Does BERT Learn as Humans Perceive? Understanding Linguistic Styles through Lexica

Shirley Anugrah Hayati, Dongyeop Kang, Lyle Ungar


Abstract
People convey their intention and attitude through linguistic styles of the text that they write. In this study, we investigate lexicon usages across styles throughout two lenses: human perception and machine word importance, since words differ in the strength of the stylistic cues that they provide. To collect labels of human perception, we curate a new dataset, Hummingbird, on top of benchmarking style datasets. We have crowd workers highlight the representative words in the text that makes them think the text has the following styles: politeness, sentiment, offensiveness, and five emotion types. We then compare these human word labels with word importance derived from a popular fine-tuned style classifier like BERT. Our results show that the BERT often finds content words not relevant to the target style as important words used in style prediction, but humans do not perceive the same way even though for some styles (e.g., positive sentiment and joy) human- and machine-identified words share significant overlap for some styles.
Anthology ID:
2021.emnlp-main.510
Volume:
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Month:
November
Year:
2021
Address:
Online and Punta Cana, Dominican Republic
Venue:
EMNLP
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
6323–6331
Language:
URL:
https://aclanthology.org/2021.emnlp-main.510
DOI:
10.18653/v1/2021.emnlp-main.510
Bibkey:
Cite (ACL):
Shirley Anugrah Hayati, Dongyeop Kang, and Lyle Ungar. 2021. Does BERT Learn as Humans Perceive? Understanding Linguistic Styles through Lexica. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 6323–6331, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.
Cite (Informal):
Does BERT Learn as Humans Perceive? Understanding Linguistic Styles through Lexica (Hayati et al., EMNLP 2021)
Copy Citation:
PDF:
https://preview.aclanthology.org/update-css-js/2021.emnlp-main.510.pdf
Code
 sweetpeach/hummingbird
Data
Hummingbird