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Abstract

Machine translation models have discrete vo
cabularies and commonly use subword seg
mentation techniques to achieve an ‘open vo
cabulary.’ This approach relies on consis
tent and correct underlying unicode sequences,
and makes models susceptible to degrada
tion from common types of noise and vari
ation. Motivated by the robustness of hu
man language processing, we propose the use
of visual text representations, which dispense
with a finite set of text embeddings in favor
of continuous vocabularies created by process
ing visually rendered text with sliding win
dows. We show that models using visual
text representations approach or match per
formance of traditional text models on small
and larger datasets. More importantly, mod
els with visual embeddings demonstrate sig
nificant robustness to varied types of noise,
achieving e.g., 25.9 BLEU on a character per
muted German–English task where subword
models degrade to 1.9.

1 Introduction

Machine translation models degrade quickly in
the presence of noise, such as character swaps or
misspellings (Belinkov and Bisk, 2018; Khayral
lah and Koehn, 2018; Eger et al., 2019). Part of
the reason for this brittleness is the reliance of MT
systems on subword segmentation (Sennrich et al.,
2016) as the solution for the openvocabulary
problem, since it can cause even minor variations
in text to result in very different token sequences,
needlessly fragmenting the data (Table 1). These
issues can be mitigated with techniques including
normalization, adding synthetic noisy training
data (Vaibhav et al., 2019), or often simply moving
to larger data settings. However, it is impossible
to anticipate all kinds of noise in light of their
combinatorics, and in any case, attempts to do so
add complexity to the model training process.

Phenomena Word BPE (5k)

Vowelization كتاب كتاب (1)
ُ · اب · ت ·ِ · الك (5)

Misspelling language language (1)
langauge la · ng · au · ge (4)

Visually Similar
Characters

really really (1)
rea11y re · a · 1 · 1 · y (5)

Shared Character
Components

확인한다 확인 ·한 ·다 (3)
확인했다 확인 ·했다 (2)

Table 1: Examples of common behavior which cause
divergent representations for subword models.

Humans, in contrast, are remarkably robust to
all kinds of text permutations (Rayner et al., 2006),
including extremes such as “l33tspeak” (Perea
et al., 2008). It stands to reason that one source
of this robustness is that humans process text, not
from discrete unicode representations, but visu
ally, and that modeling this kind of information
might yield more humanlike robustness. Draw
ing on this, we propose to translate from visual text
representations. Our model still consumes text,
but instead of creating an embedding matrix from
subword tokens, we render the raw, unsegmented
text as images, divide it into overlapping slices,
and produce representations using techniques from
optical character recognition (OCR). The rest of
the architecture remains unchanged. These mod
els therefore contain both visual and distributional
information about the input, allowing them to po
tentially provide robust representations of the input
even in the presence of various kinds of noise.
After presenting the visual text embedder (Sec

tion 2), we demonstrate the potential of visual rep
resentations for machine translation across a range
of languages, scripts, and training data sizes (Sec
tion 4). We then look at a variety of types of noise,
and show significant improvements in model ro
bustness with visual text models (Section 5).
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Figure 1: Visual text architecture combines network components from OCR and NMT, trained endtoend.

2 Visual Text Embedder

2.1 Rendering text as images
Our architecture is summarized in Figure 1. The
first step is to transform text into an image. We
render the raw text of each input sentence into a
grayscale (single color channel) image; no sub
word processing is used at all. The image height h
is a function of the maximum height of the charac
ters given the font and font size, while the image
width w is variable based on the font and sentence
length. We extract slices using sliding windows,
similar to feature extraction for speech processing.
Each window is of a specified length w and full
height h, extracted at intervals s determined by a
set stride. We experimentally tune each of these
parameters per language pair (see Section 3.4).

2.2 Visual representations
The slices output from the rendering stage are
analogous to subword text tokens. The next step
produces “embeddings” from these slices. Em
beddings typically refer to entries in a fixed size
weight matrix, with the vocabulary ID as an index.
Our image slices are not drawn from a predeter
mined set, so we cannot work with normal embed
dings. Instead, we use the outputs of 2D convolu
tional blocks run over the image slices, projected to
the model hidden size, as a continuous vocabulary.
While OCR models for tasks such as handwrit

ing recognition require depth that impacts training
and inference speed, our task differs significantly.
OCR tasks contend with varied image back
grounds, varied horizontal spacing, and varied
character ‘fonts,’ sizes, colors, and saliency. Vi
sually rendered text is uniform along each of these
characteristics by construction. Accordingly,
we can use simpler image processing and model
architectures without performance impact.

Our core experiments use a single convolutional
block (c = 1) followed by a linear projection to
produce flattened 1D representations as used by
typical texttotext Transformer models, but here
the representations are drawn from a continuous
space rather than a predetermined number of
embeddings. A convolutional block comprises
three pieces: a 2D convolution followed by 2D
batch normalization and a ReLU layer. The 2D
convolution uses only one color channel, and
padding of 1, kernel size of 3, and stride of 1,
which results in no change in dimensions between
the block inputs and outputs. We contrast the
c = 1 setting with two others: c = 0 and c = 7.
When c = 0, the model is akin to the Vision
Transformer (Dosovitskiy et al., 2021) from
image classification where attentional layers are
applied directly to image slices1 after a flattening
linear transformation. With c = 7, we compare
the depth of VistaOCR (Rawls et al., 2017), a
competitive OCRmodel, but without its additional
color channels and subsequent maxpooling.2

After replacing text embeddings with visual rep
resentations, the standardMT architecture remains
the same. The full model is trained endtoendwith
the typical crossentropy objective. All models are
trained using a modified version of fairseq (Ott
et al., 2019), which we release with the paper.3

3 Experimental Setup

3.1 Training data

We experiment with two data scenarios, a small
one (MTTT) and a larger one (WMT).

1Unlike ViT, we extract overlapping slices with the full image
height, rather than smaller nonoverlapping square slices.

2VistaOCR iteratively grows the channel axis from 3 color
channels to 256 and adds 2 interleaved maxpooling layers.

3https://github.com/esalesky/visrep

https://github.com/esalesky/visrep
https://github.com/esalesky/visrep
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MTTT. We use the MTTT dataset to compare
traditional text models with visual text models
across a range of languages and scripts, using simi
larly sized data. We use the Multitarget TED Talks
Task (MTTT), a collection of TED4 datasets with
∼200k training sentences (Duh, 2018). Specifi
cally, we use the data for the Arabic (ar), Chi
nese (zh), Japanese (ja), Korean (ko), Russian (ru),
French (fr), and German (de) to English (en) tasks.
WMT. We also experiment with two larger

datasets derived from the 2020 shared task in
news translation from the Conference on Machine
Translation (WMT20). For German–English, we
use all provided data except Paracrawl and Com
moncrawl. We filter out sentence pairs that don’t
match on language ID as reported by fasttext
(Joulin et al., 2016b,a), pairs with a raw length ra
tio of more than 3 to 1, pairs where raw source or
target length is greater than 100, and all duplicate
pairs, leaving 4.9M sentence pairs. We train a joint
unigram SentencePiece model of size 10k.
For Chinese, we use all provided data except

UNv1.0 and the backtranslations. We filter in the
same way, except that we do not apply ratio fil
tering. This yields 8.7M sentence pairs. We train
separate source and target unigram SentencePiece
models of sizes 20k and 10k, respectively. More
details can be found in Table 13 in the Appendix.

3.2 Test sets

MTTT. Our main results are on the 1,982 seg
ment multiway parallel MTTT test sets.
MTNT. To evaluate model robustness on data

with naturally occurring noise, we use the Ma
chine Translation of Noisy Text (MTNT) test sets
(Michel and Neubig, 2018). The MTNT test sets
used were created from comments from Reddit in
French, German, and Japanese which have been
professionally translated from English. By virtue
of their domain, these test sets contain “noisy” text
with natural typos, semantic use of visually simi
lar characters, abbreviations, grammatical errors,
emojis, and more. MTNT has recently been used
for evaluation in the WMT’19 and ’20 Robustness
tasks (Li et al., 2019; Specia et al., 2020).
WIPO. We use the World Intellectual Prop

erty Organization (WIPO) COPPAV2 corpus
(JunczysDowmunt et al., 2016) to evaluate ro
bustness on data with naturally occurring noise for
RussianEnglish. The WIPO corpus consists of
4https://www.ted.com

Chars 2.5k
BPE

5k
BPE

10k
BPE

15k
BPE

20k
BPE

25k
BPE

30k
BPE

35k
BPE

Words

fr

de

ar

ru

zh

ko

ja

36.2 36.7 36.5 36.4 36.5 35.2 35.8 35.7 35.6 31.7

33.2 33.2 33.5 33.6 33.6 33.1 33.4 32.9 33.0 27.3

32.1 31.7 31.8 32.1 31.0 31.0 30.6 30.7 30.3 17.6

25.2 25.2 25.4 25.0 24.7 24.7 25.0 24.7 24.4 13.9

17.9 18.3 17.7 17.2 17.4 17.2 17.5 17.2 0.5

16.9 16.9 17.0 16.8 16.8 16.8 16.8 16.3 15.7 6.3

13.7 14.4 14.3 13.5 13.9 13.6 12.7 12.7 12.2 5.8

Figure 2: Baseline results on MTTT TED across BPE
segmentations with optimized batch size.

parallel sentences from international patent appli
cation abstracts.
WMT. For the larger data experiments from

German and Chinese, we report results on the
WMT’20 newstest sets (Barrault et al., 2020).

3.3 Baseline text models

All baseline text models are trained using
fairseq. For our 7 language pairs from the
MTTT TED dataset, we follow the recommended
fairseq architecture and optimization param
eters for IWSLT’14 deen which is of the same
size and domain: 6 layers each for encoder and
decoder, with 4 attention heads per layer, with
slight modifications to batch size, vocabulary, and
label smoothing p = 0.2.
We tune the subword vocabulary for each lan

guage pair and dataset. We saw no difference be
tween joint/disjoint vocabularies, so use separate
vocabularies to create a direct comparison with the
visual text models: the same target vocabulary is
used for both and only the source representations
are varied. We tuned ∼5k BPE intervals from
2.5k–35k5 to optimize source language BPE gran
ularity with the target vocabulary held constant at
10k BPE.We additionally compare characterlevel
andwordlevel models; to producewordlevel seg
mentations for Chinese, we use jieba,6 and for
Japanese, we use kytea (Neubig et al., 2011). The
character vocabulary for Chinese is greater than
2.5k so we do not have a BPE model of this size.
Our best performing BPE models used source vo
cabularies of approximately 5k (see Figure 2).
We jointly tuned batch size and subword vo

5For the MTTT datasets, ∼40k BPE recovers words.
6https://github.com/fxsjy/jieba

https://www.ted.com
https://github.com/fxsjy/jieba
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Text Visual text

Lang BPE char s = 5 s = 10 s = 15 s = 20

ar 24.4 78.9 97.1 48.8 32.7 24.6
de 32.3 104.3 130.5 65.5 43.8 33.0
fr 28.8 107.6 130.2 65.4 43.7 32.9
ja 22.5 36.9 95.5 48.0 32.1 24.2
ko 24.7 50.8 97.0 48.7 32.6 24.6
ru 27.1 94.7 132.7 66.6 44.5 33.5
zh 23.0 29.8 75.6 38.1 25.5 19.3

Time 1.0× 2.3× 3.9× 2.0× 1.4× 1.2×

Table 2: Average sequence lengths of MTTT data for
text models and visual models with varying stride s.
The bottom row shows training time relative to the
fastest model (BPE) with c = 1.

cabularies for each language pair and found sig
nificant (1–15 BLEU) improvements with a larger
batch of 16k tokens over the suggested 4096, par
ticularly for Chinese, Japanese, and Korean. Our
baselines improve ∼2 BLEU over previous work
on the MTTT dataset (Shapiro and Duh, 2018).
For the larger data settings, we train Trans

former base models7 with dropout 0.1 and learning
rate 4e4. We use a batch size of 40k tokens, and
train until heldout validation fails to improve for
ten epochs. For German, we use a shared unigram
subword vocabulary of size 10k. For Chinese, we
train separate models of size 20k and 10k, respec
tively. No other preprocessing was used.

3.4 Visual text models
Our visual text models replace the source embed
ding matrix in the text models with the visual text
embedder from Section 2. The model architecture
otherwise remains unchanged: we use the same
Transformer settings, and the target language vo
cabulary is 10k BPE. We experiment with parame
ters for the visual text embedder to find which are
significant for this new task in Section 4, with hy
perparameter sweeps in Appendix A.
We use the pygame Python package8 with the

Google Noto font family9 to render text. For Latin
and Cyrillic scripts, we use NotoSans; for Arabic,
NotoNaskhArabic; and for the ideographic lan
guages, NotoSansCJK JP. No preprocessing is ap
plied before rendering.
While our visual text models remove the source

embedding matrix, they may add parameters
76 layers, 8 attention heads, embed dim 512, FF dim 2048
8https://www.pygame.org
9https://www.google.com/get/noto

Text Visual Text

c = 1 c = 0 c = 7

aren 32.1 31.6 30.4 30.2
deen 33.6 35.1 34.0 34.3
fren 36.7 36.2 36.0 35.3
jaen 14.4 13.1 11.2 12.8
koen 17.0 16.6 15.2 16.2
ruen 25.4 25.0 23.4 23.3
zhen 18.3 17.6 16.5 17.0

Table 3: BLEU scores on MTTT test sets for models
trained on the MTTT data. The number of convolu
tional blocks is denoted by c. Our best visual models
(c = 1) approach parity with optimized text baselines.

from convolution blocks if used to compute
representations. Our best models typically reduce
the number of model parameters, and in the worst
case increase overall parameters by 1% (from
36.7M to 36.9M), determined by window size and
number of convolutional blocks. Computation
time increases compared to BPE due to longer
source sequences, but our best performing models
are faster (with shorter sequences) than character
models (Table 2). Time to render text during
inference is negligible—comparable to subword
segmentation at fractions of a second.

4 Chasing Translation Parity

Stateoftheart translation models use subword
vocabularies, which yield best performance when
tuned per language pair and task (Salesky et al.,
2018; Ding et al., 2019). Our visual text approach
avoids predetermining a fixed model vocabulary.
On the one hand, this allows us to represent even
unanticipated characters; on the other, optimizing
a finite model vocabulary per task may improve
performance. Our first question, therefore, is
whether visual text can recover scores produced by
baselines with optimized subword vocabularies.
On the smaller MTTT dataset, we can nearly

recover the best results from the most optimal BPE
segmentation without explicit input segmentation,
solely from visual representations with a sliding
window. Table 3 compares our best visual text
models to our best text baselines on MTTT. The
best visual text results use c = 1 convolutional
block, which adds some structural biases from
convolutions without excessive visual depth. We
show c = 0 and c = 7 for comparison, which
represent no convolutional blocks and the depth of

https://github.com/pytorch/fairseq/tree/master/examples/translation#iwslt14-german-to-english-transformer
https://www.pygame.org
https://www.google.com/get/noto
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Text Visual Text

c = 0 c = 1 c = 7

deen 33.9 32.9 32.5 —
zhen 20.2 21.3 20.5 —

Table 4: BLEU scores onWMT test sets with the larger
WMT models.

recent stateoftheart OCR models, respectively.
We find greater visual capacity through a larger
number of convolutional blocks does not improve
results for our task. Increased convolutional depth
also comes at a cost: compared to c = 1, c = 7
adds 2.6M additional parameters and 5× longer
training time. In this setting, c = 0 is consistently
below c = 1. Our analysis focuses on c = 1.

On our larger data scenarios, we see our best vi
sual text models approach (deen) or exceed (zh
en) the textbased baselines (Table 4). This sug
gests our approach scales and its efficacy is not
limited to lowerresource settings. Withmore data,
c = 0 slightly outperforms the c = 1 model,
suggesting this ‘direct’ model may simply require
more training data.

As a new approach, it is not known from the out
set which hyperparameters for visual representa
tions may affect performance. We conducted ex
periments to determine significant hyperparame
ters and best parameter ranges for visual text ex
periments: namely, for window length, stride, font
size, batch size, and CNN kernel size. We see sim
ilar hyperparameter trends across language pairs.
We find font size is not significant as long as it
is sufficiently large to not affect image resolution
for more visually dense scripts (at least 10pt—see
Table 12 in the Appendix), and CNN kernel size
of 3 × 3 and batch size of 20k to be consistently
best. We always use a window length greater than
or equal to stride length so that no text is dropped.
Table 5 shows variedwindow length and stride val
ues for deen; additional language pairs and pa
rameter combinations can be found inAppendixA.
As stride length increases (creating less overlap be
tween windows) performance typically decreases:
our best results typically use stride 10. Optimal
window length exhibited the biggest difference be
tween languages. We show ablation experiments
isolating the role of sliding window segmentation
in Appendix B.

DEEN c = 1, font = 8pt

stride↓/window→ 15 20 25 30
10 33.4 33.1 33.3 33.6
15 33.9 32.9 31.3 32.9
20 32.0 30.3 32.4
25 30.4 30.9

Table 5: German–English BLEU scores onMTTT, tun
ing stride and window length with fixed batch size.

5 Robustness to Noise

We hypothesize that without a fixed vocabulary
and with associations between visually similar
character spans, our visual text models will be
more robust to noise than textbased representa
tions, where noise causes divergent subword rep
resentations (see Table 1 for motivating examples).
To test this, we evaluate on two different settings:
induced synthetic noise, and naturally occurring
noise from sources such as Reddit. Synthetic noise
allows us to test various settings for all language
pairs, while natural noise is limited by dataset
availability. Examples of induced noise, and the
resulting model inputs and outputs for both text
and visual text models, can be found in Table 6.

5.1 Synthetic noise

Inducing noise enables us to control the type and
frequency with which noise occurs. We com
pare two types of synthetic noise: visually similar
characters (e.g., l33tspeak, unicode codepoints
which are visually similar) and character permu
tations (e.g., Cmabrigde). For all synthetic noise
experiments, we induce noise at the tokenlevel
on the source side of our baseline dataset, MTTT
TED. Each token may be noised with probability
p from p = 0.1 to 1.0 by intervals of 0.1.
Visually similar characters. Different unicode

characters may share visually similar characteris
tics. Such characters may be substituted intention
ally, such as in l33tspeak where characters such
as numbers are used in place of visually similar
Roman alphabet letters, or unintentionally, where
characters from another script appear in place of
the expected unicode codepoints for a given lan
guage and script due to e.g., use of multiple key
boards or OCR errors (Rijhwani et al., 2020). For
some languages without a unicode standard, mul
tiple unicode sequences which render the same are
all in common use (e.g., Pashto). As shown in Fig
ure 3, such errors can be very inconspicuous.
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Arabic–English

src
diacritics 1.0
ref I’m Canadian, and I’m the youngest of seven kids.

invis
outvis I’m a Canadian, and I’m the youngest of my seven sisters.
COMET 0.764

intext َ_ة ْع َب _سلا ِي ن او ْ ِخ ِ_إ َر ْغ َص _أ َان َ_أ _و ,_ٍ َّة ِي َد َن _ك َان ِأ _.
outtext We grew up as a teacher, and we gave me a hug.
COMET 1.387

French–English

src Un homme de 70 ans qui voudrait une nouvelle hanche, pour qu’il puisse retourner au golf ou s’occuper de son jardin.
l33tspeak 0.1 Un homme de 70 an5 qu1 voudrait un3 nouvelle h4nche, pour qu’il pui5s3 re7ourner au golf ou s’occuper de son jardin.
ref Some 70yearold who wanted his new hip so he could be back golfing, or gardening.

invis · · ·
outvis A 70yearold man who would like a new hip, so that he could turn to golf or take care of his garden.
COMET 0.564

intext _Un _homme _de _70 _an 5 _qu 1 _voudr ait _un 3 _nouvelle _h 4 nch e , _pour _qu ’ il _pu i 5 s 3 _re 7 our ner _au ...
outtext A 75yearold man wants a third new hip, so that he can punish himself for the golf or take care of his garden.
COMET 0.091

German–English

src Aber Sie müssen zuerst zwei Dinge über mich wissen.
swap 0.5 Abre Sie müssen zuerts wzei Dnige über mcih wisse.n
ref But first you need to know two things about me.

invis · · ·
outvis But you have to know two things about me first.
COMET 0.897

intext _Ab re _Sie _müssen _zu ert s _w z ei _D n ige _über _m ci h _ wiss e . n
outtext But you’ve got to get into a little about you.
COMET 0.520

Korean–English

src 전여전히제아픈골반으로지탱하고있었겠죠. 그건정말실망스러웠죠.
cambridge 0.3 전여전히제아픈골으반로지탱하고있었겠죠. 그건정말실망스러웠죠.
ref I would still be on my bad hip. That was so disappointing.

invis · · ·
outvis I was still supported by my sick bone, which was really disappointing.
COMET 0.198

intext _전 _여전히 _제 _아픈 _골으반로 _지탱하고 _있었겠죠. _그건 _정말 _실망스러웠죠.
outtext I was still living in my sick celeste, and it was quite disappointing.
COMET 0.087

Russian–English

src Я расскажу вам об этой технологии.
unicode 0.8 R рaccкaжу вaM oб этoй тexнoлoгии
ref I’m going to tell you about that technology.

invis
outvis I’m going to tell you about this technology.
COMET 0.923

intext _R _р a c c к a жу _в a M _ o б _э т o й _т e x н o л o ги и .
outtext I’m going to put my mouth in the dam of ecsta chhallogi.
COMET 1.236

Table 6: Examples of data with induced noise, and the resulting inputs and outputs for text and visual text models.
One example is shown for each type of tested noise: unicode, diacritics, l33tspeak, swap, and cambridge.
For each example, we show the original source sentence (src); noise induced with probability p; the reference
translation (ref); rendered text with sliding windows (invis); visual text model output (outvis); BPE’d text input
(intext); text model output (outtext); and COMET (Rei et al., 2020) scores computed using the default model (wmt
largedaestimator1719).
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Figure 3: Different unicode codepoints may appear vi
sually similar. In this English example from WIPO
(JunczysDowmunt et al., 2016), all characters in red
are not from the Roman alphabet but Cyrillic.

We induce noise in the form of Latin characters
which are visually similar to Cyrillic characters
for Russian (unicode), diacritization for Arabic
(diacritics), and l33tspeak for French and Ger
man (l33tspeak). We use CAMeL Tools (Obeid
et al., 2020) for Arabic diacritization.
Figure 4 shows that the visual text model has al

most no degradation in performancewith unicode
noise, even when 100% of characters with a map
ping to another visually similar unicode codepoint
have been substituted. However, the text model
quickly degrades towards 0 as substitutions cause
mismatches with BPE vocabularies. Character
based models are similarly unable to handle OOV
codepoints, and characters in extremely novel con
texts, as found with this type of noise: at p = 0.5,
our charactermodel has a disappointing 0.2 BLEU.
The substitution of visually indistinct code

points is perfectly suited to our approach, and it is
unsurprising that it does so well. But what about
noise that does produce visual variation? Visually,
Arabic diacritization represents an addition of a
small number of pixels (+15%) which generally
do not affect the spatial relationship between base
characters. However, at the unicode level, diacriti
zation inserts codepoints that break up adjacent
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Figure 4: Visual noise: unicode and diacritics.
Inducing visually similar codepoint differences barely
affects visual text, but breaks BPE representations.
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Figure 5: Visual noise: l33tspeak. ∆BLEU is shown
for readability; absolute BLEU can be found in Figure 9
in Appendix D. For l33tspeak, improvements with
visual text diminish with higher levels of noise.

character sequences required for subword matches
(see Table 1). While visual text representations
are relatively robust to diacritized text, textbased
models are significantly negatively impacted:
Figure 4 shows decreases of at most 4 BLEU with
visual text but up to 31 BLEU with BPE.
Finally, we look at l33tspeak. Here, a reader

understands from the unexpected presence of a
number that a substitution has been made, and
is able to form a mapping to a similar alphabetic
letter. However, ‘4’ and ‘a’ are not necessarily
more visually similar in many fonts than say ‘7’
and ‘z’; conventional use often dictates l33tspeak
substitutions moreso than visual similarity. Fig
ure 5 shows that while both visual text models and
text models are negatively affected by induced
l33tspeak, the visual text models for both
language pairs significantly outperform the text
models in these conditions. With up to 30% of
tokens containing l33tspeak mappings, the
visual text models for both German and French
perform >5 BLEU better than the text models.
Normalization cannot fully address these chal

lenges for text models; see Appendix C for results.
Character permutations are challenging both

for subword models, which necessarily back off to
smaller units in the presence of OOVs (Table 1),
and characterbased models (Belinkov and Bisk,
2018).10 Here we experiment with two types of
synthetic noise used by Belinkov and Bisk to com
pare visual text models to traditional text models.

Swap : Swapping adjacent characters (e.g.,
language→langauge) is common when typing
quickly. We perform one swap per selected word.
10If wordinternal order isn’t modeled (Sakaguchi et al., 2017)
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Figure 6: Character permutations: swap and cam. Figures are shown in∆BLEU (improvement with visual text
compared to text baseline) for readability; absolute BLEU can be found in Figure 8 in Appendix D.

This noise can be applied to words of length ≥2.
Cam : The purported Cambridge spelling exper

iment of spam mail fame illustrates the remark
able robustness of humans to character permuta
tions11 when the first and last character are un
changed (e.g., language→lnagauge). To enable
wordmedial permutations, this noise can be ap
plied to words of length ≥4.
We do not apply character permutations to Chi

nese or Japanese text, since most tokens contain
two or fewer characters after word segmentation.
Visual text representations result in significant

improvements for character permutations, particu
larly at higher levels of noise. Figure 6 shows the
stark contrast in relative performance between the
twomodels: though a slight gap in performance re
mains for some of our models on clean text, with
even 10% induced noise this gap has been closed.
Improvements of up to 24 BLEU on German–
English concretely mean that our visual text model
achieves 25.9 BLEU on a task where the subword
based model has degraded to 1.9 BLEU. Figure 7
in Appendix D shows absolute degradation in per
formance for each model and permutation type.
Character permutations exhibit the opposite

trend of visual noise: while improvements over
text models decreased as more tokens contained
visual noise, for permutations, improvements
strongly increased with greater levels of noise.
This may be because visual noise often involves
character substitutions rather than permutations.
Permutations affect a greater percentage of the
character sequence for a given token, which shat
ter subword representations. While subword mod
11With a cost to reading speed (McCusker et al., 1981; Rayner
et al., 2006).

els can use context to recover when only 10% of
tokens contain permutations, at higher levels of
noise, they cannot. When 100% of tokens contain
swaps, for example, the German 5k BPE model
backs off to 2.25×more subwords (most words are
charactersonly) than for nonnoised text.

5.2 Natural noise

Natural noise—as found in informal sources, such
as Reddit—contains many additional types of
noise, including keyboard typos (where nearby
keys are substiyuted), substitutions of phonetically
similar characterz or worts, unconventional s p a
c e s and repetitionsss for effect or error, natural
mispelling, and noisy spans which extend beyond
individual tokens, among others. Parallel text cre
ated from ‘found’ data (MTNT: Reddit; WIPO:
patents) contains such noise in natural contexts.

MTNT WIPO

Model fren jaen deen ruen

Text, subword 26.4 4.3 18.2 9.9
Text, character 26.7 3.7 20.7 10.3
Visual text 26.3 5.2 20.4 10.5

Table 7: Zeroshot performance on natural noise.

Table 7 compares visual text models to text
models using both subword and characterlevel
representations on MTNT and WIPO test sets.
We continue to test our MTTTtrained models in
a zeroshot setting, which makes domain a con
founding variable for these test sets. The domain
mismatch proved challenging for all models. We
see that characterlevel models are in some cases
more robust than subwords, but are unable to re
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cover from the variation in others (jaen) where
the visual text model does best. The visual text
models improve over subword models and per
form competitively with characterlevel models
for German–English, where we have reached par
ity on our clean data case (Table 3), and Russian–
English, where the WIPO patent data has a signifi
cant number of unicode OCR errors (as illustrated
in Figure 3) and occasional Roman alphabet char
acters (e.g., for chemical formulas): 3% of source
characters in the RussianWIPO test set are outside
the Cyrillic unicode codepoint range.

6 Related Work

Visual representations of text have previously
been explored for other NLP tasks, primarily for
Chinese, with mixed results. Liu et al. (2017) used
visual representations from CNNs over rendered
text in Chinese, Japanese, and Korean for text
classification. Dai and Cai (2017) similarly used
convolutions over characterlevel images for Chi
nese for downstream language modeling and word
segmentation. Meng et al. (2019) used hybrid con
volutional networks to improve several NLP tasks
for Chinese, using historical scripts for additional
pictographic information. Sun et al. (2018, 2019)
created dense fixedsize square text renderings in
Chinese and English for convolutions for down
stream sentiment analysis. Ryskina et al. (2020)
used visual similarity for Russian romanization.
In machine translation, visual information was

also first used for Chinese. Initial work improved
translation models by initializing character em
beddings with linearized bitmaps of each character
(Aldón Mínguez et al., 2016; Costajussà et al.,
2017), and more recently, with linearized images
compressed with PCA, which improved model
robustness (Wang et al., 2020b). Nikolov et al.
(2018) incorporated visual compositionality of
Chinese characters for MT through Wubi ASCII
encodings. Eger et al. (2019) assessed the impact
of visual perturbations on current NMT systems,
and augmented characterlevel text embeddings
with visual information to make systems more
robust to such attacks. Mansimov et al. (2020)
explored the challenging task of imagetoimage
translation; while their approach is exploratory
and not yet competitive, and producing images
introduces difficulties with evaluation, it is simi
larly motivated by a desire to do away with fixed,
predefined vocabularies and tokenization.

Previous work has explored the impact of syn
thetic and natural noise on neural MT (Belinkov
and Bisk, 2018), and the use of characteraware
word embeddings (Kim et al., 2016; Sakaguchi
et al., 2017; Cherry et al., 2018; Clark et al., 2021)
to increase generalizability and robustness. While
research regularization and dropout techniques for
BPE (Kudo, 2018; Provilkov et al., 2020) have im
proved model robustness, discrete vocabulary sets
still creates challenge in many use cases. Recent
work has also explored bytelevel BPE (Radford
et al., 2019; Wang et al., 2020a) to create mod
els which are not restricted to the unicode ranges
seen in training, though models using BBPE may
require additional training examples.

7 Conclusion & Future Work

We introduced visually rendered text for continu
ous openvocabulary translation. We showed that
our models, trained on seven language pairs and
in two data settings, approach or match the per
formance of traditional text models. Further, we
showed that visual text models are more robust to
many kinds of induced noise, including the sub
stitution of visually similar characters and charac
ter permutations. An important benefit of our ap
proach is that it operates on raw text, doing away
with the standard preprocessing routines that in
clude normalization, tokenization, and subword
segmentation.
We believe our approach opens many avenues

for future work. Standard data techniques from
OCR (such as varied font and font size) and train
ing on noise would likely further improve robust
ness. There are many possible visual architec
tures, and visual pretraining has benefited vision
tasks (Dosovitskiy et al., 2021). There is nothing
to preclude our approach from working on larger
datasets. While effective, it is not clear that slid
ing window segmentation is optimal; improving
segmentation could close remaining performance
gaps. Since our approach does away with discrete
vocabularies, visual text models could be used to
transfer to new languages and scripts without re
quiring transliteration or normalization, or retrain
ing models from scratch. Finally, it is appealing
to consider this approach for additional tasks such
as language identification (Caswell et al., 2020,
Table 2) or spam detection. Any NLP task that
requires robust, openvocabulary representations
could benefit from our approach.
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A Parameter tuning

Additional parameter tuning results by language pair for MTTT; Table 9 results for DEEN can be found
in the main text (Table 5). Window length is always greater than or equal to stride length so that no text is
dropped. With longer sequence lengths (shorter strides) and smaller batch sizes, we observe occasional
instability (similar to characterbased text models), which increased batch sizes generally stabilize.
w = window size, s = stride, c = number of convolutional blocks.

Table 8: Translation results for MTTT, tuning stride and window length with fixed batch size 20k and font size 10.

AR–EN c = 1, font = 10pt

s↓/w→ 10 15 20 25 30 35 40
5 30.8 30.0 30.6 31.3 30.4 30.5 29.6
10 30.3 28.5 31.0 31.6 31.4 31.4 30.4
15 25.2 30.2 30.3 30.6 29.4 29.3

DE–EN c = 1, font = 10pt

s↓/w→ 10 15 20 25 30 35 40
5 0.7 32.6 35.1 0.5 33.1 33.9 32.5
10 0.6 34.6 34.8 32.8 32.9 34.4 33.5
15 32.8 33.9 32.0 31.4 33.7 33.9

FR–EN c = 1, font = 10pt

s↓/w→ 10 15 20 25 30 35 40
5 35.4 35.7 35.7 35.5 0.7 0.6 0.8
10 35.6 36.2 36.1 36.1 34.7 34.7 35.0
15 35.7 35.8 35.6 34.4 34.3 34.6

JA–EN c = 1, font = 10pt

s↓/w→ 10 15 20 25 30 35 40
5 12.4 11.5 12.3 13.1 12.4 12.4 12.3
10 11.8 11.8 12.4 12.5 11.5 12.4 12.3
15 9.4 12.1 12.7 12.2 12.4 12.1

KOEN c = 1, font = 10pt

s↓/w→ 10 15 20 25 30 35 40
5 15.8 15.7 15.3 16.2 15.6 16.0 16.1
10 14.7 15.9 15.5 16.5 14.7 15.9 16.4
15 14.3 15.2 15.4 15.7 16.2 15.6

RU–EN c = 1, font = 10pt

s↓/w→ 10 15 20 25 30 35 40
5 0.6 22.7 23.8 0.5 23.6 23.0 0.5
10 2.0 23.2 25.0 23.2 23.2 23.9 23.2
15 21.1 24.4 23.7 24.5 24.2 22.0

ZH–EN c = 1, font = 10pt

s↓/w→ 10 15 20 25 30 35 40
5 16.7 0.4 16.7 17.3 17.4 17.0 0.4
10 15.8 17.1 16.8 17.1 16.3 17.0 0.4
15 16.0 16.0 16.3 16.4 16.3 0.5

Varied conv. kernel size (note: 23=full window height).
h× w 3× 3 3× 1 1× 3 13× 3 23× 3 5× 5

ZH–EN 17.4 17.1 16.9 16.7 0.6 16.6

Table 9: Translation results for MTTT, tuning stride and window length with fixed batch size 10k and font size 8.

AR–EN c = 1, font = 8pt

s↓/w→ 15 20 25 30
10 29.5 29.7 27.1 30.0
15 27.2 28.5 24.0 28.6
20 26.0 11.5 26.9
25 19.9 25.4

DE–EN c = 1, font = 8pt

s↓/w→ 15 20 25 30
10 33.4 33.1 33.3 33.6
15 33.9 32.9 31.3 32.9
20 32.0 30.3 32.4
25 30.4 30.9

FR–EN c = 1, font = 8pt

s↓/w→ 15 20 25 30
10 33.9 35.1 35.5 35.0
15 34.8 34.5 34.8 33.5
20 33.6 34.0 33.5
25 33.7 32.6

JA–EN c = 1, font = 8pt

s↓/w→ 15 20 25 30
10 10.7 11.5 10.9 11.1
15 8.7 10.5 10.9 10.0
20 10.3 8.2 8.9
25 8.3 8.0

KOEN c = 1, font = 8pt

s↓/w→ 15 20 25 30
10 15.2 14.8 14.7 14.6
15 14.7 14.9 14.3 14.3
20 13.9 14.1 13.3
25 13.5 12.3

RU–EN c = 1, font = 8pt

s↓/w→ 15 20 25 30
10 19.6 0.6 23.8 23.3
15 22.4 0.5 22.8 23.2
20 0.6 22.3 22.5
25 21.9 21.4

ZH–EN c = 1, font = 8pt

s↓/w→ 15 20 25 30
10 0.5 14.4 0.5 0.5
15 12.0 13.4 0.6 0.6
20 12.3 0.5 4.3
25 0.6 5.3
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B Ablation experiments

To what degree are our results due to our implicit model of segmentation through overlapping sliding
windows, or the use of visual representations themselves? To disentangle these two factors, we run
ablation experiments to separate these two components of the visual embedder.

Sliding window segmentation only. To evaluate our approach to segmentation without visual render
ing, we apply sliding window vocabularies to text, creating overlapping character 3grams: this corre
sponds to a window size of approximately 30 with font size 10. Character ngrams of a fixed order are
not commonly used for NMT, likely due to the large resulting vocabulary and the fact that they do not
solve the OOV problem.
For languages with (more) uniform character ngram frequencies (Arabic, German, French, Russian),

results with sliding window segmentation but no visual representations (w/o visrep, char ngrams abla
tion) are similar to the text BPE models’ results. For these four languages, the sliding window approach
to segmentation does not affect performance (and for German, the sliding windows in fact provide a +1
BLEU improvement over BPE). For French, we see slight degradation with the visual representations
compared to the ablation (0.2 BLEU), suggesting that the visual embedder itself has slight room for im
provement. For the other languages (Chinese, Japanese, Korean), there is a significant drop w/o visrep
due to the higher proportion of infrequently observed vocabulary, leading to a greater proportion of insuf
ficiently trained embeddings. This is a problem that our visual text embedder removes in the full visual
text models, because exact lexical matches are not required to train visual representations.

MODEL: ar de fr ja ko ru zh

Visual text 31.6 35.1 36.2 13.1 16.6 25.0 17.6
w/o visrep (char ngrams) 31.5 34.6 36.4 1.4 1.3 24.6 5.5

Text, BPE 32.1 33.6 36.7 14.4 17.0 25.4 18.3

NOISED:
Visual text; swap p=0.5 21.7 29.4 28.4 — 11.5 18.3 —
w/o visrep; swap p=0.5 11.2 10.8 11.9 — 1.1 9.5 —

Text, BPE; swap p=0.5 12.4 13.1 13.3 — 10.8 11.1 —

Table 10: Ablation: Sliding window segmentation (character ngrams) applied to text without visual rendering.

When we add noise, the ablation experiments (sliding window segmentation without visual repre
sentations, w/o visrep) degrade below the BPE baselines; this suggests that the visual text embedder
(combined with the resulting open vocabulary) is the primary reason for our visual text models’
robustness, not our sliding window segmentation.
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C Normalization as preprocessing for robustness

A natural question is whether preprocessing can address the robustness issues demonstrated here with
traditional text models using e.g., BPE subword segmentation. To evaluate this setting, we apply a
spellchecker to each of our noiseinduced test sets; for this task, we use the test sets with noise in
duced with p = 1.0, where 100% of applicable tokens have induced noise. We use the Google Docs
spellchecker, which was the best of the options evaluated in recent work (Näther, 2020) which cover
all of our tested languages (unlike e.g., Grammarly, which currently supports English only), and which
significantly outperformed common opensource alternatives such as Hunspell.12 We evaluate both the
text (BPE) and visual text (visrep) models on the spellchecked test sets; results are shown in Table 11.
It is clear that spellchecking can help the BPE models, in some cases dramatically (up to 20 BLEU).

However, it does not close the gap with our method, and in some cases performance degrades; for all
induced noise, visual text representations still outperform the BPE models, and often by a large margin.
Spellcheckers are languagespecific and as shown below in Table 11, can be more adept at certain types

of noise which were taken into consideration in their construction. For example, while first spellcheck
ing the French swap test set improves the BPE model by more than 20 BLEU, it does not change the
l33tspeak performance at all. Similarly, BPE models were only slightly improved for Arabic diacriti
zation and Russian unicode noise, while the visrep model performs strongly for both without spellcheck.
Further, like translation models, spellcheckers often rely on context for disambiguation, and so with noisy
context may either have lower recall or can introduce cascading errors when the correction made is not
correct (illustrated below in lower performance for some conditions with spellcheck). A denoising au
toencoder may also be able to address many of these phenomena, but, requires training and knowledge of
the types of noise expected, where our approach is a single model and performance is zeroshot. Possible
noise grows exponentially as it can appear in combination — it is not feasible to expect normalization to
fully address this problem.

Arabic French German Korean Russian

BPE visrep BPE visrep BPE visrep BPE visrep BPE visrep
no noise 32.1 31.6 36.7 36.2 33.6 35.1 17.0 16.6 25.4 25.0

swap induced noise 2.3 9.3 2.4 22.0 1.9 25.9 5.4 8.9 5.4 18.8
+ spellcheck 7.9 11.9 23.8 29.1 1.9 14.1 5.1 6.9 10.8 18.2

cambridge induced noise 7.8 13.2 6.9 18.3 6.5 16.9 12.6 14.1 4.5 11.1
+ spellcheck 10.9 12.6 16.4 21.1 10.0 14.9 10.3 11.8 5.9 11.1

l33tspeak induced noise — — 0.3 0.7 0.7 1.2 — — — —
+ spellcheck — — 0.3 0.7 0.7 1.2 — — — —

diacritics induced noise 1.7 25.2 — — — — — — — —
+ spellcheck 2.1 25.3 — — — — — — — —

unicode induced noise — — — — — — — — 1.6 22.0
+ spellcheck — — — — — — — — 2.1 20.4

Table 11: Translation performance on five types of induced noise with spellchecking as preprocessing; all test sets
have noise induced with p = 1.0. Both traditional text models (BPE) and visual text models (visrep) are shown.
We bold the best model for each condition.

12https://github.com/hunspell/hunspell

https://github.com/hunspell/hunspell
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D Additional robustness figures

Here we show character permutation results isolated by model and noise type, and absolute BLEU for
figures shown with ∆BLEU for readability in the main text.

D.1 Isolated character permutation results
Each plot in Figure 7 shows the degradation in performance of a given model with different proportions
of induced noise, relative to the performance of the same model on the uncorrupted text. As more noise
is added, the visual text models degrade at significantly lower pace.
Average number of tokens per sentence and average token length affect the amount of noise; for

cmabirdge (cam) Korean appears to be an outlier because there are fewer words where this noise
may be applied than our other languages, as there are fewer words of length ≥ 4 in the data.
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Figure 7: Degradation due to noise in the form of character permutations. Each point represents how much
worse that model does with a given proportion of noise, relative to the same model on uncorrupted text.
[Top] swap of two characters within a token. [Bottom] cmabirdge wordinternal permutations (cam);
[Left] Text model baselines; [Right] Visual text models.
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D.2 Absolute BLEU
Here we show absolute BLEU for figures shown with∆BLEU for readability in the main text.

Average number of tokens per sentence and average token length affect the amount of noise; for
cmabirdge (cam) Korean appears to be an outlier because there are fewer words where this noise
may be applied than our other languages, as there are fewer words of length ≥ 4 in the data.
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Figure 8: Character permutations. Absolute BLEU is shown. See Figure 6 for ∆BLEU for readability.
[Top] swap of two characters within a token. [Bottom] cmabirdge wordinternal permutations (cam);
[Left] Text model baselines; [Right] Visual text models.
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Figure 9: Visual noise: l33tspeak. Absolute BLEU is shown. See Figure 5 for ∆BLEU for readability.
For l33tspeak, improvements with visual text diminish with higher levels of noise.
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E Pixel Density

Below we show the average pixel density (the average pixel value, normalized to be between 0 and 1,
where 0 is white and 1 is black) and percentage of nonwhite pixels for rendered text. We find that pixel
density is not necessarily indicative of performance, but that those languages with lower pixel densities
are less sensitive to differences in font size (see parameter grids in Appendix A). Arabic diacritization
yields an approximately 2% increase in pixel density.

ar de fr ja ko ru zh

Avg. pixel density, fontsize=10pt 0.08 0.14 0.14 0.14 0.15 0.14 0.17
Avg. pixel density, fontsize=8pt 0.07 0.13 0.13 0.13 0.14 0.13 0.17

% nonwhite pixels, fontsize=10pt 0.17 0.24 0.24 0.25 0.28 0.24 0.32
% nonwhite pixels, fontsize=8pt 0.21 0.24 0.24 0.26 0.25 0.24 0.31

Table 12: Pixel density information: shown across our 7 languages for rendered text at font sizes 8pt and 10pt.

F WMT Data

Table 13 contains further information about the data used to train the larger WMT models.

Task Source Words Segments

German–English Europarl v10 97,695,640 1,828,521
New Commentary v15 16,078,167 371,225
Wikititles v2 6,232,820 1,382,687
Tilde Rapid 46,404,479 1,631,639
WikiMatrix 56,216,773 1,573,438

TOTAL 520,776,198 5,247,778
after filtering 389,457,370 4,965,008

Chinese–English News Commentary v15 7,451,529 320,713
Wikititles v2 3,013,119 836,683
CCMT 192,702,068 9,023,456
WikiMatrix 18,266,293 786,512

TOTAL 440,691,851 10,516,339
after filtering 440,917,047 8,742,057

Table 13: Data used in training the larger WMT systems. Words denotes total tokens over both sides, while
Segments counts parallel sentence pairs. Counts are computed from raw data prior to any filtering.


