (Basile et al., 2014), Babelfy (Moro
and Navigli, 2015), BiLSTM (Raganato et al., 2017a), HCAN (Luo et al., 2018a), EWISE (Kumar et al., 2019),
LMMSBERT (Loureiro and Jorge, 2019), GlossBERT (Huang et al., 2019), BEM (Blevins and Zettlemoyer, 2020),
AdaptBERTLarge (Yap et al., 2020), and EWISER (Bevilacqua and Navigli, 2020).

to generate positive gloss-context instances or other
glosses of the word to get negative gloss-context
instances for training. In validation or test, we ap-
ply the trained classifier to examine all possible
glosses of the target word in WordNet 3.0 and se-
lect the gloss with the highest probability score as
the prediction. To incorporate rich lexical knowl-
edge harvested from word sense inventories into
model training, we consider two strategies:

Data Augmentation. We directly augment the
build-in training set from each WSD dataset with
gloss-context pairs generated from our aligned
word sense inventories and then train the semantic
equivalence recognizer (SemEq) to do WSD.

Transfer Learning. We first train our semantic
equivalence recognizer ONLY using gloss-context
pairs generated from our aligned word sense in-
ventories. The trained classifier is a general model
(SemEq-General) capable of deciding whether a
gloss sentence and the target word in a context
sentence are semantically equivalent independent
from any specific word sense inventories. Next,
to evaluate on a specific WSD dataset, we further
fine-tune the general model on the build-in train-
ing set to get an expert model (SemEq-Expert).
The expert model can adapt to the new domain to
achieve better performance.

6.2.1 All-Words WSD Tasks

We evaluate our model on the all-words WSD
framework established by Raganato et al. (2017b).
The testing dataset contains 5 benchmark datasets
from previous Senseval and SemEval competi-
tions, including Senseval-2 (SE2) (Edmonds and
Cotton, 2001), Senseval-3 (SE3) (Mihalcea et al.,
2004), SemEval-07 (SE07) (Pradhan et al., 2007),
SemEval-13 (SE13) (Navigli et al., 2013), and
SemEval-15 (SE15) (Moro and Navigli, 2015). Fol-
lowing Raganato et al. (2017b) and other previous
work, we use SemCor (Miller et al., 1993) that con-
tains 226,036 annotated instances as the build-in
training set and choose SemEval-07 as the devel-
opment set for hyper-parameter tuning. Since all
datasets are mapped to word senses in WordNet
3.0 (Miller, 1995), we retrieve all definition sen-
tences of the target word from WordNet 3.0 to form
gloss-context pairs for both training and testing.

Table 3 shows experimental results on all-words
WSD datasets (Raganato et al., 2017b). We also
report models’ performance on each POS category.
The first section includes results of the most fre-
quent sense baseline and previous WSD models.

The second section presents results of our model
that adopt data augmentation strategy to incorpo-
rate multi-source inventory knowledge. SemEq-
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Figure 3: Evaluation (F1-score %) on the aggregated ALL set of All-Words WSD when we separate word senses
based on their training instance numbers in SemCor.

Base (line 11) is our model’s performance when
fine-tuning BERTBase sentence encoder only on the
build-in SemCor training set. Compared to line 11,
when augmenting SemCor with our multi-source
inventory knowledge, the same model (line 12) im-
proves the F1 on the aggregated ALL set by 1.2%.

The third section of Table 3 reports the results of
applying transfer learning strategy to exploiting
our multi-source inventory knowledge. By only
training on our multi-source inventory knowledge
(without using SemCor), our model SemEq-Base-
General (line 13) already achieves comparable per-
formance with LMMSBERT (line 6, which is based
on BERTLarge). After further fine-tuning on the
training set - Semcor, SemEq-Base-Expert (line
14) improves the performance on ALL to 79.9%,
which is slightly better than using the data aug-
mentation strategy. Moreover, increasing BERT
model parameters (line 16) further boosts the WSD
performance on ALL to 80.7%8.

Overall, our SemEq-Large-Expert model (line
16) consistently outperforms AdaptBERT (Yap
et al., 2020) (line 9), the previous best model with-
out using WordNet synset graph information, on
SE07, SE2, SE3 and SE13, attaining 1.2% higher
F1 on ALL. The SemEq-Large-Expert model also
better disambiguates all types of words includ-
ing nouns, verbs, adjectives, and adverbs than
AdaptBERT. It clearly demonstrates the benefits
of leveraging multiple word sense inventories via
automatic alignment and transfer learning. Our
final model is 0.6% higher even compared with
EWISER (Bevilacqua and Navigli, 2020) that uses
the extra WordNet graph knowledge. We can see
that by pretraining on lexical knowledge derived

8We also tried BERTLarge which is slightly worse than
RoBERTaLarge.

from aligned inventories, our model generalizes
more easily and better captures semantic equiva-
lence between the target word and a gloss sentence
for identifying the correct word meaning.

In order to understand our model’s behavior
of transferring semantic equivalence knowledge
from our word sense inventories to a specific WSD
task, we partition word senses in the test set into
groups according to their numbers of training in-
stances found in the training set SemCor. As
shown in Figure 3, by pretraining on our seman-
tic equivalence knowledge and then fine-tuning
on SemCor, SemEq-Base-Expert beats SemEq-
Base (SemCor) that is only trained on SemCor
across all annotation-rich and annotation-lacking
word senses. Interestingly, without fine-tuning on
SemCor, the general model (SemEq-Base-General)
works surprisingly well on low-shot senses, which
is 13.1%, 8.1% and 5.6% higher than SemEq-Base
(SemCor) on 0 shot, 1-2 shot, 3-5 shot senses, re-
spectively. After fine-tuning on SemCor, the expert
models fit to the distribution of senses in the real
world and achieve better overall performance.

6.2.2 Few-Shot and Zero-Shot WSD Tasks

By pretraining on massive semantic equivalence
knowledge generated from aligned word sense in-
ventories, we expect our model performs better on
annotation-lacking senses. We next evaluate our
model on the FEWS dataset (Blevins et al., 2021),
a new WSD dataset that focuses on low-shot WSD
evaluation. FEWS is a comprehensive evaluation
dataset constructed from Wiktionary and covers
35K polysemous words and 71K senses. Overall,
the build-in training set of FEWS consists 87K sen-
tence instances. The test (development) set consists
of two evaluation subsets, i.e., a few-shot evalua-
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Dev Test
Models TS Full Set Few-shot Zero-shot Full Set Few-shot Zero-shot

1 Most Frequent Sense 3 26.4 52.8 0.0 25.7 51.5 0.0
2 Leskemb (Basile et al., 2014) 3 42.5 44.9 40.1 41.5 44.1 39.0
3 BEM(Blevins and Zettlemoyer, 2020) 3 73.8 79.3 68.3 72.8 79.1 66.5
4 BEMSemCor (Blevins et al., 2021) 3 74.4 79.7 69.0 73.0 78.9 67.1
5 SemEq-Base 3 73.5 78.7 68.3 72.4 78.5 66.3
Ours: Data Augmentation
6 SemEq-Base (+ WSI) 3 74.2 78.4 69.9 73.7 78.6 68.7
Ours: Transfer Learning
7 SemEq-Base-General - 68.2 68.6 67.8 67.0 67.7 66.3
8 SemEq-Base-Expert 3 76.0 80.4 71.5 75.2 80.1 70.2
9 SemEq-Large-General - 70.7 70.9 70.5 69.8 71.2 68.4
10 SemEq-Large-Expert 3 77.8 81.8 73.7 77.3 82.3 72.2

Table 4: F1-score (%) on the FEWS Low-Shot WSD benchmark dataset. WSI refers to knowledge extracted from
aligned Word Sense Inventories. TS stands for the Training Set of FEWS.

Model Acc. Parameters
BERTLarge (Devlin et al., 2019) 69.6 340M
RoBERTaLarge (Liu et al., 2019) 69.9 355M
KnowBERTW+W (Peters et al., 2019) 70.9 523M
SenseBERTLarge (Levine et al., 2020) 72.1 380M
T5-Large (Raffel et al., 2020) 69.3 770M
T5-3B (Raffel et al., 2020) 72.1 3000M
BERTARES (Scarlini et al., 2020b) 72.2 342M
SemEq-Large (+WSI) 75.9 355M

Table 5: Accuracy (%) on the WiC benchmark dataset.

tion set and a zero-shot evaluation set; each subset
contains 5K instances. Word senses that are used
in zero-shot evaluation sets are verified to not oc-
cur in the training set, and word senses in few-shot
evaluation sets will only occur 2 to 4 times in the
training set.

Table 4 presents the results on FEWS.
BEMSemCor (line 4) is a similar transfer learning
model but fine-tuned on SemCor before training on
FEWS while BEM (line 3) only trains on FEWS.
The second section of Table 4 shows that augment-
ing the FEWS train set with our multi-source inven-
tory knowledge (line 6) greatly improves zero-shot
learning performance by 1.6% on the dev set and
2.4% on the test set (compared with line 5). Surpris-
ingly, when we adopt the transfer learning strategy,
the final SemEq-Large-Expert (line 10) model’s
performance on test sets increases to 82.3% on few-
shot senses and 72.2% on zero-shot senses, which
significantly outperforms all baseline models.

6.3 Experiments on Context-Sensitive Word
Meanings

Word-in-Context (WiC) Task (Pilehvar and
Camacho-Collados, 2019) from SuperGLUE
benchmark (Wang et al., 2019) provides a high-

quality dataset for the evaluation of context-
sensitive word meanings. WiC removes predefined
word senses and reduces meaning identification
to a binary classification problem in which, given
two sentences containing the same lemma word,
a model is asked to predict whether the two tar-
get words have the same meaning. Considering
WiC uses WordNet as one lexical resource in its
data construction, we completely remove WordNet
from our inventory knowledge to avoid data leak-
ing. Specifically, we simply add context-context
pairs9 generated from the other five inventories to
the training set of WiC to train a semantic equiv-
alence recognizer. Table 5 shows results on the
WiC task comparing to other models10. The re-
sults indicate that incorporating semantic equiva-
lence knowledge from aligned inventories improves
RoBERTaLarge’s performance by 6%, which also
surpasses a large language model T5-3B (9X pa-
rameters) by 3.8%. It demonstrates the superiority
of incorporating our high-quality multi-source lexi-
cal knowledge than blindly increasing the size of
plain pretraining texts in language models.

7 Conclusion

Based on the observation that glosses of a word
from different inventories usually are different ex-
pressions of a few meanings, we have proposed
a gloss alignment algorithm that can unify differ-
ent lexical resources as a whole to generate abun-
dant semantic equivalence knowledge. The general
model pretrained on derived equivalence knowl-
edge can serve as a universal recognizer for word

9We generate 3.3M positive pairs and 1.7M negative pairs.
10We submit our model predictions to the competi-

tion page of WiC (https://competitions.codalab.
org/competitions) to get the test results.

https://competitions.codalab.org/competitions 
https://competitions.codalab.org/competitions 
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meanings in context or adapt to a specific WSD
task by fine-tuning to achieve new state-of-the-art
performance. Our results also point to an inter-
esting future research direction: how to develop a
robust fine-tuning approach that is able to retain the
excellent performance of the general model on low-
resource senses while still improving performance
on high-resource senses.

Ethical Considerations

Copyrights of data used in this paper belong to their
respective owners. The authors are permitted to use
data under the permission of the non-commercial
research purpose and following the principle of
fair use. The authors will not reproduce, republish,
distribute, transmit, or link data used on any other
website without the express permission of respec-
tive owners. The authors bear the responsibility to
comply with the rules of copyright holders.
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