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Abstract

Recent literatures have shown that knowledge
graph (KG) learning models are highly vul-
nerable to adversarial attacks. However, there
is still a paucity of vulnerability analyses of
cross-lingual entity alignment under adversar-
ial attacks. This paper proposes an adversarial
attack model with two novel attack techniques
to perturb the KG structure and degrade the
quality of deep cross-lingual entity alignment.
First, an entity density maximization method
is employed to hide the attacked entities in
dense regions in two KGs, such that the de-
rived perturbations are unnoticeable. Second,
an attack signal amplification method is devel-
oped to reduce the gradient vanishing issues
in the process of adversarial attacks for further
improving the attack effectiveness.

1 Introduction

Today, multilingual knowledge graphs (KGs), such
as WordNet (Miller, 1992), DBpedia (Auer et al.,
2007), YAGO (Hoffart et al., 2011), and Concept-
Net (Speer et al., 2017), are becoming essential
sources of knowledge for various AI-related appli-
cations, e.g., personal assistants, medical diagnosis,
and online question answering. Cross-lingual entity
alignment between multilingual KGs is a powerful
tool that align the same entities in different mono-
lingual KGs together, automatically synchronize
different language-specific KGs and revolutionize
the understanding of these ubiquitous multilingual
KGs in a transformative manner (Xu et al., 2020b;
Sun et al., 2020a; Berrendorf et al., 2021b,a).

Unfortunately, real-world KGs are typically
noisy due to two main reasons: (1) massive
fake information injected by malicious parties
and users on online encyclopedia websites (e.g.,
Wikipedia (Wik) and Answers.com (Ans)), social
networks (e.g., Twitter and Facebook), online com-
munities (e.g., Reddit and Yahoo Answers), news
websites, and search engines that usually serve as

data sources of the KGs; and (2) direct adversar-
ial attacks on the KGs. Google Knowledge Graph
has been criticized for providing answers without
source attribution or citation, and thus undermines
people’s ability to verify information and to de-
velop well-informed opinions (Dewey, 2016).

Recent studies have shown that KG learning
models remain highly sensitive to adversarial at-
tacks, i.e., carefully designed small perturbations
in KGs can cause the models to produce wrong
prediction results, including knowledge graph em-
bedding (Minervini et al., 2017; Pujara et al., 2017;
Pezeshkpour et al., 2019; Zhang et al., 2019; Baner-
jee et al., 2021) and knowledge graph-based dia-
logue generation (Xu et al., 2020a). However, exist-
ing techniques focus on the adversarial attacks on
single KG learning tasks. These techniques cannot
be directly utilized to attack the cross-lingual entity
alignment models, as they have to analyze relations
within and across KGs. Two critical questions still
keep unsolved: (1) Can small perturbations on KGs
defeat cross-lingual entity alignment models? (2)
How to design effective and unnoticeable perturba-
tions against cross-lingual entity alignment?

The majority of cross-lingual entity alignment
techniques aim to train the model by minimizing
the distance between pre-aligned entity pairs in
training data, such that the corresponding entity
embeddings across KGs are close to each other,
and the entity pairs with the smallest distance in
test data are output as alignment results (Mao et al.,
2020a; Wu et al., 2020b; Mao et al., 2020b; Tang
et al., 2020; Yan et al., 2021; Zhu et al., 2021; Mao
et al., 2021; Pei et al., 2020).

In terms of the distribution of entities in a KG,
one idea of perturbing an entity unobtrusively is to
move the entity to a dense region in the KG with
many similar entities by adding/deleting relations
to/from it is able to move it to a dense region in
the KG with many similar entities, such that it is
non-trivial to recognize the modified entity in the



5321

dense region with many similar entities.
Existing gradient-based adversarial attack meth-

ods (Goodfellow et al., 2015; Madry et al., 2018)
search for the weakest input features to attack by
calculating the loss gradient. However, the vanish-
ing gradient problem is often encountered when
training neural networks with poor backward sig-
nal propagation and thus leads to the attack fail-
ures (Athalye et al., 2018). Can we enhance the
attack signal propagation for improving the attack
effectiveness?

In this work, an entity density estimation and
maximization method is employed to first estimate
the distribution of entities in KGs. Based on the
estimated KG distributions, the entities to be at-
tacked are then moved to dense regions in two
KGs by maximizing their densities. The attacked
entities are hidden in dense regions in two KGs,
such that they are surrounded by many neighbors
in dense regions as well as indistinguishable from
these neighbors. In addition, the surrounding of
many neighbors makes it difficult to identify the
correctly aligned entity pairs among many similar
candidate entities.

We comprehensively study how poor signal prop-
agation on neural networks leads to vanishing gradi-
ents in adversarial attacks over cross-lingual entity
alignment. An attack signal amplification method
is developed to secure informative attack signals
with both well-conditioned Jacobian and compe-
tent signal propagation from the alignment loss.
This reduces the gradient vanishing issues in the
process of adversarial attacks for further improving
the attack effectiveness.

Extensive experiments over real-world KG
datasets validate the superior attack performance
of the EAA model against several state-of-the-art
cross-lingual entity alignment models. To our best
knowledge, this work is the first to study adversar-
ial attacks on cross-lingual entity alignment.

2 Problem Formulation

Given two input knowledge graphs G1 and G2.
Each is denoted as Gk = (Ek, Rk, T k) (1 ≤
k ≤ 2), where Ek = {ek1, · · · , ekNk} is the set
of Nk entities, Rk = {rkij = (eki , e

k
j ) : 1 ≤

i, j ≤ Nk, i 6= j} is the set of relations, and
T k = Ek × Rk × Ek is the set of triples. Each
triple tkl = (eki , r

k
ij , e

k
j ) ∈ T k in GK denotes head

entity eki connected to tail entity ekj through rela-
tion rkij . A

k is an Nk ×Nk adjacency matrix that

denotes the structure information of GK . By using
knowledge graph embedding (KGE), each triple
can be presented as (eki , r

k
ij , e

k
j ), where boldfaced

eki , rkij , and ekj represent the embedding vectors of
head eki , relation rkij , and tail ekj respectively.
D contains a set of pre-aligned entity pairs

D = {(e1i , e2j )|e1i↔e2j , e1i ∈ E1, e2j ∈ E2}, where
e1i↔e2j indicates that two entities e1i and e2j are the
equivalent ones in different language-specific KGs.
The cross-lingual entity alignment aims to utilize
D as the training data to identify the one-to-one
entity alignments between entities e1i and e2j in two
cross-lingual KGs G1 and G2 in the test data.

Most of existing cross-lingual entity alignment
models are supervised learning methods with mini-
mizing the distances (or maximizing the similari-
ties) between the embeddings of pre-aligned entity
pairs e1i and e2j in D (Wang et al., 2018; Sun et al.,
2020d; Wu et al., 2020b; Pei et al., 2020; Tang
et al., 2020; Yan et al., 2021). The entity pairs e1i
and e2j in the test data with the largest similarities
are selected as the alignment results. The following
loss function is minimized to learn a KGE model
h : eki ∈ Ek 7→ eki . h is often implemented as a
graph convolutional network (GCN) for deep KGE.

min
h
L =−

∑
(e1i ,e

2
j )∈D

log σ
(
(e1i )

T · e2j
)

+
∑

(e1
i′ ,e

2
j′ )/∈D

log σ
(
(e1i′)

T · v2
j′
) (1)

where (e1i , e
2
j ) and (e1i′ , e

2
j′) are positive and nega-

tive entity pairs. (e1i )
T is the transpose of e1i . σ(·)

is the sigmoid function. The inner product · denotes
the similarity between two embedding vectors.

Given a trained deep KGE model eki = h(eki ), an
adversarial attacker aims to maximally degrade the
alignment performance of h by injecting effective
and unnoticeable relation perturbations (including
relation addition and deletion) into two clean KGs
Gk (1 ≤ k ≤ 2), leading to two perturbed KGs
Ĝk = (Êk, R̂k, T̂ k).

max
Âk
L s.t. |Âk −Ak| ≤ ∆, 1 ≤ k ≤ 2 (2)

where Ak and Âk are clean and perturbed adja-
cency matrices respectively. ∆ is the allowed attack
budget, i.e., allowed relation modifications.
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3 Unnoticeable Adversarial Attacks
Existing GCN-based entity alignment methods of-
ten initialize entity features with random initial-
ization or pre-trained word embeddings of entity
names and utilize adjacency matrix of KGs to learn
the entity embeddings (Wang et al., 2018; Sun et al.,
2020d; Wu et al., 2020b; Yan et al., 2021). Thus,
the embedding of an entity mainly depends on the
embeddings of its neighbor entities. In order to
modify the embedding of a target entity for the
purpose of adversarial attacks, we need to remove
some positive (i.e., existing) relations and add some
negative (i.e., non-existing) relations between the
target entity and its neighbors in adjacency matrix,
and thus degrade the accuracy of entity embedding
and alignment. We use the ith row of adjacency
matrix Ak (i.e., Ak

i ) to represent structure features
of each entity eki and analyze the impact of each
structure feature (i.e., positive or negative relation)
on the alignment accuracy.

As shown in Figure 1, assuming that e1i and e2j
are pre-aligned entity embeddings, if we hide an
entity e1i in a dense region with many similar e1ks
by modifying its associated relations, then the sur-
rounding of many e1ks makes it difficult to differen-
tiate e1i from many similar e1ks and identify the cor-
rectly aligned entity pairs e1i and e2j among many
similar candidate entities e1ks. In addition, if an-
other pair of entity embeddings e1k and e2j are more
similar than the pre-aligned entity embeddings e1i
and e2j , i.e., (e1k)

T · e2j > (e1i )
T · e2j , then we will

obtain an incorrect alignment result (e1k, e
2
j ).

In this work, we will leverage our proposed ker-
nel density estimation method (Zhang et al., 2020b)
to estimate the distribution of perturbed KGs and
maximize the distance between pre-aligned entity
pairs for degrading the performance of entity align-
ment as well as for hiding the attacked entities
in dense regions in two KGs. The kernel density
estimation method is essentially to estimate a prob-
ability density function (PDF) f(x) of a random
variable x for revealing the intrinsic distribution of
x (Parzen, 1962). Let xk be a Nk-dimensional ran-
dom variable to denote the structure features of all
entities {Ak

i , · · · ,AK
NK} in KG Gk for estimating

a PDF f(xk).

f(xk) =
1

Nkdet(B)

Nk∑
i=1

K
(
B−1

(
xk −Ak

i

))
(3)

G G

G G

f i f j

Figure 1: Unnoticeable Adversarial Attacks

where det(·) denotes the determinant operation.
B > 0 is a bandwidth to be estimated. It is an
Nk×Nk diagonal matrix B = diag(b1, · · · , bNk),
which has strong influence on the density estima-
tion f(xk). A good B should be as small as the
data can allow. K is a product symmetric kernel
that satisfies

∫
K(x)dx = 1 and

∫
xK(x)dx = 0.

The vector form f(xk) can be rewritten as an ele-
ment form, where xkj denotes the jth dimension in
xk.

f(xk) =
1

Nk

Nk∑
i=1

Nk∏
j=1

1

bj
K
(xkj −Ak

ij

bj

)
(4)

We then calculate the derivative ∂f(xk)
∂bj

about
each bj in B.

∂f(xk)

∂bj
=

1

Nk

Nk∑
i=1

∂
[∏Nk

l=1
1
bl
K
(xk

l −A
k
il

bl

)]
∂bj

=

− 1

Nk

Nk∑
i=1

( 1

bj
+

xkl −Ak
il

b2j
K
(xkl −Ak

il

bj

))
Nk∏
l=1

1

bl
K
(xkl −Ak

il

bl

)
(5)

We make use of a greedy search method to
determine bandwidths in the kernel density esti-
mation method. For a non-trivial/trivial dimen-
sion j, updating the bandwidth bj will have a
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strong/weak influence over f(xk). We greedily
reduce bj with a sequence b0, b0s, b0s2, · · · for a
parameter 0 < s < 1, until bj is smaller than a
certain threshold τj , to validate whether a small
update in bj is able to lead to a large update in
f(xk).

We use an initial B = diag(b0, · · · , b0) for a
large b0 to estimate ∂f(xk)

∂bj
, and reduce bj when

∂f(xk)
∂bj

is larger than a certain threshold.

∂f(xk)

∂bj
=

1

Nk

Nk∑
i=1

∂
[∏N1

l=1
1
bl
K
(x1

l−A
1
il

bl

)]
∂bj

=
1

Nk

Nk∑
i=1

K
(x1

j−A1
ij

bj

)
K
(x1

j−A1
ij

bj

) Nk∏
l=1

K
(x1

l −A1
il

bl

)

=
1

Nk

Nk∑
i=1

∂f(xki )

∂bj

(6)

We derive the corresponding variance
Var
(
∂f(xk)
∂bj

)
as follows.

Var
(∂f(xk)

∂bj

)
= Var

( 1

Nk

Nk∑
i=1

∂f(xki )

∂bj

)
(7)

According to the estimated bandwidth B by Al-
gorithm 1, we can calculate density f(xk) of xk

in Eq.(3). The perturbation process is to maximize
the following attack loss LA for producing unno-
ticeable perturbations, in terms of the estimations
f(x1) and f(x2) in two KGs G1 and G2.

max
Âk
LA =

[ ∑
(e1i ,e

2
j )∈D

− log σ
(
(ê1i )

T · ê2j
)

+ f(Â1
i ) + f(Â2

j )
]

+
∑

(e1
i′ ,e

2
j′ )/∈D

log σ
(
(e1i′)

T · v2
j′
)

s.t. |Âk
i −Ak

i | ≤ ∆, 1 ≤ k ≤ 2

(8)

where Â1
i = A1

i + δ1i (and Â2
j = A2

j + δ2j ) de-
note perturbations of clean structure features A1

i

(and A2
j ) in G1 (and G2) by adding a small amount

of relation perturbations δ1i (and δ2j ), such that ê1i

Algorithm 1 Kernel Density Estimation
Input: KG Gk = (Ek, Rk, T k), parameter 0 < s < 1,
initial bandwidth b0, and parameter c.
Output: Bandwidth matrix B.

1: Initialize all b1, · · · , bNk with b0;
2: for each j = 1 to Nk

3: do
4: Estimate derivative ∂f(xk)

∂bj
and variance Var( ∂f(x

k)
∂bj

);

5: Compute τj =
√

2 ·Var( ∂f(xk)
∂bj

) · log(cNk);

6: if
∣∣ ∂f(xk)

∂bj

∣∣ > τj , then Update bj = bjs;

7: while
∣∣ ∂f(xk)

∂bj

∣∣ > τj

8: Return B.

is far away from ê2j and thus the alignment accu-
racy is decreased. In addition, we push e1i and e2j
to dense regions to generate ê1i and ê2j , by maxi-
mizing f(Â1

i ) and f(Â2
j ), such that ê1i and ê2j are

indistinguishable from their neighbors in perturbed
KGs. This reduces the possibility of perturbation
detection by humans or defender programs.

We leverage the Projected Gradient Descent
(PGD) technique (Madry et al., 2018) to produce
perturbed adjacency matrices Â1 and Â2 of two
KGs G1 and G2.

(A1
i )

(t+1) = Π41sgn
[
ReLU

(
∇(A1

i )
tLA

]
(A2

j )
(t+1) = Π42sgn

[
ReLU

(
∇(A2

j )
tLA

]
,

t = 1, · · · , T

(9)

where (A1
i )

(t+1) and (A2
j )

(t+1) denotes the pertur-
bations of A1

i and A2
j derived at step t. ε speci-

fies the budget of allowed perturbed relations for
each attacked entity. 4k = {(δk)t|1T (δk)t ≤
ε, (δk)t ∈ {0, 1}Nk}, where (δk)t = ‖(A1

i )
t −

A1
i ‖22, represents the constraint set of the projection

operator Π, i.e., it encodes whether a relation in A1
i

is modified or not. The composition of the ReLU
and sign operators guarantees (A1

i )
t ∈ {0, 1}N1

and (A2
j )
t ∈ {0, 1}N2

, as it adds (or removes) an
relation or keeps it unchanged when an derivate in
the gradient is positive (or negative). The outputs
(A1

i )
T and (A2

j )
T at final step T are used as the

perturbed adjacency matrices Â1
i and Â2

j .

4 Effective Adversarial Attacks

Unfortunately, the above PGD-based unnotice-
able attack method needs to iteratively calculate
the gradient ∇(A1

i )
LA, which mainly depends on
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∂
(
log σ((e1i )

T ·e2j )
)

∂A1
i

in the GCN-based entity align-
ment models.

Given an alignment signal φ
(
(e1i )

T , e2j
)

=

∂
(
log σ((e1i )

T ·e2j )
)

∂(e1i )
T and a Jacobian matrix Ji =

∂(e1i )
T

∂A1
i

, the gradient of log σ((e1i )
T · e2j ) is calcu-

lated as follows.

∂
(

log σ((e1i )
T · e2j )

)
∂A1

i

=
∂
(

log σ((e1i )
T · e2j )

)
∂(e1i )

T

∂(e1i )
T

∂A1
i

=φ
(
(e1i )

T , e2j
)
Ji

(10)

It is obvious that the gradient is determined with
both the signal and the Jacobian together. The situ-
ation that either the signal has saturating gradient
or the Jacobian is insignificant is able to result in

vanishing gradients in
∂
(
log σ((e1i )

T ·e2j )
)

∂A1
i

and thus
the attack failures.

All singular values of a neural network’s input-
output Jacobian matrix concentrate near 1 is a prop-
erty known as dynamical isometry (Pennington
et al., 2017). Ensuring the mean squared singu-
lar value of a network’s input-output Jacobian is
O(1) is essential for avoiding the exponential van-
ishing or explosion of gradients. We leverage the
dynamical isometry theory for improving the effec-
tiveness of the PGD adversarial attacks. Concretely,
a neural network is dynamical isometry if all singu-
lar values λir of the Jacobian Ji are close to 1, i.e.,
1 − λir ≤ ξ for ∀r, r ∈ {1, · · · ,min{N1, N2}}
and a small positive number ξ ≈ 0. In our problem,
when the Jacobian matrix Ji is dynamical isometry,
the signal φ

(
(e1i )

T , e2j
)

backpropagates isometri-
cally over the neural network and maintains the
norm and all angles between vectors.

Intuitively, if we select a good attack signal am-
plification factor α to amplify e1i and e2j as follows,
then this can improve the diffusion of attack signals.
In addition, a good α should guarantee the relative
order of the network’s output logits invariant, to
ensure the decision boundary of entity alignment
unchanged.

ẽ1i = αe1i , ẽ
2
j = αe2j (11)

We rewrite the gradients with α as follows.

∂
(

log σ((ẽ1i )
T · ẽ2j )

)
∂A1

i

=
∂
(

log σ((ẽ1i )
T · ẽ2j )

)
∂(ẽ1i )

T

∂(ẽ1i )
T

∂(e1i )
T

∂(e1i )
T

∂A1
i

= φ
(
(ẽ1i )

T , ẽ2j
)
αJi

(12)

Notice that φ
(
(ẽ1i )

T , ẽ2j
)

=

σ((ẽ1i )
T ·ẽ2j )

(
1−σ((ẽ1i )T ·ẽ2j )

)
ẽ2j

σ((ẽ1i )
T ·ẽ2j )

=
(
1 − σ((ẽ1i )

T ·
ẽ2j )
)
ẽ2j . When α is close to ∞, the alignment

signal φ
(
(ẽ1i )

T , ẽ2j
)

approaches zero and thus
the vanishing gradient problem is encountered
in adversarial attacks. In addition, all singular
values of αJi are equal to zeros if α = 0.
∂
(
log σ((ẽ1i )

T ·ẽ2j )
)

∂A1
i

is equal to zero, which leads to
the vanishing gradient problem too.

Therefore, a desired α for avoiding the ex-
ponential vanishing of gradients should stand
in between 0 and ∞, in order to guaran-
tee the signal φ

(
(ẽ1i )

T , ẽ2j
)

large enough, i.e.,
‖φ
(
(ẽ1i )

T , ẽ2j
)
‖2 > η for a positive threshold η,

as well as make all singular values of αJi close
to 1, such that the signal φ

(
(ẽ1i )

T , ẽ2j
)

can be well
backpropagated from the output layer to the input
layer.

In order to make the mean of singular values of
αJi close to 1, the first option of α is the inverse
of the mean of singular values of Ji.

α =
|D|N∑|D|

i=1

∑N
r=1 λir

(13)

where λir is the rth singular value of Ji. |D| is
the size of the set D of pre-aligned entity pairs and
N = min{N1, N2}.

For the purpose of ensuring ‖φ
(
(ẽ1i )

T , ẽ2j
)
‖2 >

η, the second option of α should be satisfied with
1− σ((ẽ1i )

T · ẽ2j ) > η/‖ẽ2j‖2. The feasible α can
be obtained through the following theorem.

Theorem 1. Let entity embedding vectors ẽ2k and
ẽ2l be the most similar and least similar to (ẽ1i )

T

(1 ≤ k, l ≤ N2), i.e., ẽ2k = argmaxẽ2k
(ẽ1i )

T · ẽ2k
and ẽ2l = argminẽ2l

(ẽ1i )
T · ẽ2l , and c = (ẽ1i )

T · ẽ2k.
Also, suppose that d is the minimal norm of entity
embedding vectors in G2, i.e., d = minẽ2m

‖ẽ2m‖2
for ∀e2m ∈ E2. For a given 0 < η < d/2, if α <
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Algorithm 2 Effective Adversarial Attacks

Input: KG Gk = (Ek, Rk, T k), set of pre-aligned
entity pairs D = {(e1i , e2j )|e1i↔e2j}, trained entity
embedding model h, noise budget ε, and signal
threshold η.
Output: Perturbed adjacency matrices
{Â1

i , Â
2
j |(e1i , e2j ) ∈ D}.

1: for each pair (e1i , e
2
j ) in D

2: Set ê1i = e1i = h(e1i ), ê2j = e2j = h(e2j );

3: Compute α1 = |D|N∑|D|
i=1

∑N
r=1 λir

in Eq.(13);

4: for t = 1, · · · , T
5: Initialize α2 = 1.0;
6: if 1− σ((ẽ1i )

T · ẽ2j ) ≤ η/‖ẽ2j‖2
7: Update α2 =

√
1
c log d−η

η in Theorem 1;

8: Amplify ẽ1i = α1α2e
1
i , ẽ

2
j = α1α2e

2
j ;

9: Calculate
∂
(
log σ((ẽ1i )

T ·ẽ2j )
)

∂Ã1
i

and

∂
(
log σ((ẽ1i )

T ·ẽ2j )
)

∂Ã2
j

;

10: Use the PGD to update Â1
i , Â

2
j in Eq.(9);

11: Return {Â1
i , Â

2
j |(e1i , e2j ) ∈ D}.

√
1
c log d−η

η , then 1−σ((ẽ1i )
T · ẽ2j ) > η/‖ẽ2j‖2 for

∀e2j ∈ E2.
Proof. Please see Appendix A for proof.

Algorithm 2 combines the above two kinds of α
to produce effective adversarial attacks with attack
signal amplification. The perturbed entity embed-
dings ê1i and ê2j are initialized with clean ones e1i
and e2j in step 2. The first amplification factor α1

is calculated in step 3. The second factor α2 is
computed in steps 5-7. α1 and α2 are integrated
together for enhancing the attack signal propaga-
tion of neural networks in steps 8-9. The PGD
attack method with attack signal amplification is
utilized to perturb the KGs. The algorithm repeats
the above iterative procedure until convergence.

5 Experimental Evaluation

Table 1 presents the statistics of the DBP15K
datasets (Sun et al., 2017). They consist
of three different cross-lingual datasets which
are DBP15KZH−EN , DBP15KJA−EN , and
DBP15KFR−EN . Each cross-lingual dataset con-
tains two monolingual KGs in different languages
and 15,000 pre-aligned entity pairs between two
KGs. In the experiment, 30% pre-aligned entity

Dataset #Entities #Relations #Triples #Alignments

ZH-EN ZH 66,469 2,830 153,929 15,000EN 98,125 2,317 237,674

JA-EN JA 65,744 2,043 164,373 15,000EN 95,680 2,096 233,319

FR-EN FA 66,858 1,379 192,191 15,000EN 105,889 2,209 278,590

Table 1: Statistics of Datasets
pairs are used for training data and the remaining
are used for test data.

We compare the EAA model with seven state-of-
the-art attack models. Sememe-based Word Sub-
stitution (SWS) incorporates the sememe-based
word substitution and swarm optimization-based
search to conduct word-level attacks (Zang et al.,
2020). Inflection Word Swap (IWS) perturb the
inflectional morphology of words to craft plausible
and semantically similar adversarial examples (Tan
et al., 2020; Morris et al., 2020). We utilize the
above two word-level attack models to replace
associated entities of a relation based on seman-
tics. GF-Attack attacks graph embedding methods
by devising new loss and approximating the spec-
trum (Chang et al., 2020). LowBlow is a general
low-rank adversarial attack model which is able to
affect the performance of various graph learning
tasks (Entezari et al., 2020). We use the above two
graph attack models to directly add/remove rela-
tions in terms of graph topology. CRIAGE aims to
add/remove the facts to/from the KG that degrades
the performance of link prediction (Pezeshkpour
et al., 2019). DPA contains a collection of data poi-
soning attack strategies against knowledge graph
embedding (Zhang et al., 2019). RL-RR uses rein-
forcement learning policy to produce deceptively
perturbed KGs while keeping the downstream qual-
ity of the original KG (Raman et al., 2021). To our
best knowledge, this work is the first to study ad-
versarial attacks on cross-lingual entity alignment.

We evaluate four versions of EAA to show the
strengths of different components. EAA-P uses
the basic PGD (Madry et al., 2018) to produce ad-
versarial attacks. EAA-D only utilizes the KDE
and density maximization to generate effective and
unnoticeable attacks. EAA-A employs only our
attack signal amplification strategy to improve the
performance of the basic PGD attack. EAA oper-
ates with the full support of both KDE and signal
amplification components.

We validate the effectiveness of the above at-
tack models with three representative cross-lingual
entity alignment algorithms. AttrGNN integrates
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AttrGNN RNM REA
Attacks Hits@1 MRR Hits@1 MRR Hits@1 MRR
Clean 0.796 0.845 0.841 0.875 0.792 0.818
SWS 0.726 0.839 0.745 0.862 0.764 0.848
IWS 0.708 0.761 0.729 0.823 0.759 0.804
GF-Attack 0.709 0.815 0.724 0.833 0.733 0.844
LowBlow 0.677 0.773 0.678 0.776 0.697 0.797
CRIAGE 0.646 0.704 0.655 0.719 0.662 0.715
DPA 0.603 0.712 0.636 0.751 0.635 0.733
RL-RR 0.562 0.684 0.628 0.713 0.637 0.722
EAA 0.497 0.538 0.525 0.636 0.538 0.641

Table 2: Results on DBP15KZH−EN with 5% per-
turbed relations

AttrGNN RNM REA
Attacks Hits@1 MRR Hits@1 MRR Hits@1 MRR
Clean 0.783 0.834 0.872 0.899 0.799 0.823
SWS 0.724 0.839 0.774 0.854 0.788 0.843
IWS 0.718 0.787 0.755 0.804 0.745 0.796
GF-Attack 0.715 0.824 0.747 0.826 0.767 0.845
LowBlow 0.737 0.783 0.728 0.802 0.723 0.821
CRIAGE 0.705 0.756 0.699 0.769 0.707 0.769
DPA 0.643 0.725 0.723 0.753 0.669 0.766
RL-RR 0.689 0.716 0.691 0.765 0.706 0.768
EAA 0.579 0.612 0.618 0.642 0.621 0.652

Table 3: Results on DBP15KJA−EN with 5% per-
turbed relations
both attribute and relation triples for better perfor-
mance of cross-lingual entity alignment (Liu et al.,
2020). RNM is a novel relation-aware neighbor-
hood matching model for entity alignment (Zhu
et al., 2021). To our best knowledge, REA is the
only robust cross-lingual entity alignment solution
against adversarial attacks by detecting noise in the
perturbed inter-KG entity links (Pei et al., 2020).

We use two popular metrics in entity alignment
to verify the attack effectiveness: Hits@k (i.e.,
the ratio of correctly aligned entities ranked in the
top k candidates) and MRR (i.e., mean reciprocal
rank). A smaller Hits@k or MRR indicates a
worse entity alignment but a better attack. K is
fixed to 1 in all tests.

Attack performance on various datasets with
different entity alignment algorithms. Table 2-
4 exhibit the Hits@1 and MRR scores of three
GCN-based entity alignment algorithms on test
data by nine attack models over three groups of
cross-lingual datasets. Clean represents that the
experiments run on the original KGs without any
perturbations. For all other attack models, the num-
ber of perturbed relations is fixed to 5% in these
experiments. It is observed that among nine at-
tack methods, no matter how strong the attacks
are, the EAA method achieve the lowest Hits@1
and MRR scores on perturbed KGs in most experi-

AttrGNN RNM REA
Attacks Hits@1 MRR Hits@1 MRR Hits@1 MRR
Clean 0.919 0.91 0.938 0.954 0.812 0.855
SWS 0.782 0.873 0.814 0.886 0.807 0.846
IWS 0.755 0.801 0.803 0.836 0.802 0.806
GF-Attack 0.715 0.828 0.779 0.848 0.792 0.848
LowBlow 0.792 0.841 0.799 0.826 0.793 0.852
CRIAGE 0.733 0.864 0.744 0.873 0.781 0.831
DPA 0.704 0.757 0.796 0.817 0.695 0.791
RL-RR 0.754 0.792 0.745 0.823 0.754 0.784
EAA 0.643 0.697 0.644 0.709 0.681 0.696

Table 4: Results on DBP15KFR−EN with 5% per-
turbed relations
ments, showing the effectiveness of EAA for the ad-
versarial attacks. Compared to the entity alignment
results under other attack models, EAA, on average,
achieves 17.7%, 12.8%, and 12.8% improvement
of Hits@1 and 17.6%, 16.9%, and 13.7% boost
of MRR onDBP15KZH−EN ,DBP15KJA−EN ,
and DBP15KFR−EN respectively. In addition,
the promising performance of EAA with all three
entity alignment models implies that EAA has great
potential as a general attack solution to other entity
alignment methods, which is desirable in practice.

Ablation study. Figure 2 and 3 present the
Hits@1 and MRR scores achieved by three entity
alignment methods under adversarial attacks with
four variants of our EAA attack model. We have
observed the complete EAA achieves the lowest
Hits@1 (< 0.681) and the smallest MRR scores (<
0.709) respectively, which are obviously better than
other versions. Notice that EAA-A achieves the
better attack performance than EAA-P in most tests.
A reasonable explanation is that our attack signal
amplification technique is able to alleviate the van-
ishing gradient issue, which effectively helps main-
tain the utility of adversarial attacks in GCN-based
entity alignment models. In addition, EAA-D also
performs well in most experiments, compared with
EAA-P. A rational guess is that it is difficult to cor-
rectly match the entities in two KGs when they lie
in dense regions with many similar entities. These
results illustrate both KDE and signal amplification
methods are important in producing effective and
unnoticeable attacks in entity alignment.

Attack performance with varying perturbed
relations. Figure 4 presents the performance of en-
tity alignment under nine attack models by varying
the ratios of perturbed edges from 5% to 30%. It is
obvious that the attacking performance improves
for each attacker with an increase in the number of
perturbed edges. This phenomenon indicates that
current GCN-based entity alignment methods are
very sensitive to adversarial attacks. EAA achieves
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Figure 2: Hits@1 of EAA variants
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Figure 3: MRR of EAA variants
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Figure 4: Hits@1 with varying perturbed relations
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Figure 5: Results with varying parameters

the lowest Hits@1 values (< 0.538), which are still
better than the other eight methods in most tests.
Especially, when the perturbation ratio is large than
10%, the Hits@1 values drop quickly.

Impact of perturbation budget ε. Figure 5 (a)
measures the performance effect of ε in the EAA
model for the entity alignment by varying ε from
1 to 6. It is observed that when increasing ε, both
Hits@1 and MRR scores of the EAA model de-
creases substantially. This demonstrates it is diffi-
cult to train a robust entity alignment model under
large ε constraint. However, a large ε can be easily
detected by humans or by defender programs. No-
tice that the average number of associated relations
of each entity in three datasets is between 2.3 and
2.9. Thus we suggest generating both effective and
unnoticeable attacks for the entity alignment task
under ε between 2 and 3, such that ε is smaller than
the average number of associated relations.

Impact of signal threshold η. Figure 5 (b)
shows the impact of η in our EAA model over
three groups of datasets. The performance curves
initially drop when η increases. Intuitively, this can
help alleviate the vanishing gradient issue in the
PGD adversarial attacks. Later on, the performance
curves keep relatively stable or even increasing
when η continuously increases. A reasonable expla-
nation is that the too large η makes the upper bound
of α too small. This results in poor-conditioned

Jacobian and thus leads to the vanishing gradient
issue again. Thus, it is important to determine the
optimal η for the EAA model.

6 Related Work

Knowledge graph alignment. Knowledge graph
alignment techniques have attracted active re-
search in the last decade (Xu et al., 2020b; Sun
et al., 2020a; Berrendorf et al., 2021b,a) and can
be broadly classified into two categories: (1)
Translation-based techniques, which denote enti-
ties by computing the plausibility of relational facts
measured by a specific fact plausibility scoring
function, including MtransE (Chen et al., 2017a),
IPTransE (Zhu et al., 2017), JAPE (Sun et al.,
2017), BootEA (Sun et al., 2018), RSNs (Guo
et al., 2019), NAEA (Zhu et al., 2019), OTEA (Pei
et al., 2019b), TransEdge (Sun et al., 2019), Hy-
perKA (Sun et al., 2020c). The idea of this kind
of methods are originated from cross-lingual word
embedding techniques. Thus, they are able to cap-
ture fine-grained fact semantics. However, they
fail to preserve the global topological structure of
knowledge graphs; (2) GCN-based methods, which
utilize GCN models to model global structure infor-
mation of knowledge graphs by recursively aggre-
gating the features of neighbors of each entity, such
as GCN-Align (Wang et al., 2018), SEA (Pei et al.,
2019a), MuGNN (Cao et al., 2019), HopGCN (Xu



5328

et al., 2019c), NAEA (Zhu et al., 2019), AVR-
GCN (Ye et al., 2019), RDGCN (Wu et al., 2019a),
HGCN-JE (Wu et al., 2019b), KECG (Li et al.,
2019), MRAEA (Mao et al., 2020a), AliNet (Sun
et al., 2020d), CG-MuAlign (Zhu et al., 2020),
NMN (Wu et al., 2020b), DAT (Zeng et al.,
2020), SSP (Nie et al., 2020), RREA (Mao et al.,
2020b), DINGAL (Yan et al., 2021), RNM (Zhu
et al., 2021), JEANS (Chen et al., 2021), Dual-
AMN (Mao et al., 2021), KE-GCN (Yu et al., 2021).
These methods can fully utilize the topological and
neighborhood information to learn better represen-
tations of entities. However, it is difficult to model
fine-grained fact semantics.

Adversarial attacks on text and graph data.
Recent studies have presented that NLP and graph
models, especially DNN models, are highly sensi-
tive to adversarial attacks, i.e., carefully designed
small deliberate perturbations in input intended to
result in analysis failures (Song et al., 2018; Chen
et al., 2020; Xu et al., 2019a; Wang et al., 2019;
Zhang et al., 2020a; Huq and Pervin, 2020).

In the NLP area, the majority of research ef-
forts focus on attacking the corpus in different
models, including dialogue generation (Niu and
Bansal, 2018), machine translation (Belinkov and
Bisk, 2018; Tan et al., 2020; Niu et al., 2020),
model-agnostic attacks (Wallace et al., 2019; Zang
et al., 2020; Morris et al., 2020), natural language
inference (Abdou et al., 2020; Chan et al., 2020;
Li et al., 2020b), reading comprehension (Jia and
Liang, 2017; Blohm et al., 2018; Tan et al., 2020),
and sentiment classification (Wu et al., 2020c; Ku-
rita et al., 2020; Wang et al., 2020).

Graph data analysis have attracted active re-
search in the last decade (Cheng et al., 2009; Zhou
et al., 2009, 2010; Cheng et al., 2011; Zhou and
Liu, 2012; Cheng et al., 2012; Lee et al., 2013; Su
et al., 2013; Zhou et al., 2013; Zhou and Liu, 2013;
Palanisamy et al., 2014; Zhou et al., 2014; Zhou
and Liu, 2014; Su et al., 2015; Zhou et al., 2015b;
Bao et al., 2015; Zhou et al., 2015d; Zhou and Liu,
2015; Zhou et al., 2015a,c; Lee et al., 2015; Zhou
et al., 2016; Zhou, 2017; Palanisamy et al., 2018;
Zhou et al., 2018b,a; Ren et al., 2019; Zhou et al.,
2019c,b,d; Zhou and Liu, 2019; Wu et al., 2020a,
2021a; Zhou et al., 2020b; Zhang et al., 2020b;
Zhou et al., 2020c,a; Goswami et al., 2020; Zhou
et al., 2021b; Zhao et al., 2021; Ren et al., 2021; Jin
et al., 2021; Wu et al., 2021b; Zhou et al., 2021a;
Zhang et al., 2021; Liu et al., 2021). Various adver-

sarial attack models have been developed to show
the vulnerability of graph learning models in node
classification (Dai et al., 2018; Zügner et al., 2018;
Wang and Gong, 2019; Xu et al., 2019b; Zügner
and Günnemann, 2019; Takahashi, 2019; Entezari
et al., 2020; Sun et al., 2020b; Ma et al., 2020;
Zügner et al., 2020; Xi et al., 2021; He et al., 2021),
community detection (Chen et al., 2017b; Waniek
et al., 2018; Chen et al., 2019; Li et al., 2020a), net-
work embedding (Chen et al., 2018; Bojchevski and
Günnemann, 2019; Chang et al., 2020), graph clas-
sification (Dai et al., 2018; Xi et al., 2021), link pre-
diction (Zhou et al., 2019a), similarity search (Dey
and Medya, 2020), malware detection (Hou et al.,
2019), and graph matching (Zhang et al., 2020b).

Only recently, researchers have started to de-
velop adversarial attack techniques to maximally
degrade the performance of knowledge graph learn-
ing in knowledge graph embedding (Minervini
et al., 2017; Pujara et al., 2017; Pezeshkpour et al.,
2019; Zhang et al., 2019; Banerjee et al., 2021) and
knowledge graph-based dialogue generation (Xu
et al., 2020a). REA detects noise in the per-
turbed inter-graph links for robust cross-lingual
entity alignment (Pei et al., 2020). RL-RR aims to
produce deceptively perturbed knowledge graphs,
which maintain the downstream performance of
the original knowledge graph while significantly
deviating from the original knowledge graph’s se-
mantics and structure (Raman et al., 2021).

7 Conclusions

We have studied the problem of adversarial attacks
against cross-lingual entity alignment. First, we
proposed to utilize kernel density estimation tech-
nique to estimate and maximize the densities of
attacked entities and generate effective and unno-
ticeable perturbations, by pushing attacked entities
to dense regions in two KGs. Second, we analyze
how gradient vanishing causes failures of gradient-
based adversarial attacks. We design an attack sig-
nal amplification method to ensure informative sig-
nal propagation. The EAA model achieves superior
performance against representative attack models.

8 Ethical Considerations

In this work, all the three knowledge graph
datasets are open-released by previous works for
research (Sun et al., 2017). All the three datasets
are widely used in training/evaluating the cross-
lingual entity alignment, for example, (Liu et al.,
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2020; Zhu et al., 2021; Pei et al., 2020; Yan et al.,
2021; Mao et al., 2021). All the three datasets
are open-accessed resources that everyone can see
and no privacy-related data (such as gender, nick-
name, birthday, etc.) are included. All the three
knowledge graph datasets are originally collected
and filtered from Wikipedia (under the license CC
BY-SA 3.0). It is allowed to reuse them in re-
search. But if it needs commercial use, it may need
to ask for additional permission from the original
author/copyright owner (Wik; Sun et al., 2017).
To summary, as research work, this work has no
concerns on the dataset and other aspects. But
if someone wants to use the same/similar data as
us in commercial, they have to further check the
licenses.
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Appendix

A Theoretical Analysis
Theorem 1. Let entity embedding vectors ẽ2k and
ẽ2l be the most similar and least similar to (ẽ1i )

T

(1 ≤ k, l ≤ N2), i.e., ẽ2k = argmaxẽ2k
(ẽ1i )

T · ẽ2k
and ẽ2l = argminẽ2l

(ẽ1i )
T · ẽ2l , and c = (ẽ1i )

T · ẽ2k.
Also, suppose that d is the minimal norm of entity
embedding vectors in G2, i.e., d = minẽ2m

‖ẽ2m‖2
for ∀e2m ∈ E2. For a given 0 < η < d/2, if α <√

1
c log d−η

η , then 1−σ((ẽ1i )
T · ẽ2j ) > η/‖ẽ2j‖2 for

∀e2j ∈ E2.
Proof. 1−σ((ẽ1i )

T ·ẽ2j ) > η/‖ẽ2j‖2 is equivalent
to σ((ẽ1i )

T · ẽ2j ) < 1− η/‖ẽ2j‖2. We convert it to
1

1+exp
(
−(ẽ1i )T ·ẽ2j

) < 1−η/‖ẽ2j‖2. As (ẽ1i )
T · ẽ2j ≤

c, we have 1

1+exp
(
−α2(e1i )

T ·e2j
) ≤ 1

1+exp(−α2c)
. If

we can prove 1
1+exp(−α2c)

< 1 − η/‖ẽ2j , then we

can testify 1

1+exp
(
−α2(e1i )

T ·e2j
) < 1− η/‖ẽ2j . Thus,

we need to solve exp
(
α2c
)
<
‖ẽ2j‖2−η

η .
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As ‖ẽ2j‖2 ≥ d, feasible α for exp
(
α2c
)
< d−η

η

is also feasible for exp
(
α2c
)
<
‖ẽ2j‖2−η

η . Since
exp is a monotonic increasing function, by solv-
ing the above inequality, we have feasible α <√

1
c log d−η

η .

Notice that 0 < η < d/2. This makes d−η
η > 1

and the upper bound ofα be positive. Therefore, for
any α < 1

c log d−η
η , 1− σ((ẽ1i )

T · ẽ2j ) > η/‖ẽ2j‖2
is satisfied.


