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Abstract

How to effectively adapt neural machine trans-
lation (NMT) models according to emerging
cases without retraining? Despite the great
success of neural machine translation, updat-
ing the deployed models online remains a chal-
lenge. Existing non-parametric approaches
that retrieve similar examples from a database
to guide the translation process are promising
but are prone to overfit the retrieved examples.
However, non-parametric methods are prone
to overfit the retrieved examples. In this work,
we propose to learn Kernel-Smoothed Transla-
tion with Example Retrieval (KSTER), an ef-
fective approach to adapt neural machine trans-
lation models online. Experiments on domain
adaptation and multi-domain machine transla-
tion datasets show that even without expen-
sive retraining, KSTER is able to achieve im-
provement of 1.1 to 1.5 BLEU scores over
the best existing online adaptation methods.
The code and trained models are released at
https://github.com/jiangqn/KSTER.

1 Introduction

Over the past years, end-to-end Neural Machine
Translation (NMT) models have achieved great
success (Bahdanau et al., 2015; Wu et al., 2016;
Vaswani et al., 2017). How to effectively update a
deployed NMT model and adapt to emerging cases?
For example, after a generic NMT model trained
on WMT data, a customer wants to use service to
translate financial documents. The costomer may
have a handful of translation pairs for the finance
domain, but do not have the capacity to perform a
full retraining.

Non-parametric adaptation methods enable in-
corporating individual examples on-the-fly, by re-
trieving similar source-target pairs from an external
database to guide the translation process (Bapna
and Firat, 2019; Gu et al., 2018; Zhang et al., 2018;
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Figure 1: The domain-specific and general domain
translation performance in EN-DE translation. Base
is a Transformer model trained on general domain
WMT data. kNN-MT and our proposed KSTER are
adapted for domain-specific translation with in-domain
database. Both kNN-MT and KSTER achieve improve-
ments over Base in domain-specific translation perfor-
mance. But kNN-MT overfits to in-domain data and
performs bad in general domain translation, while the
proposed KSTER achieves comparable general domain
translation performance with Base.

Cao and Xiong, 2018). The external database can
be easily updated online. Most of these methods
rely on effective sentence-level retrieval. Different
from sentence retrieval, k-nearest-neighbour ma-
chine translation introduces token level retrieval to
improve translation (Khandelwal et al., 2021). It
shows promising results for online domain adapta-
tion.

There are still limitations for existing non-
parametric methods for online adaptation. First,
since it is not easy for sentence-level retrieval to
find examples that are similar enough to the test
example, this low overlap between test examples

https://github.com/jiangqn/KSTER
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and retrieved examples brings noise to transla-
tion (Bapna and Firat, 2019). Second, completely
non-parametric methods are prone to overfit the re-
trieved examples. For example, although kNN-MT
improves domain-specific translation, it overfits
severely and can not generalize to the general do-
main, as is shown in Figure 1. An ideal online
adaptation method should introduce less noise to
the translation process and generalize to the change-
ful test examples with the incrementally changing
database.

In this paper, we propose to learn Kernel-
Smoothed Translation with Example Retrieval
(KSTER), to effectively learn and adapt neural ma-
chine translation online. KSTER retains the online
adaptation advantage of non-parametric methods
and avoids the drawback of easy overfitting. More
specifically, KSTER improves the generalization
ability of non-parametric methods in three aspects.
First, we introduce a learnable kernel to dynam-
ically measure the relevance of the retrieved ex-
amples based on the current context. Then, the
exampled-based distribution is combined with the
model-based distribution computed by NMT with
adaptive mixing weight for next word prediction.
Further, to make the learning of KSTER stable, we
introduce a retrieval dropout strategy. The intuition
is that similar examples can constantly be retrieved
during training, but not the same situation during
inference. We therefore drop the most similar ex-
amples during training to reduce this discrepancy.

With above improvements, KSTER shows the
following advantages:

• Extensive experiments show that, KSTER out-
performs kNN-MT, a strong competitor, in
specific domains for 1.1 to 1.5 BLEU scores
while keeping the performance in general do-
main.

• KSTER outperforms kNN-MT for 1.8 BLEU
scores on average in unseen domains. There-
fore, there is no strong restriction of the input
domain, which makes KSTER much more
practical for industry applications.

2 Related Work

This work is mostly related to two research areas in
machine translation (MT), i.e., domain adaptation
for machine translation and online adaptation of
MT models by non-parametric retrieval.

Domain Adaptation for MT Domain adapta-
tion for MT aims to adapt general domain MT mod-

els for domain-specific language translation (Chu
and Wang, 2018). The most popular method for
this task is finetuning general domain MT models
on in-domain data. However, finetuning suffers
from the notorious catastrophic forgetting prob-
lem (McCloskey and Cohen, 1989; Santoro et al.,
2016). There are also some sparse domain adapta-
tion methods that only update part of the MT pa-
rameters (Bapna et al., 2019; Wuebker et al., 2018;
Guo et al., 2021).

In real-world translation applications, the do-
main labels of test examples are often not available.
This dilemma inspires a closely related research
area — multi-domain machine translation (Pham
et al., 2021; Farajian et al., 2017; Liang et al., 2020;
Lin et al., 2021; Zhu et al., 2021), where one model
translates sentences from all domains.

Online Adaptation of MT by Non-parametric
Retrieval Non-parametric methods enable on-
line adaptation of deployed NMT models by updat-
ing the database from which similar examples are
retrieved.

Traditional non-parametric methods search
sentence-level examples to guide the translation
process (Cao and Xiong, 2018; Gu et al., 2018;
Zhang et al., 2018). Recently, n-gram level (Bapna
and Firat, 2019) and token level (Khandelwal et al.,
2021) retrieval are introduced and shows strong
empirical results. Generally, similar examples are
retrieved based on fuzzy matching (Bulte and Tez-
can, 2019; Xu et al., 2020), embedding similarity,
or a mixture of the two approaches (Bapna and
Firat, 2019).

3 Methodology

In this section, we first formulate the kernel-
smoothed machine translation (KSTER), which
smooths neural machine translation (NMT) output
with retrieved token level examples. Then we in-
troduce the modeling and training of the learnable
kernel and adaptive mixing weight. The overview
of KSTER is shown in Figure 2.

3.1 Kernel-Smoothed Machine Translation
Base Model for Neural Machine Translation
The state-of-the-art NMT models are based on
the encoder-decoder architecture. The encoder en-
codes the source text x into a sequence of hidden
states. The decoder takes the representations of the
source text as input and generates target text auto-
regressively. In each decoding step, the decoder
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Figure 2: Overview of the KSTER. The left part is the
NMT model denoted as base model. The right part
shows the process of retrieving similar examples and
estimating the example-based distribution.

predicts the probability distribution of next tokens
pm(yi|x, ŷ<i; θ) conditioned on the source text x
and previously generated target tokens ŷ<i. The
NMT model parameters are denoted as θ.

Kernel Smoothing with Retrieved Examples
The model-based distribution pm(yi|x, ŷ<i; θ) is
then smoothed by an example-based distribution
pe(yi|x, ŷ<i). It is computed using kernel density
estimation (KDE) on retrieved examples.

We build a database from which similar exam-
ples are retrieved. The database consists of all
token level examples from the training set in the
form of key-value pairs. In each key-value pair
(k, v), the key k = fNMT(x, y<i; θ) is the interme-
diate representation of a certain layer in the NMT
decoder. The value is the corresponding ground
truth target token yi. The key k can be seen as a
vector representation of the context of value v. We
obtain the key-value pairs from (x, y) by running
force-decoding with a trained NMT model.

In each decoding step, we compute the query
qi = fNMT(x, ŷ<i; θ) and retrieve k similar exam-
ples based on the L2 distance 1 query and keys.
Each retrieved example forms a triple (kj , vj , dj),
where kj is the key; vj is the corresponding value
token and dj is the L2 distance between query
qi and key kj . The example-based distribution
pe(yi|x, ŷ<i) is then computed with these retrieved

1For two d-dimension vectors x and y, we compute the

L2 distance between x and y as
√∑d

i=1(xi − yi)2.
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Figure 3: A visualization of example-based distribution
estimated by Gaussian kernel KDE with different band-
width. Bandwidth controls the smoothness of example-
based distribution.

examples using the following equation.

pe(yi|x, ŷ<i) =
∑

yi=vj
K(qi,kj ;σ)∑

jK(qi,kj ;σ)
(1)

where K(q,k;σ) is the kernel function and σ is
the parameter of the kernel.

Finally, the NMT output is smoothed by comb-
ing the model-based distribution and the example-
based distribution with a mixing weight λ.

p(yi|x, ŷ<i; θ) = λpe(yi|x, ŷ<i) (2)

+ (1− λ)pm(yi|x, ŷ<i; θ) (3)

3.2 Learnable Kernel Function
Although all kernel functions can be used in KDE,
we choose two specific kernels in this study —
Gaussian kernel and Laplacian kernel, since they
are easy to parameterize.

The only parameter in Gaussian kernel
Kg(qi,kj ;σ) = exp(−‖qi−kj‖2

σ ) is the band-
width σ, it controls the smoothness of the example-
based distribution, as is shown in Figure 3.

In a learnable Gaussian kernel, the bandwidth is
not a fixed hyper-parameter. Instead, it is estimated
in each decoding step by a learned affine network
with exponential activation.

σ = exp(W1[hi;ki] + b1) (4)

ki = 1
k

∑k
j=1 kj is average-pooled keys and

[W1;b1] are trainable parameters.
The bandwidth of learnable Laplacian kernel

Kl(qi,kj ;σ) = exp(−‖qi−kj‖
σ ) is modeled in the

same way as the bandwidth of learnable Gaussian
kernel.
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Law Medical Koran IT Subtitles
Train 467k 248k 18k 223k 500k
Dev 2k 2k 2k 2k 2k
Test 2k 2k 2k 2k 2k

Table 1: The number of training, development and test
examples of 5 domain-specific datasets. The training
data of Subtitles domain is sampled from the full Sub-
titles training set by Aharoni and Goldberg (2020).

3.3 Adaptive Mixing of Base Prediction and
Retrieved Examples

To mix the model-based distribution and example-
based distribution adaptively, we model the mixing
weight λ with a learnable neural network.

The mixing weight λ is computed by a multi-
layer perceptron with query qi and weighted sum
of keys k̃ as inputs, where [W2;b2;W3;b3] are
trainable parameters.

λ = sigmoid(W3ReLU(W2[qi; k̃i] + b2) + b3)
(5)

k̃i =
k∑
j=1

wjkj (6)

wj ∝ K(qi,kj ; θ) (7)

In this way, kNN-MT (Khandelwal et al., 2021)
could be seen as a specific case of KSTER, with
fixed Gaussian kernel and mixing weight.

3.4 Training
We optimize the KSTER model by minimizing the
cross entropy loss between the mixed distribution
and ground truth target tokens:

min
φ
−

n∑
i=1

log p(yi|x, y<i; θ, φ) (8)

where n is the length of a target sentence y.
We keep the NMT model parameters θ fixed.

Only parameters of learnable kernel and mix-
ing weight φ = [W1;b1;W2;b2;W3;b3] are
trained.

3.5 Retrieval Dropout
Since the database is built from the training data
and KSTER is trained on the training data, simi-
lar examples can constantly be retrieved from the
database during training. However, in test time,
there may be no example in the database that is
similar to the query. This discrepancy between
training and inference may lead to overfitting.

Law Medical Koran IT Subtitles
EN-DE 16.1M 6.5M 0.5M 3.4M 6.3M
DE-EN 15.8M 6.2M 0.5M 3.0M 6.4M

Table 2: The database size — number of examples, of
each domain in DAMT.

We propose a simple training strategy called re-
trieval dropout to alleviate this problem. During
training, we search top k + 1 similar examples in-
stead of top k examples. Then we drop the most
similar example and use the remaining k examples
for training. Retrieval dropout is not used in test
time.

4 Experiments

We evaluate the proposed methods on two machine
translation tasks: domain adaptation for machine
translation (DAMT) and multi-domain machine
translation (MDMT). In DAMT, in-domain transla-
tion model is built for each specific domain, since
the domain labels of examples are available in test
time. In MDMT, the domain labels of examples
are not available in test time, so examples from all
domains are translated with one model, which is a
more practical setting.

4.1 Datasets and Implementation Details

Datasets We conduct experiments in EN-DE
translation and DE-EN translation. We use
WMT14 EN-DE dataset (Bojar et al., 2014) as gen-
eral domain training data, which consists of 4.5M
sentence pairs. newstest2013 and newstest2014 are
used as the general domain development set and
test set, respectively. 5 domain-specific datasets
proposed by Koehn and Knowles (2017) and re-
splited by Aharoni and Goldberg (2020)2 are used
to evaluate the domain-specific translation perfor-
mance. The detailed statistics of the 5 datasets are
shown in Table 1.

Implementation Details We use joint Byte Pair
Encoding (BPE) (Sennrich et al., 2016) with
30k merge operations for subword segmentation.
The resulted vocabulary is shared between source
and target languages. We employ Transformer
Base (Vaswani et al., 2017) as the base model. Fol-
lowing Khandelwal et al. (2021), the normalized
inputs of feed forward network in the last Trans-
former decoder block are used as keys to build the

2https://github.com/roeeaharoni/unsupervised-domain-
clusters

https://github.com/roeeaharoni/unsupervised-domain-clusters
https://github.com/roeeaharoni/unsupervised-domain-clusters
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Direction Methods Law Medical Koran IT Subtitles Average-specific Average-general (WMT14)

EN-DE

Base 33.36 30.54 10.16 22.99 20.65 23.54 27.20
Finetuning 49.07 47.10 25.98 36.28 26.00 36.89 14.17
kNN-MT 51.88 47.02 18.51 29.12 22.46 33.80 8.32
KSTER 53.63 49.18 19.10 30.28 22.54 34.95 25.63

DE-EN

Base 36.80 33.36 11.24 29.21 23.13 26.75 31.49
Finetuning 55.19 51.35 22.87 41.88 28.33 39.92 17.82
kNN-MT 57.40 50.92 15.74 34.92 25.38 36.87 13.18
KSTER 59.41 53.40 16.97 35.74 25.94 38.29 30.23

Table 3: Test set BLEU scores of DAMT. Laplacian kernel is used in KSTER. Average-specific and average-
general domain represent the averaged performance of adapted models in domain-specific translation and general
domain translation. KSTER outperforms kNN-MT for 1.2 and 1.4 BLEU scores on average in EN-DE and DE-EN
directions. Significance test by paired bootstrap resampling shows that KSTER outperforms kNN-MT significantly
in all domains except for Subtitles domain in EN-DE translation and IT domain in DE-EN translation.

databases and queries for retrieval. The translation
performance is evaluated with detokenized BLEU
scores (Papineni et al., 2002), computed by Sacre-
BLEU (Post, 2018) 3.

We build a FAISS (Johnson et al., 2017) index
for nearest neighbour search. We employ inverted
file and product quantization to accelerate retrieval
in large scale databases. The keys of examples are
stored in the fp16 format to reduce the memory
demand. We set k = 16 to keep a balance between
translation quality and inference speed.

We train the base model for 200k steps. The
best 5 checkpoints are averaged to obtain the fi-
nal model. We train KSTER for 30k steps. For
the training procedures of all models, each batch
contains 32,768 tokens approximately. The models
are optimized by Adam optimizer (Kingma and Ba,
2015) with learning rates set to 0.0002.

KSTER introduced 526k trainable parameters,
which is 0.85% of the base model. We implement
all the models based on JoeyNMT (Kreutzer et al.,
2019) 4.

4.2 Domain Adaptation for Machine
Translation

We build individual database for each specific do-
main with in-domain training data in DAMT. The
sizes of databases are shown in Table 2.

Baselines We compare the proposed method
with the following baselines.

• Base base model trained on general-domain
data.

• Finetuning base model trained on general
domain dataset and then finetuned with in-
domain data for each specific domain individ-
ually.

3https://github.com/mjpost/sacrebleu
4https://github.com/joeynmt/joeynmt

Method EN-DE DE-EN
kNN-MT 33.80 36.87

+ 10% source noise 31.26 (-2.54) /
+ 10% target noise / 33.43 (-3.44)

KSTER 34.78 38.17
+ 10% source noise 32.89 (-1.89) /
+ 10% target noise / 35.67 (-2.50)

Table 4: The averaged BLEU scores over 5 specific do-
mains in DAMT with noisy database. KSTER is more
robust than kNN-MT when the quality of database is
not good.

• kNN-MT kNN-MT with in-domain database
individually, where the hyper-parameters are
tuned on development set of each domain.

The KSTER model is trained for each specific
domain individually for fair comparison .

Main results The DAMT experiment results are
shown in Table 3. For domain-specific transla-
tion, KSTER outperforms kNN-MT for 1.2 and
1.4 BLEU scores on average in EN-DE and DE-EN
translation respectively. Finetuning achieves best
domain-specific performance on average. However,
the performance of finetuned models on general do-
main drops significantly due to the catastrophic
forgetting problem. The even worse general do-
main performance of kNN-MT indicates that it
overfits to the retrieved examples severely. KSTER
performs far better than finetuning and kNN-MT in
general domain, which shows strong generalization
ability. We notice that KSTER with Laplacian ker-
nel performs slightly better than Gaussian kernel,
since KSTER with Gaussian kernel tends to ignore
the long-tailed retrieved examples.

Robustness test The performance of MT model
with non-parametric retrieval is influenced by the
size and quality of database. Khandelwal et al.
(2021) have studied how translation performance

https://github.com/mjpost/sacrebleu
https://github.com/joeynmt/joeynmt
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Direction Methods General (WMT14) Law Medical Koran IT Subtitles Average-specific

EN-DE

Base 27.20 33.36 30.54 10.16 22.99 20.65 23.54
Joint-training 27.25 45.02 44.52 15.43 34.48 25.16 32.92
kNN-MT 24.72 51.24 46.54 16.29 29.55 21.80 33.08
KSTER 27.69 53.04 49.23 15.94 31.82 22.63 34.53

DE-EN

Base 31.49 36.80 33.36 11.24 29.21 23.13 26.75
Joint-training 31.62 50.95 47.48 18.13 39.57 27.73 36.77
kNN-MT 25.87 57.38 50.83 14.57 37.56 22.86 36.64
KSTER 31.94 58.64 52.79 15.24 36.90 25.15 37.74

Table 5: Test set BLEU scores of multi-domain machine translation. Average-specific is the averaged performance
in 5 specific domains. For general domain sentence translation, KSTER outperforms kNN-MT for 3 and 6 BLEU
scores in EN-DE and DE-EN direction respectively. For domain-specific translation, KSTER outperforms kNN-
MT for 1.5 and 1.1 BLEU scores in EN-DE and DE-EN direction. Significance test by paired bootstrap (Koehn,
2004) resampling shows that KSTER outperforms kNN-MT significantly in all domains except for Koran domain
in EN-DE translation and IT domain in DE-EN translation.

of kNN-MT changes with the size of database. In
this work, we study the performance change of
kNN-MT and KSTER with low-quality database.
Specifically, we test the robustness of these models
in DAMT when the database is noisy.

We add token-level noise to the English sen-
tences in parallel training data by EDA (Wei and
Zou, 2019) 5. For each word in a sentence, it is
modified with a probability of 0.1. The candidate
modifications contain synonym replacement, ran-
dom insertion, random swap and random deletion
with equal probability. Then we use the noisy train-
ing data to construct the noisy database.

We study the effects of source side noise and
target side noise on translation performance. The
experiment results are presented in Table 4. Target
side noise has more negative effect to translation
performance than source side noise. The BLEU
scores of KSTER drop less apparently in all set-
tings, which indicates that the proposed method is
more robust with low-quality database.

4.3 Multi-Domain Machine Translation

In MDMT, since there is no domain label available
in test time, examples from all domains are trans-
lated with one model. We build a mixed database
with training data of general domain and 5 specific
domains, which is used in all MDMT experiments.
The mixed database for EN-DE translation and DE-
EN translation contains 172M and 167M key-value
pairs respectively.

Baselines We compare the proposed method
with the following baselines.

5We do not experiment with adding noise to the German
side, since German WordNet is not available for us, which is
necessary for synonym replacement
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Figure 4: General domain and averaged domain-
specific performance of kNN-MT with different hyper-
parameter selections in DE-EN direction, together with
the performance of Base and KSTER with Gaussian
kernel.

• Base base model trained on general domain
dataset.

• Joint-training base model trained on the mix-
ture of general domain dataset and 5 specific
domain datasets.

• kNN-MT kNN-MT with mixed database.
The hyper-parameters are selected that
achieve highest averaged development set
BLEU scores over general domain and 5 spe-
cific domains.

We sample 500k training examples from general
domain training set, which are then mixed with all
5 specific domain training examples for KSTER
training.

Main results The experiment results of MDMT
are shown in Table 5. For general domain sen-
tence translation, KSTER outperforms kNN-MT
for 3 and 6 BLEU scores in EN-DE and DE-EN
direction respectively. For domain-specific trans-
lation, KSTER outperforms kNN-MT for 1.5 and
1.1 BLEU scores in EN-DE and DE-EN direction.
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Figure 5: The bandwidth and mixing weight distribu-
tion of KSTER with Gaussian kernel.

Besides, KSTER also outperforms joint-training
in both general domain performance and averaged
domain-specific performance significantly. The
proposed method achieves advantages over joint-
training in both online adaptation and translation
performance.

General-specific domain performance trade-off
We plot the general domain performance and av-
eraged domain-specific performance of kNN-MT
with different hyper-parameter selections in Fig-
ure 4. We find that kNN-MT performs better in
domain-specific translation when the system pre-
diction relies more on the searched examples (low
bandwidth and higher mixing weight). In contrast,
better general domain translation performance is
achieved when the system prediction relies more on
NMT prediction (high bandwidth and low mixing
weight).

There is a trade-off between general and specific
domain performance in kNN-MT. Applying the
identical kernel and mixing weight for all test ex-
amples can not achieve best performance in general
domain and specific domains simultaneously.

KSTER with Gaussian kernel, which is a gener-
alization of kNN-MT, achieves better performance
in both general domain and domain-specific trans-
lation since it applies adaptive kernel and mixing
weight for different test examples. Distributions in
Figure 5 indicates that KSTER learns different ker-
nels and different weights for different examples.

Generalization ability over unseen domains
We test the generalization ability of baselines and

Method Bible QED Averaged
Base 12.51 25.21 18.86

Joint-training 12.69 25.90 19.30
kNN-MT 12.35 23.56 17.96

KSTER (Laplacian) 13.32 26.16 19.74

Table 6: The test set BLEU scores of MDMT models
in unseen domains. KSTER generalizes better than all
baselines in unseen domains.

EN-DE DE-EN
General Specific General Specific

None 24.72 33.08 25.87 36.64
Kernel 26.06 33.40 27.89 37.37
Weight 27.80 34.02 31.88 37.19
Both 27.74 34.38 31.94 37.61

Table 7: Ablation study of learnable kernel and mix-
ing weight in KSTER with Gaussian kernel in MDMT.
Both learnable kernel and learnable mixing weight
bring improvement. None represents that both kernel
and mixing weight are fixed, in which case KSTER de-
generates to kNN-MT.

KSTER with Laplacian kernel in unseen domains,
which is important in real-world MDMT applica-
tions. We take Bible and QED from OPUS (Tiede-
mann, 2012)6 as unseen domains and randomly
sample 2k examples from each domain for test.
We directly use the MDMT models to translate
sentences from unseen domains. The results of EN-
DE translation are presented in Table 6. KSTER
outperforms all baselines, which shows strong gen-
eralization ability.

4.4 Inference Speed

A common concern about non-parametric methods
in MT is that searching similar examples may slow
the inference speed. We test the inference speed
KSTER in MDMT in EN-DE translation, which is
the setting with the largest database. The averaged
inference time in general domain and 5 specific do-
main test sets of kNN-MT is 1.15 times of the base
model. The averaged inference time of KSTER is
1.19 times of the base model, which is only slightly
slower than the baselines.

5 Analysis

In this section, we first conduct ablation studies to
verify the effectiveness of each part of the proposed
method. Then we conduct detailed analysis on how
kernel-smoothing with retrieved examples helps
translation.

6https://opus.nlpl.eu/

https://opus.nlpl.eu/
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Figure 6: The ablation study of k selections in DAMT
and MDMT settings in EN-DE translation. In DAMT,
we report the averaged performance on 5 specific do-
mains. In MDMT, we report the averaged performance
on general domain and 5 specific domains. With all k
selections, KSTER outperforms kNN-MT consistently.

5.1 Ablation Studies of Proposed Methods

Both learnable kernel and learnable mixing
weight bring improvement In KSTER, both the
kernel and mixing weight are learnable. We study
the effect of keeping only one of the two parts
learnable in MDMT.

We take KSTER with Gaussian kernel for analy-
sis. The ablation experiment results are presented
in Table 7.

Both learnable kernel and learnable mixing
weight bring improvement in both general domain
and domain-specific translation. Keeping the two
parts learnable simultaneously brings additional
improvement. Overall, learnable mixing weight is
more important than learnable kernel function.

KSTER outperforms kNN-MT with all k selec-
tions We conduct ablation study over different
k selections in both DAMT and MDMT settings
in EN-DE translation. We experiment with four k
selections — {4, 8, 16, 32}, and plot the results in
Figure 6. In DAMT, KSTER achieves best perfor-
mance with k = 16. In MDMT, the performance of
our method increases with k. With all k selections,
KSTER outperforms kNN-MT consistently.

Retrieval dropout improves generalization
We study the effect of retrieval dropout in MDMT
and select the KSTER with Laplacian kernel for
analysis.

We plot the general domain and averaged
domain-specific translation performance of models
trained with or without retrieval dropout in Figure
7. Without retrieval dropout, the performance of
both general domain and domain-specific transla-
tion drops dramatically. The discrepancy between
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Domain-specific performance
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Figure 7: The ablation study of KSTER with Laplacian
kernel in MDMT. Without retrieval dropout, KSTER
overfits severely.

training and inference leads to severe overfitting.
This problem is alleviated by the proposed retrieval
dropout, which shows that this training strategy
improves the generalization ability of KSTER.

5.2 Fine-grained Effects of Kernel-smoothing
with Retrieved Examples on Translation

For better understanding the effects of kernel-
smoothing with retrieved examples on translation,
we study the following two research questions.

- RQ1. Which types of word kernel-smoothing
influences most?

- RQ2. Does kernel-smoothing help word sense
disambiguation?

Kernel-smoothing influences verbs, adverbs
and nouns most To study the first research ques-
tion, we categorize the predicted words with their
Part-of-Speech tags (POS tags). In each decod-
ing step, if the predicted word yi obtains the high-
est probability of example-based distribution but it
does not obtain the highest probability of model-
based distribution, it is recognized as a prediction
determined by kernel-smoothing with retrieved ex-
amples.

We compute the ratio of predictions determined
by kernel-smoothing across different POS tags. We
conduct this analysis on DAMT task in EN-DE
direction and select Medical and Subtitles domains
as representatives.

We report the results in Figure 8. Medical and
Subtitles represent two opposite cases where non-
parametric retrieval contributes more in the for-
mer and contributes less in the latter. We find that
across the 2 different domains, kernel-smoothing
contributes most to the predictions of verbs, ad-
verbs and nouns, which are morphologically com-
plex word types. Retrieving words in similar con-
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Figure 8: The ratio of word predictions determined by
kernel-smoothing. Kernel-smoothing influences verbs,
adverbs and nouns most.

text may helps selecting the correct form of mor-
phologically complex words.

Kernel-smoothing helps word sense disam-
biguation In kernel-smoothing, we search exam-
ples with similar keys — contextualized hidden
states. We hypothesize that the retrieved examples
contains useful context information which helps
word sense disambiguation. We test this hypothe-
sis with contrastive translation pairs.

A contrastive translation pair contains a source,
a reference and one or more contrastive transla-
tions. Contrastive translations are constructed by
replacing a word in reference with a word which
is another translation of an ambiguous word in the
source. NMT systems are used to score reference
and contrastive translations. If an NMT system
assign higher score to reference than all contrastive
translations in an example, the NMT system is
recognized as making correct prediction on this
example.

We use ContraWSD (Gonzales et al., 2017) 7

as the test suite, which contains 7,359 contrastive
translation pairs for DE-EN translation. We encode
the source sentences from ContraWSD and training
data of 5 specific domains by averaged BERT em-
beddings (Devlin et al., 2018). Then we whiten the
sentence embeddings with BERT-whitening pro-
posed by Huang et al. (2021); Li et al. (2020). For
each domain, we select 300 examples from Con-
traWSD that most similar to the in-domain data
based on the cosine similarity of sentence embed-
dings.

7https://github.com/ZurichNLP/ContraWSD

Law Medical Koran IT Subtitles
domain

15

20

25

30

35

BL
EU

BLEU on ContraWSD
Base
KSTER

Law Medical Koran IT Subtitles
domain

0.75

0.80

0.85

0.90

0.95

ac
cu

ra
cy

WSD accuracy on ContraWSD
Base
KSTER

Figure 9: BLEU and word sense disambiguation accu-
racy of base model and KSTER with Gaussian kernel
on ContraWSD dataset. Kernel-smoothing helps word
sense disambiguation.

We evaluate the translation performance and
word sense disambiguation ability of base model
and KSTER for MDMT on selected examples for
each domain. The results are shown in Figure
9. Experimental results show that KSTER consis-
tently outperforms base model in both translation
performance and word sense disambiguation accu-
racy, which indicates that kernel-smoothing helps
word sense disambiguation in machine translation.

6 Conclusion

In this work, we propose kernel-smoothed machine
translation with retrieved examples. It improves the
generalization ability over existing non-parametric
methods, while keeps the advantage of online adap-
tation.
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