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Abstract

This paper asks whether extrapolating the hid-
den space distribution of text examples from
one class onto another is a valid inductive bias
for data augmentation. To operationalize this
question, I propose a simple data augmenta-
tion protocol called “good-enough example ex-
trapolation” (GE3). GE3 is lightweight and
has no hyperparameters. Applied to three text
classification datasets for various data imbal-
ance scenarios, GE3 improves performance
more than upsampling and other hidden-space
data augmentation methods.

1 Introduction

Text classification is a fundamental task in NLP
for which modern architectures have achieved high
performance when training data is sufficient (Wang
et al., 2019). In many applied settings where data
collection and annotation is limited, however, a
common challenge is data imbalance (Krawczyk,
2016), in which training data from certain cate-
gories is scarce. A classic example of such a sce-
nario is intent classification, where developers may
wish to update a conversational agent to be able to
classify new intents, but the amount of training data
for these new intents lags behind that of existing
ones (Bapna et al., 2017; Gaddy et al., 2020).

One common method for mitigating the weak-
nesses of limited training data is data augmentation,
a paradigm that is become increasingly seductive
in the NLP landscape (see Feng et al., 2021, for a
survey). While data augmentation may be of only
incremental utility when training data is sufficient
(Longpre et al., 2020), it can be particularly helpful
for mitigating data scarcity in low-resource settings
such as few-shot classification (Wei et al., 2021) or,
as this paper will soon explore, data-imbalanced
text classification.

Figure 1: Diagram illustrating how GE3 extrapolates
the hidden-space distribution of examples in class A
onto class B.

In this paper, I propose a simple data augmen-
tation protocol called good-enough1 example ex-
trapolation (GE3) for the class-imbalanced sce-
nario. As shown in Figure 1, GE3 extrapolates
the hidden-space distribution of examples from
one class onto another class. GE3 has no hyper-
parameters, is model-agnostic, and requires little
computational overhead, making it easy-to-use. In
empirical experiments, I apply GE3 to intent clas-
sification, newspaper headline classification, and
relation classification, finding that in a variety of
class-imbalanced scenarios, GE3 substantially out-
performs upsampling and other hidden state aug-
mentation techniques.

2 Hidden Space Extrapolation

Intuition. Representation learning aims to map
inputs into a hidden space such that desired proper-
ties of inputs are easily extractable from their con-
tinuous representations (Pennington et al., 2014).
For many representation learning functions, inputs
with similar properties map to nearby points in hid-
den space, and the distances between hidden space

1Paying good respects to “good-enough compositional
augmentation” (Andreas, 2020).
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representations represent meaningful relationships
(Mikolov et al., 2013; Kumar et al., 2020).

So for a given classification task, inputs from
the same category will have some distribution (i.e.,
cluster) in hidden space, where the distance be-
tween distributions represents the relationship be-
tween categories, and the distribution of points
within the same category models some random
variable. GE3 leverages this intuition by extrapolat-
ing the distribution of points in the same category,
which models some random variable, from one
category onto another. Figure 2 illustrates this intu-
ition in a hypothetical instance from the HuffPost
dataset of news headlines classification, where the
hidden-space relationship between two examples
in the travel category can be extrapolated to form a
new example in the health category.

Figure 2: Intuition of extrapolating examples in hidden
space from a travel category to a health category. A
hypothetical natural language representation is shown
for the augmented example generated via GE3.

Method. Formally, I describe GE3 as follows.
Given a text classification task with k output classes
{cj}kj=1, denote the nc training examples in class
c as {Xi

c}
nc
i=1 with corresponding hidden space

representations {xi
c}nc

i=1. For each class c, let
µ(c) = 1

nc

∑nc
i=1 x

i
c indicate the mean of all hidden

space representations in that class.
GE3 generates augmented examples by extrapo-

lating the data distribution from a source class cs
to a target class ct in hidden space. And so for each
hidden space representation xi

cs in the source class,
I generate a corresponding augmented example x̂ct

in the target class:

x̂ct = xi
cs − µ(cs) + µ(ct) . (1)

In total, for each class in the training set, I can
generate a set of extrapolated points from every

other class, augmenting the size of the original
training set by a factor of k. I then train the clas-
sification model on the union of original data and
extrapolated examples. Notably, this extrapolation
method operates without any hyperparameters, as
augmented examples are generated via distribu-
tions from other classes instead of a noising func-
tion (c.f. augmentation techniques that usually have
a strength parameter (Sennrich et al., 2016b; Wei
and Zou, 2019)).

3 Experimental Setup

I evaluate the proposed hidden space extrapolation
protocol in several data imbalance scenarios on
three diverse text classification datasets.

3.1 Datasets
SNIPS. The Snips Voice Platform dataset2

(Coucke et al., 2018) is an intent classification
dataset that maps utterances to 7 different intents
(e.g., ‘play music’, ‘get weather’, etc.). Each intent
has about 1800 training examples.

HUFF. The HuffPost dataset (Misra, 2018) com-
prises news headlines published on HuffPost from
2012–2018. Headlines are categorized into one
of 41 classes (e.g., ‘health’, ‘travel’, etc.), and I
split the dataset such that the training set has 700
examples per class.

FEWREL. The few-shot relation classification
dataset (Han et al., 2018) contains categorized re-
lationships between specified tokens (e.g., ‘capital
of,’ ‘birth name,’ etc). The posted training set con-
tains 64 classes, and I perform a train-test split such
that each class has 500 examples in the training set
and 100 examples in the evaluation set.

For all three datasets, I create artificially im-
balanced datasets via random sampling. Specif-
ically, I randomly select half the classes to main-
tain the original number of examples Nmany (i.e.,
Nmany = {1800, 700, 500} for SNIPS, HUFF, and
FEWREL respectively), and for the other half of
the classes, I train on only a subset of N few exam-
ples. I run experiments on a range of N few.

3.2 Model and Experimental Procedures
For the classification model, I use the common
Sentence-BERT (Reimers and Gurevych, 2019, a
modification of Devlin et al. (2019)) embedding

2I used the processed data from https://github.
com/MiuLab/SlotGated-SLU/tree/master/
data/snips.

https://github.com/MiuLab/SlotGated-SLU/tree/master/data/snips
https://github.com/MiuLab/SlotGated-SLU/tree/master/data/snips
https://github.com/MiuLab/SlotGated-SLU/tree/master/data/snips
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SNIPS (k = 7) HUFF (k = 41) FEWREL (k = 64)
N few=20 N few=50 N few=20 N few=50 N few=20 N few=50 Average ∆

Baseline (upsampling) 88.9± 1.1 92.1± 0.8 27.3± 0.2 30.3± 0.3 49.6± 0.6 56.7± 0.6 55.3 -

Interpolate 89.3± 1.1 92.0± 0.9 27.0± 0.1 29.9± 0.2 49.1± 0.5 56.1± 0.5 55.1 -0.2
Within-extrapolation 86.5± 1.2 90.5± 0.8 28.7± 0.2 30.8± 0.3 49.2± 0.3 56.0± 0.6 54.8 -0.5
Linear Delta 86.4± 1.0 90.7± 1.1 29.9± 0.2 32.4± 0.3 50.9± 0.6 58.2± 0.6 55.7 +0.4
Uniform Noise 88.8± 0.9 91.9± 0.8 30.2± 0.8 33.3± 0.2 50.9± 0.6 57.8± 0.4 56.6 +1.3
Gaussian Noise 89.1± 1.1 92.1± 0.9 31.9± 0.3 33.7± 0.2 53.0± 0.6 60.3± 0.6 58.0 +2.7
GE3 (ours) 90.6± 0.6 92.8± 0.7 32.7± 0.2 36.8± 0.1 56.3± 0.6 64.0± 0.2 59.9 +4.6

Table 1: Accuracy (%) of GE3, upsampling, and five other hidden space augmentation techniques on data-
imbalanced text classification scenarios, where half of the classes are restricted to N few training examples. k:
number of total classes for a classification task. ∆: improvement over the upsampling baseline.

pipeline and add an additional softmax layer for
classification. I implement GE3 at the final hidden
layer of Sentence-BERT, which has size 768. That
is, the hidden-space augmentation method only up-
dates classifier weights after the BERT encoder.
Before training, the data processing pipeline up-
samples from classes with fewer examples until all
classes have the same number of examples in the
training set. I run all experiments for five random
seeds.

3.3 Hidden Space Augmentation Baselines

As baselines for comparison, I also explore several
other hidden space augmentation techniques:

Example interpolation. Given the hidden space
representations of two examples xi

c and xj
c in the

same class, I generate an augmented example

x̂c =
1

2
(xi

c + xj
c) . (2)

Within-extrapolation. (DeVries and Taylor,
2017; Kumar et al., 2019). Given two examples
xi
c and xj

c in the same class, I extrapolate the hid-
den space between the two to form an augmented
example

x̂c = λ · (xi
c + xj

c)− xi
c . (3)

Following Kumar et al. (2019), I use λ = 0.5.

Linear delta. (Kumar et al., 2019). The differ-
ence between two examples xi

c and xj
c in the same

class can be added to a third example xj
c to form

an augmented example:

x̂c = (xi
c − xj

c) + xk
c . (4)

Noising. Given some example xi
c, I add noise n

to yield an augmented example

x̂c = xi
c + n(·) . (5)

For n(·), I explore both Uniform Noise, where
each element is uniformly sampled from [a, b],
where a = −0.1 and b = −0.1, as well as Gaus-
sian Noise, where each element is sampled from
N (µ, σ), where µ = 0 and σ = 0.1.

For these techniques, I generate augmented exam-
ples until each class has naug · Nmany training ex-
amples, where naug = 5 (a choice which is later
explored in Figure 3).

4 Results

Table 1 shows results for GE3 on the three datasets
for N few = 20 and N few = 50. GE3 outper-
forms the upsampling baseline by an average of
4.6%, with strongest improvements on HUFF and
FEWREL. Of the other augmentation techniques,
Gaussian noising and uniform noising had the best
performance, with an average improvement of 2.7%
and 1.3%, respectively. Whereas these techniques
only enforce smoothness around the distribution
of points in a single class, I hypothesize that GE3
improved performance more because it injects a
stronger inductive bias that the distribution of ex-
amples of the same class around their mean can be
extrapolated to other classes.

Moreover, as Table 1 only shows results for
N few ∈ {20, 50}, in Figure 4 I compare GE3 with
upsampling, as well as Gaussian and uniform noise
(the strongest baselines), for N few∈ {10, 20, 40,
60, 100, 200, 300, 400, 500}. GE3 improves per-
formance across a wide variety of N few values,
with improvements over the baselines slightly di-
minishing when training data is more balanced (as
expected).
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Figure 3: Improvements over the upsampling baseline from augmentation methods based on how many duplicates
of training data were made (naug). GE3 extrapolates examples from one class to another, so it generates at most
naug= 6 for SNIPS, naug= 40 for HUFF and naug= 63 for FEWREL.
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Figure 4: Comparing GE3 with the upsampling base-
line, gaussian noise, and uniform noise for a range of
N few (the number of training examples in the imbal-
anced classes). The performance shown is averaged
over three datasets.

Finally, one of the reasons that GE3 improves
performance more than other techniques could be
that each class gets extrapolated examples from
every other class, and if classes have unique dis-
tributions, then these extrapolated examples are
valuable as additional training data. Therefore, I
perform an ablation study using a variable naug,
which restricts the number of other classes a given
class can receive extrapolated examples from. For
instance, if naug = 2, then any given class may
only receive extrapolated examples from two other
random classes, even if there are 63 other classes
(as is the case in FEWREL). I also perform a sim-
ilar ablation for Gaussian and uniform noise, in
which I generate augmented examples until each
class has naug · Nmany training examples.

Figure 3 shows these results. For uniform and
Gaussian noise, additional augmented examples
did not further improve performance after around
naug = 16. For GE3, on the other hand, improve-
ment continued to increase as naug increased (al-
though the marginal improvement decreases for
each naug). This result confirms the intuition that
extrapolations from more classes provided addi-
tional value during training.

5 Related Work
Text data augmentation. Data augmentation
methods for NLP have garnered increased interest
in recent years. Many common techniques modify
data using either token perturbations (Zhang et al.,
2015; Sennrich et al., 2016a) or language models
(Sennrich et al., 2016b; Kobayashi, 2018; Liu et al.,
2020; Ross et al., 2021). These techniques occur at
the input-level, where all augmented data is repre-
sented by discrete tokens in natural language.

Hidden space augmentation. A growing direc-
tion in data augmentation has proposed to augment
data in hidden space instead of at the input-level.
In computer vision, DeVries and Taylor (2017)
explored noising, interpolation, and extrapolation,
and MIXUP (Zhang et al., 2018) combines pairs of
examples. These methods have since been adopted
to NLP—Chen et al. (2020) modify MIXUP to
improve semi-supervised text-classification, and
Kumar et al. (2019) explore various hidden space
augmentation techniques for few-shot intent classi-
fication, which I evaluated as baselines. Whereas
the extrapolation technique used by DeVries and
Taylor (2017) and Kumar et al. (2019) (which I call
“within-extrapolation" in this paper) extrapolates
the hidden space between a pair of points in the
hidden space, GE3 extrapolates the hidden space
distribution of one class onto another class.

Example extrapolation. In vision, Schwartz
et al. (2018) used a modified auto-encoder to syn-
thesize new examples from category after seeing a
few examples from it, improving few-shot object
recognition. Perhaps most similar to this work, Lee
et al. (2021) train T5 (Raffel et al., 2020) to, given
some examples of a class as an input sequence, gen-
erate additional examples. Because GE3 operates
in hidden space, it is simpler and more computa-
tionally accessible compared with fine-tuning T5
for each classification task.
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6 Discussion

The motivation for this work emerged from a mix-
ture of failed experiments (I tried to devise an al-
gorithm to select better augmented sentences in
hidden space) in addition to an admiration for the
elegance of the Ex2 (Lee et al., 2021). In hindsight,
it would have been helpful to compare the perfor-
mances of these two techniques in the same setting
(notably, whereas I artificially restrict the sample
size for certain classes in this paper, Ex2 uses the
original data distributions of the datasets, which is
a harder setting to show improvements from data
augmentation).

I would be remiss not to mention at least one
weakness that I see in my own work. There has
been an influx of recent work proposing various
augmentation techniques for different NLP tasks,
and due to the lack of standardized evaluation
datasets and models, many papers3 do not perform
a full comparison with respect to relevant baselines.
This paper circumvents comparing with many data
augmentation baselines (e.g., Chawla et al. (2002))
by focusing on the question of whether hidden-
space example extrapolation is a valid inductive
bias (and not whether it is the best augmentation
technique). Hence, although I find example ex-
trapolation to be a nice idea, I should concede that
the particular GE3 operationalization of example
extrapolation should undergo more comprehensive
comparison with baselines before I can recommend
it as a go-to augmentation technique.

In summary, I have proposed a data augmenta-
tion protocol called GE3, which extrapolates the
hidden space distribution of one class onto another.
The empirical experiments in this paper suggests
that example extrapolation in hidden space is a
valid inductive bias for data augmentation. More-
over, GE3 is appealing because it has no hyper-
parameters, is model agnostic, and is lightweight.
If example extrapolation is an idea deserving of
further exploration by our field, I hope this paper
adds a leaf to the tree of knowledge in that space.
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3I’ll offer up my own paper (Wei and Zou, 2019) as an ex-
ample. That paper should have compared with backtranslation
and contextual augmentation at least.
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