@inproceedings{liu-etal-2021-cross,
title = "Cross Attention Augmented Transducer Networks for Simultaneous Translation",
author = "Liu, Dan and
Du, Mengge and
Li, Xiaoxi and
Li, Ya and
Chen, Enhong",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.4",
doi = "10.18653/v1/2021.emnlp-main.4",
pages = "39--55",
abstract = "This paper proposes a novel architecture, Cross Attention Augmented Transducer (CAAT), for simultaneous translation. The framework aims to jointly optimize the policy and translation models. To effectively consider all possible READ-WRITE simultaneous translation action paths, we adapt the online automatic speech recognition (ASR) model, RNN-T, but remove the strong monotonic constraint, which is critical for the translation task to consider reordering. To make CAAT work, we introduce a novel latency loss whose expectation can be optimized by a forward-backward algorithm. We implement CAAT with Transformer while the general CAAT architecture can also be implemented with other attention-based encoder-decoder frameworks. Experiments on both speech-to-text (S2T) and text-to-text (T2T) simultaneous translation tasks show that CAAT achieves significantly better latency-quality trade-offs compared to the state-of-the-art simultaneous translation approaches.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2021-cross">
<titleInfo>
<title>Cross Attention Augmented Transducer Networks for Simultaneous Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mengge</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaoxi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ya</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enhong</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper proposes a novel architecture, Cross Attention Augmented Transducer (CAAT), for simultaneous translation. The framework aims to jointly optimize the policy and translation models. To effectively consider all possible READ-WRITE simultaneous translation action paths, we adapt the online automatic speech recognition (ASR) model, RNN-T, but remove the strong monotonic constraint, which is critical for the translation task to consider reordering. To make CAAT work, we introduce a novel latency loss whose expectation can be optimized by a forward-backward algorithm. We implement CAAT with Transformer while the general CAAT architecture can also be implemented with other attention-based encoder-decoder frameworks. Experiments on both speech-to-text (S2T) and text-to-text (T2T) simultaneous translation tasks show that CAAT achieves significantly better latency-quality trade-offs compared to the state-of-the-art simultaneous translation approaches.</abstract>
<identifier type="citekey">liu-etal-2021-cross</identifier>
<identifier type="doi">10.18653/v1/2021.emnlp-main.4</identifier>
<location>
<url>https://aclanthology.org/2021.emnlp-main.4</url>
</location>
<part>
<date>2021-nov</date>
<extent unit="page">
<start>39</start>
<end>55</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross Attention Augmented Transducer Networks for Simultaneous Translation
%A Liu, Dan
%A Du, Mengge
%A Li, Xiaoxi
%A Li, Ya
%A Chen, Enhong
%S Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
%D 2021
%8 nov
%I Association for Computational Linguistics
%C Online and Punta Cana, Dominican Republic
%F liu-etal-2021-cross
%X This paper proposes a novel architecture, Cross Attention Augmented Transducer (CAAT), for simultaneous translation. The framework aims to jointly optimize the policy and translation models. To effectively consider all possible READ-WRITE simultaneous translation action paths, we adapt the online automatic speech recognition (ASR) model, RNN-T, but remove the strong monotonic constraint, which is critical for the translation task to consider reordering. To make CAAT work, we introduce a novel latency loss whose expectation can be optimized by a forward-backward algorithm. We implement CAAT with Transformer while the general CAAT architecture can also be implemented with other attention-based encoder-decoder frameworks. Experiments on both speech-to-text (S2T) and text-to-text (T2T) simultaneous translation tasks show that CAAT achieves significantly better latency-quality trade-offs compared to the state-of-the-art simultaneous translation approaches.
%R 10.18653/v1/2021.emnlp-main.4
%U https://aclanthology.org/2021.emnlp-main.4
%U https://doi.org/10.18653/v1/2021.emnlp-main.4
%P 39-55
Markdown (Informal)
[Cross Attention Augmented Transducer Networks for Simultaneous Translation](https://aclanthology.org/2021.emnlp-main.4) (Liu et al., EMNLP 2021)
ACL