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Abstract
Developing robust NLP models that perform
well on many, even small, slices of data is
a significant but important challenge, with
implications from fairness to general relia-
bility. To this end, recent research has ex-
plored how models rely on spurious correla-
tions, and how counterfactual data augmenta-
tion (CDA) can mitigate such issues. In this
paper we study how and why modeling coun-
terfactuals over multiple attributes can go sig-
nificantly further in improving model perfor-
mance. We propose RDI, a context-aware
methodology which takes into account the im-
pact of secondary attributes on the model’s
predictions and increases sensitivity for sec-
ondary attributes over reweighted counterfac-
tually augmented data. By implementing RDI
in the context of toxicity detection, we find that
accounting for secondary attributes can signifi-
cantly improve robustness, with improvements
in sliced accuracy on the original dataset up
to 7% compared to existing robustness meth-
ods. We also demonstrate that RDI generalizes
to the coreference resolution task and provide
guidelines to extend this to other tasks.

1 Introduction

How can we build NLP models that perform well
over many slices, albeit sometimes small slices, of
our data? Developing models that are robust in
their performance is important for trusting these
models to work well in diverse, unexpected set-
tings. As a concrete running example in this paper,
we will consider the task of toxicity detection: us-
ing a model to predict if a comment is toxic or
not (Dixon et al., 2018). In this application, for
example, it is often important to ensure that models
are accurate over slices of data referring to differ-
ent demographic groups, as has been raised across
machine learning fairness research (Hardt et al.,
2016a; Blodgett et al., 2020).

One significant focus of research on how to im-
prove model robustness has been addressing spu-

rious correlations and improving counterfactual
robustness. That is, researchers have found that
models often rely on features or attributes that are
only spuriously correlated with the task and ac-
curacy often drops when models are evaluated on
counterfactual data that perturbs those attributes
(Jia and Liang, 2017). To return to our example of
toxicity detection, a model may learn that certain
identity tokens are correlated with toxicity, but that
could decrease accuracy for non-toxic comments
with those terms (Dixon et al., 2018; Garg et al.,
2018). Recent work has explored how counter-
factual generation techniques can be used to form
general checklists to test for model biases (Ribeiro
et al., 2020; Bender and Koller, 2020), often com-
posing many sub-problems which are hard to solve
formally. Similarly, a wide breadth of research
has studied how to train models to be more ro-
bust. We focus on one such mitigation technique—
counterfactual data augmentation (CDA), where
the supervised training data is augmented and bal-
anced by replacing in-place words or phrases in the
input sentence, which should not lead to a change
in the output label Y (Lu et al., 2018; Zmigrod
et al., 2019b). These counterfactual data gener-
ation approaches have been built on, as well as
coupled with regularization, to improve counterfac-
tual fairness (Kusner et al., 2017), such as prevent-
ing models from being overly sensitive to identity
terms (Garg et al., 2018; Prabhakaran et al., 2019;
Kurita et al., 2019; Park et al., 2018).

Although these approaches have been effective
in reducing spurious correlations, in this paper
we observe and study how such approaches often
fail to significantly improve core model accuracy
and can still perform worse on subsets of the
dataset due to the primary variable over which
counterfactual are generated being correlated
with (many) secondary variables that are not
swapped or balanced. Returning to our example
task of toxicity classification over comments, the
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primary attributes (e.g., demographic identity
terms) may be correlated with secondary attributes
(intent of the comment—directed or descriptive)
in the training data distribution. That is, for
some demographic groups we may observe more
directed comments and for others we may observe
more directed comments:

Toxic: Seeking transgender rights is extreme (Directed)
Non-Toxic: Transgender rights activists are labeled
extremists (Descriptive)

In the toxicity classification example shown above,
while the former is labeled as toxic by human
annotators as it is directed towards a demographic
group, the latter is only describing the toxicity
and is considered as non-toxic. Nonetheless,
both these sentences are classified as toxic by
the Jigsaw Perspective API (Dixon et al., 2018),
thus leading to high false positive rates. So,
to remove spurious correlations for the word
“transgender” with toxicity, it may not be enough
to improve model accuracy over comments with
the word “transgender” if the model is more
accurate for directed comments than descriptive
ones. Therefore we ask: can explicitly considering
counterfactuals over both primary and secondary
attributes better improve robustness?

To answer this question and improve model’s
robustness, i.e., accuracy on slices of the data, we
propose a new approach, RDI, that learns from
counterfactual data generated through interventions
on both the primary and secondary attributes. RDI
applies regularization techniques to train the model
to disentangle the impact of the primary and sec-
ondary attribute and to explicitly optimize for the
classifier’s predictions to be sensitive or insensi-
tive to each attribute. The approach also builds on
recent reweighting approaches (Keith et al., 2020;
Choudhury and Kiciman, 2017) to further address
distributional skews in the data.

Our approach to studying this problem builds
on works that argue for a case-by-case analysis of
variables and aims to provide a framework for in-
corporating secondary variables when we discuss
the robustness of natural language models (de Gib-
ert et al., 2018; van Aken et al., 2018). Specifically,
we have focused on the toxicity detection model
which prior work has shown to suffer from unin-
tended bias (Dixon et al., 2018) based on protected
identity terms mentioned in the sentence. We an-
alyze how existing robustness techniques fail to
capture a secondary attribute, namely the intent

of the sentence while performing counterfactual
data augmentation. We further show that this in-
tent, that is descriptive or directed, is significantly
correlated with specific protected identity groups
in the dataset. By disentangling this correlation
in the real world data via the counterfactual data,
we obtain a model that does not disparately have
high false positive rates on specific demographic
groups, while being sensitive to the intent of the
sentence. We achieve this improvement in robust-
ness, while improving the sliced accuracy across
multiple protected identity subgroups of the data.

Our key contributions are:
• We demonstrate how to disentangle the impact

of protected and secondary attributes in NLP
tasks like toxicity detection.
• We show how existing models perform poorly

on counterfactual datasets that modify the sec-
ondary attributes, and train robust models that
sensitize the model towards the secondary
variables in a context-aware manner.
• Empirically, we demonstrate that our RDI

method improves overall accuracy and sliced
accuracy by 2-7% on all identity groups for
both the toxicity detection task and general-
izes on the coreference resolution task, while
reducing spurious correlations through sec-
ondary attributes.

2 Related Work
Counterfactual Data Augmentation We build
on prior work that performs counterfactual data
augmentation (Ren et al., 2019; Bodapati et al.,
2019; Malykh et al., 2018). Counterfactual data
augmentation (CDA) has been used to create more
balanced datasets to mitigate bias (Lu et al., 2019;
Zhao et al., 2018; Zmigrod et al., 2019a; Garg et al.,
2018) towards protected identity groups or improve
accuracy (Kaushik et al., 2019). Our work extends
this literature by including a secondary variable
that is correlated to the standard primary variable
on which CDA is performed. This extension is mo-
tivated by works like (Gonen and Goldberg, 2019)
which demonstrate that there are secondary vari-
ables that need to be addressed for robustness.
Adversarial Robustness Making NLP models
robust to adversarial perturbations has recently
been explored extensively (Zhou et al., 2019).
Work in this space define adversarial attacks
through word or character perturbations (Pruthi
et al., 2019; Ebrahimi et al., 2018; Alzantot et al.,
2018) and certifiable defences (Ribeiro et al., 2018;
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Jia et al., 2019) following early work in adversar-
ial training (Goodfellow et al., 2015). One of the
challenges in applying adversarial techniques to
the discrete domain of NLP is the lack of an ε-
boundary in the input space. Hence, we consider
only those interpretable perturbations that explic-
itly modify the primary and secondary attributes,
as mentioned in a sentence.
Bias Mitigation Our work draws on recent
works that aim to mitigate unintentional bias to-
wards protected attributes in NLP tasks (Bolukbasi
et al., 2016). The approach of counterfactual token
fairness which performs bias mitigation of tem-
plate based (Dixon et al., 2018) augmented data
has been shown to improve model performance
over specific subgroups (Garg et al., 2018). Debi-
asing techniques can be broadly categorized into
in-processing: which changes training methodol-
ogy (Beutel et al., 2019; Jiang and Bansal, 2019;
Zhang et al., 2020) and post-processing: which op-
erate post hoc on trained models (Krasanakis et al.,
2018). While debiasing in unsupervised language
models have also improved downstream tasks
(Webster et al., 2020), we take the in-processing ap-
proach of debiasing in a supervised setting. Specif-
ically, in the domain of coreference resolution, we
closely relate to the work from (Rudinger et al.,
2018; Field and Tsvetkov, 2020) to identify sec-
ondary variables; and in the domain of toxicity de-
tection, we draw on qualitative error analysis (van
Aken et al., 2018; Fortuna et al., 2020; Basile et al.,
2019) and domain expertise (Waseem and Hovy,
2016; de Gibert et al., 2018; Saleem et al., 2017;
Sharma et al., 2018) to derive our understanding
of the secondary variable (intent of the comment)
and how it relates to the label (toxicity); see Ap-
pendix 1. Another related perspective is that of
distributional robustness where a machine learning
model trained on one data distribution is evaluated
on a modified data distribution (Li et al., 2018; Ma
et al., 2019; Miller, 2019; Liu et al., 2019; Fu et al.,
2017; Arjovsky et al., 2020). Following this body
of work, our objective is to ensure that the model re-
lies on invariances that generalize when the model
is tested on slices of data, a type of distributional
shift.

3 Problem Definition

3.1 Setup

Given a dataset, D, we will generate an augmented
dataset, D̃ by adding synthetic, balanced and coun-

terfactually augmented sentences.
Given an NLP classification task that operates

on individual sentences s ∈ D, consider a primary
variable X , which could be one of group based
identities (say race, gender, etc) that is spuriously
correlated with a secondary variable Z (e.g., intent
of the comment—directed or descriptive) and the
label Y that is to be predicted (say toxicity). In
our setting, the values (x, z ) of the primary and
secondary variables X,Z are contained within an
individual sentence s. We use the intent of the
comment as our running example for Z in the toxi-
city detection task, but our approach can be easily
generalized to other factors like dialect, in-group
language, figure of speech, etc. Note that since
we are building prediction models that output Ŷ ,
we are interested in checking if a given model’s
predictions perform accurately on counterfactual
inputs.

Our problem definition relies on the following
assumptions about the primary and secondary vari-
ables prevalent in recent works on counterfactual
robustness (Jia and Liang, 2017; Zmigrod et al.,
2019a; Keith et al., 2020). Firstly, given a sen-
tence, the primary and secondary variables con-
tained within it can be pre-specified. We also
assume that counterfactual sentences that modify
both the primary and secondary variables indepen-
dently can be generated. Hence, we follow tem-
plate based counterfactual data generation which
specifies the primary and secondary variables in
each sentence, as outlined in Section 5.2.

3.2 Objectives

Before we present our problem definition, we de-
fine the objectives that we will use from the ro-
bustness and fairness literature. Finally, we po-
sition these objectives within our context-aware
counterfactual robustness problem formulation.
For sake of simplicity here and in the follow-
ing sections, we consider that the label, primary
and secondary variables are binary with values
{0, 1}; {x0, x1}; {z0, z1} respectively. However,
similar definitions for multivariate settings can be
inferred.

3.2.1 Metrics
Original Dataset: In the original datasetD, as in
most NLP tasks, we define the evaluation accuracy
metricA over a set of sampled sentences s. Further,
to evaluate the accuracy of the held out dataset
conditional on the primary variableX , we compute
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the sliced accuracy A(x) over that subset.

A = Es∼D1(Ŷs = Ys) (1)

A(x) = Es∼D1(Ŷs = Ys|X = x) (2)

Counterfactual Dataset: To improve counter-
factual robustness, we aim to improve accuracy
Ã on the counterfactual dataset, by enumerating
all possibilities of the values assigned to X and
Z. We generate counterfactual sentences t(s, x, z)
by setting values of X = x, Z = z in a sentence
s ∈ D̃ using templates. Similar to overall accu-
racy, we can define sliced accuracy, Ã(x) on the
counterfactual dataset D̃ while enumerating all pos-
sible value assignments of the secondary variable.
Note that the dataset D̃ represents a less biased
dataset, one which might not actually be observed,
but represents all possible values of the primary
and secondary variables X,Z in D̃, and allows
us to measure the toxicity detection model’s coun-
terfactual robustness around both the primary and
secondary attributes.

Ã = E s∼D̃:
x∈{x0,x1},
z∈{z0,z1}

1(Ŷt(s,x,z) = Yt(s,x,z)) (3)

Ã(x) = E s∼D̃:
z∈{z0,z1}

1(Ŷz = Yz|X = x) (4)

3.3 Goal:
Our robustness goal is to improve a model’s ro-
bustness A(x) - i.e accuracy on the original dataset
sliced by the primary sensitive variable X . As sec-
ondary variables like Z are spuriously correlated
with primary variables X in the original dataset
D, we need to disentangle the impact of primary
and secondary variables by optimizing on the gen-
erated counterfactual dataset D̃. In our paper, we
achieve this goal by optimizing Ã, Ã(x) over the
dataset D̃, generated through interventions on both
the primary and secondary variables, such that this
improvement generalizes to the original dataset D.

4 Methodology

Since the goal of robustness is in addition to that of
increasing overall accuracy on the original dataset,
we use constrained optimization techniques over
augmented counterfactual data. Before we present
our proposed constraints, we present existing base-
line constraints defined in the fairness and robust-
ness literature. We discuss why these baseline con-
straints do not explicitly address the goal of im-
proving counterfactual robustness on primary and

secondary variables, and hence necessitate our ad-
ditional proposed constraints on the counterfactual
dataset D̃.

4.1 Baseline Constraints

Equality of Opportunity (EO): The Equality of
Opportunity (Hardt et al., 2016b) constraint im-
poses statistical equality on the false positive er-
rors, when conditioned on different values of the
primary variable X . Such a constraint enforces
that the primary variable X has no impact on the
false positive rate of the model. We approximate
this constraint over with the synthetic, balanced
counterfactually augmented data D̃ (CDA) by min-
imizing the EO gap (Zhao et al., 2017) with respect
to the primary variable (Eqn 5) and denote it by the
baseline “EO+CDA”.

min(|Es∼D̃(Ŷs = 1|Ys = 0, X = x0)−
Es∼D̃(Ŷs = 1|Ys = 0, X = x1)|) (5)

Counterfactual Token Fairness (CTF): In
Garg et al. (2018), the logits are equalized across
counterfactual examples s ∼ D̃ for different values
of the primary variable X , but not the secondary
variable Z. If f(s) denotes the logit of the model’s
prediction, and t(s, x) denotes the sentence gener-
ated by swapping the primary variable with x as per
the template, then CTF minimizes the following
logit pairing gap:

minEs∼D̃|X=x0
|(f(s)− f(t(s, x1))| (6)

Since X and Z are spuriously correlated, both
CTF and EO+CDA constrained models, which
solely focus on X , are susceptible to performing
poorly on examples when value of Z is altered
explicitly. For example in the Jigsaw toxicity de-
tection dataset, consider when Y is denoting “toxi-
city”, X represents gender and Z the intent of the
comment - descriptive or directed. If, for example,
we observe in the real world that most directed com-
ments are towards women, and not men (spurious
correlation between X and Z), then just interven-
ing on the genderX of the sentence and changing it
from female to male, might unintentionally remove
the impact of the secondary variable - the intent of
the sentence, on the toxicity detection task Y . This
is undesirable because the intent of the sentence is
genuinely correlated with Y and its impact should
not be removed.
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4.2 Proposed Constraints
We overcome the limitation of not including sec-
ondary variable impact in baseline constraints, by
explicitly modeling to Maximize Secondary Sen-
sitivity in tasks like toxicity detection, where the
label Y is sensitive to changing values of the sec-
ondary variable Z in the counterfactual dataset. We
later discuss how this can be generalized to tasks
where the secondary variable Z does not impact
the label Y in Section 7.

Maximize Secondary Sensitivity: In some
cases involving secondary variables, a characteris-
tic that is often desired in a robust model is that it
should be sensitive towards a change in a specific
variable. For example in the Jigsaw toxicity (Y )
dataset, even though more directed comments on
online forums are towards females, and more de-
scriptive comments are used for males, the model
should be sensitive to the intent of comment in de-
termining the toxicity. If we blindly optimize for
just CTF, the model may be less robust to changes
in the intent of comments from descriptive to di-
rected (Z). To overcome this issue, we propose a
constraint that retains model sensitivity to changes
in the secondary variable Z, while conditioning
on the primary variable X . If t′(s, x, z) is the
template-generated sentence by swapping out val-
ues of x, z in a sentence s such that the label y
assigned to the sentence changes to ¬y, and fy(s)
denotes the logit of the model’s prediction of y
for s, then we propose to maximize the following
conditional logit pairing gap.

max
∑

x∈{x0,x1}
y∈{0,1}

Es∼D̃|Ys=y,X=x,Z=z0
s′=t′(s,x,z1)

(fy(s)− f¬y(s′))

(7)

Reweighting Samples All of the above con-
straints still do not enforce the independence be-
tween X and Z in the counterfactual dataset, D̃,
if there is a sampling bias which prefers highly
correlated samples of X,Z in D. This is because
the real world dataset might suffer from selection
bias, task annotator difficulty bias (Gordon and
desJardins, 1995), etc, which cannot be easily off-
set through data augmentation alone. Therefore
in addition to augmenting counterfactual data, we
seek to reweight the augmented samples in such
a way that the probability of Z conditional on
X is equalized. Hence, a sentence s ∈ D̃ with

X = x0, Z = z is weighted byws using an inverse-
propensity based weighting (Olteanu et al., 2017)
based on the prevalence of Z conditional on X .
However, since we are fine-tuning over the coun-
terfactual dataset to also generalize over the orig-
inal dataset, we are concerned about improving
residual accuracy. We, thus apply this weighting
on only those samples in the original validation
dataset which our unconstrained model has incor-
rectly predicted. This boosting inspired technique
(Schapire, 2003) emphasizes the need to equalize
the prevalence conditioned on our worst-case ex-
amples (Oren et al., 2019) where our initial model
Ŷbase has made an incorrect prediction. For exam-
ple, we reweight based on the error rates, a sentence
s ∈ D̃ with X = x0, Z = z, Y = y.

ws =
PD(Z=z|X=x1, Y =y, Ŷbase=¬y)
PD(Z=z|X=x0, Y =y, Ŷbase=¬y)

(8)

Context-Aware Counterfactual Robustness
Based on the relationship of the secondary variable
with the label, we incorporate our proposed
constraints on the counterfactually augmented
dataset D̃ as a fine-tuning step. Thus, the methods
we propose can be used on any NLP model as a
fine-tuning task. We summarize our proposed RDI
methodology based on the context of the secondary
variable in Algorithm 1.

Algorithm 1 RDI (Reweight-Direct-Indirect)
1: Input: Trained NLP model -M ’s predictions
Ŷbase, primary variable X , secondary variable
Z, label Y

2: for each batch do
3: Augment template based samples for all

(X,Z) pairs to form D̃
4: Reweight samples based on (8)
5: L = Es∼D̃ CrossEnt(Ŷs, Ys)
6: LRDI ← (6) + (7)
7: Back-propagate αL+ (1− α)LRDI in M
8: end for

5 Evaluation

5.1 Data
The Jigsaw Kaggle toxicity dataset 1 contains sen-
tences from the Civil Comment platform. We nar-
row down our focus to the comments that have the
referenced identity in the comment, as well as the

1https://www.kaggle.com/c/jigsaw-unintended-bias-in-
toxicity-classification
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binary label: toxic or non-toxic. In total, 1,804,874
comments are annotated for toxicity, out of which
∼50% of them have identities annotated too. Note
that the identities are crowd sourced and not self-
identified. We use a randomized 80-20 train-test
split in our evaluation.

Some comments refer to certain protected iden-
tity groups, which we refer to as the primary vari-
able. Based on the qualitative study of toxic com-
ments (Waseem and Hovy, 2016), we can broadly
categorize the intent of comments as either directed
or descriptive. Directed comments are speech to-
wards a specific individual or group, whereas de-
scriptive comments are more factual and do not hint
towards a group or individual. Different identity
groups are exposed to different intended comments,
thus making the intent of the comment (descrip-
tive or directed) our secondary variable Z. In this
domain, our goal is to mitigate the impact of the
primary variable on the prediction (Eqn 6), while
retaining the sensitivity of the secondary variable
on the predicted label (Eqn 7).

5.2 Augmentation Templates
The above dataset is the basis on which we evaluate
the accuracy of the original dataset using our RDI
algorithm. However, this dataset is not amenable
for counterfactual data augmentation. Hence, we
rely on a set of template based datasets to generate
the counterfactual data on which we will fine-tune
our models. (Dixon et al., 2018) released a set of
madlibs templates to generate toxic and non-toxic
comments based on hierarchies of intersectional
identities. We extend this framework to incorpo-
rate templates for intent of the comment - directed
and descriptive based on the definition of toxicity
provided in (Waseem and Hovy, 2016). We pro-
vide an example of the 130,721 such counterfactual
examples generated below (see appendix 1 for the
full set of templates). Note that in addition to us-
ing templates, we can also utilize unsupervised
learning based techniques to identify directed and
descriptive comments.

5.3 Metrics
We evaluate the AUC for each identity group
and the overall dataset in the Jigsaw Toxicity
dataset. Since the secondary variable in the Toxi-
city dataset is not available for the Jigsaw dataset,
we also present sliced AUCs based on the descrip-
tive/directed intent of the comment as labeled by a
model trained to predict solely the intent of com-

ments with accuracy of 94.3% (details in Appendix
3). Since we are comparing sliced accuracy across
9 identity groups in the toxicity dataset, we also
compute the standard error bars in the measure-
ment of each metric. We also perform a two sam-
ple independent t-test over n = 10 random restarts
for each of the slices with 2n− 2 degrees of free-
dom, and a significance threshold of α

m , where
α = 0.05, m = 9, 5 (Bonferroni correction) for
the two datasets respectively when we compare
against the baselines.

5.4 Baselines

We present a brief description of the various base-
lines, each optimizing a baseline objective as dis-
cussed in Section 3.

Baseline Model Objectives
Vanilla Fine-tuned large uncased BERT model
EO+CDA BERT+EO over balanced D̃ (Zhao et al., 2017)
CTF+CDA BERT+CTF controlled on the primary variable

(Garg et al., 2018) over D̃
RDI BERT + RDI algorithm

Table 1: Summarized description of baselines

Figure 1: Accuracy of Jigsaw Perspective API model
when sliced by the context (directed or descriptive) of
the comments on our counterfactual dataset.

A
U

C
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0.9000

1.0000

Overall *
male *

female lgbt
jewish *

christian
muslim *

black *
white

disability
 *

Vanilla EO+CDA CTF+CDA RDI

Figure 2: Area under the Curve (AUC) for toxicity de-
tection across various demographic groups in the Jig-
saw dataset
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6 Results

6.1 Sliced Accuracy

In Figure 1, sliced accuracy of the vanilla model
on the template based counterfactually augmented
data highlights the need for improving sensitivity
towards descriptive comments. In Figure 2, we
show the impact on the AUC of identity groups
as identified in the original Jigsaw toxicity dataset.
Specifically, RDI performs 0.52% better in over-
all AUC with p-value = 0.001 ≤ 0.005 (signifi-
cance level = α

m ), while increasing the sliced AUC
for black identity by 6.98% (p-value=0.002). We
see a general trend of improvement in AUC over
the baseline vanilla model by 1.98–6.98%, with
statistically significant improvement for groups of
male, jewish, muslim, and black identities by mak-
ing the model sensitive to the secondary variable
– “comment intent”. We subsequently fine-tuned a
BERT model to predict the intent of the comment
(descriptive/directed) on the Kaggle dataset and
sliced the change in accuracy as compared to the
best performing CTF+CDA baseline. The result-
ing changes in Figure 3 demonstrate that for the
slices where our model underperforms, it is due to
a degradation in assessing directed comments for
female, LGBT and disability groups. As expected,
for the descriptive comments, we see consistent
improvement across the board.

6.2 Ablation Studies

In order to understand the impact of the 3 objec-
tives of the RDI algorithm, we conducted ablation
studies by using the leave-one-out strategy (Fig-
ure 4). We note that, while removing the constraint
based on counterfactual fairness (Eqn 6) has the
highest impact, reweighting samples (Eqn 8) and
controlling for secondary variables (Eqn 7) also
have significant impact on both overall and sliced
accuracy in the Jigsaw Toxicity evaluation dataset.

6.3 Qualitative Analysis

We note that there is significant improvement in
descriptive comments in most of the identity groups
as shown in Figure 3. For example, in the black
identity group, we see that the improvement in
AUC is better in descriptive sentences 4.1% than
directed ones 3.1%. While analyzing the errors of
our model, we see that they occur often beyond the
scope of our problem formulation (Martin-Jr. et al.,
2020) (Appendix 4).

% change in sliced AUC of RDI as compared to CTF+CDA

Overall *
male * (8916)

female (10733)
lgbt (2233)

jewish * (1500)
christian (8080)
muslim * (4117)

black * (2970)
white (5029)

disability * 

-4.00 -2.00 0.00 2.00 4.00 6.00

Directed Descriptive

Figure 3: Change in Area under the Curve (AUC) for
toxicity detection when sliced by the context (directed
or descriptive) of the comments with slices with statis-
tical significant change in asterisk.

A
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y

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

Overall
male *

female * lgbt
jewish *

christian *

muslim *
black

white *

disability
 *

RDI RDI - (R) RDI - (D) RDI - (I)

Figure 4: Ablation of the various objectives of RDI
with slices having statistical significant denoted by *

7 Pronoun Coreference Resolution

We have demonstrated the utility of modeling sec-
ondary attributes to improve robustness of the toxi-
city detection models. However, we note that not
all tasks have secondary attributes whose impact
on the label needs to be maximized. Each task
and their corresponding secondary attributes are
unique in their relationship and their difficulty in
data gathering, and we need careful understand-
ing of the context while enforcing constraints be-
tween them. In this section, we show how our
RDI framework can be extended to a task - “pro-
noun coreference resolution”, where the label is
invariant to the secondary attribute - gender. Be-
tween these two use cases, we have exhaustively
covered the types of constraints that can be incorpo-
rated towards secondary attributes and encourage
researchers to undertake a contextual treatment of
secondary attributes in their tasks. We provide
an example below, where the pronoun resolution
should not change based on the gender of the pro-
noun.
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Metric BERT-large-uncased CDA Dropout CTF+CDA RDI
F1-Score 0.93 ±0.00 0.92 ±0.01 0.88 ±0.02∗ 0.94 ±0.01∗ 0.95 ±0.01∗
Gendered Correlation 0.37 ±0.03 0.25 ±0.04∗ 0.10 ±0.02∗ 0.23 ±0.02∗ 0.11 ±0.03∗
Gendered Profession Quintiles Mean Gendered Pronoun Resolution % Female - % Male by Profession
0-20 -25.2 ±0.4 -23.8 ±1.2 -17.1 ±1.1∗ -21.2 ±0.5∗ -12.7 ±0.8 ∗
20-40 -18.5 ±0.6 -12.8 ±0.3∗ -9.1 ±0.3∗ -14.5 ±0.7∗ -8.8 ±0.6 ∗
40-60 -11.5 ±0.9 -10.5 ±0.8 −8.0± 0.4∗ −12.7± 0.7 −5.9± 0.4∗
60-80 0.8 ±0.4 0.5± 0.4 0.4± 0.5 1.6± 0.4 0.4± 0.6
80-100 8.9 ±0.2 7.0± 0.4∗ 5.4± 0.5∗ 9.3± 0.6 6.2± 0.4∗

Table 2: Mitigating gendered correlation in coreference resolution as well increasing accuracy in the OntoNotes
and Winogender datasets with statistical significant change denoted by *

Female: The nurse notified the patient that her shift
would be ending in an hour. (her→ nurse)

Male : The nurse notified the patient that his shift
would be ending in an hour. (his→ nurse)

Datasets and Augmentation Templates: For the
pronoun coreference resolution task, we use the
OntoNotes dataset shared as part of the CONLL
2011 and 2012 shared task (Pradhan et al., 2012,
2011). Each of the nouns referenced back from
the pronouns also have their associated gender (bi-
nary) (Bergsma and Lin, 2006). In the OntoNotes
coreference dataset, we evaluate the F1-score, the
gendered correlation coefficient (Rudinger et al.,
2018) which measures the correlation between gen-
der and the professions they resolve to. The Wino-
gender coreference resolution dataset provides tem-
plates with placeholders for the gendered-pronoun,
and two antecedent professions which the pro-
noun could potentially be referencing. We refer
to (Rudinger et al., 2018) for the full set of tem-
plates.
Label invariance to secondary variable In the
gender bias Winograd dataset (Rudinger et al.,
2018), the label is the coreference of the pronouns
towards one of the two antecedents mentioned in
the sentence. The pronouns are gendered (primary
variable) binary - male and female; and the an-
tecedents denote professions (secondary attribute)
which the pronouns might get coreferenced to.
Here, our goal is to minimize the unintended cor-
relation of certain professions towards a specific
gender. A systemic imbalance in the real world
(see US Bureau of Labor Stats), is then reflected as
a sampling bias in the text. For example, among the
people with the profession “engineer”, only 10.72%
of them are females as per the labor statistics and
a similar correlation is recorded in the text corpus,
but an ethical ML practitioner would ideally want
their robust model to not propagate these correlates
by using the constraint in Eqn 9.

Minimize Secondary Impact: If we denote the
logit of the model’s prediction for a sentence s by
f(s), and the sentence generated by swapping out
values of x, z in a sentence s without changing the
label to be t(s, x, z), then we propose to minimize
the following conditional logit pairing gap, inspired
by counterfactual indirect effects defined in (Zhang
and Bareinboim, 2018) instead of Eqn 7.

min
∑

x∈{x0,x1}

Es∼D̃|Ys=0,X=x,Z=z0
s′=t(s,x,z1)

|f(s)− f(s′)|

+ Es∼D̃|Ys=1,X=x,Z=z0
s′=t(s,x,z1)

|f(s)− f(s′)| (9)

Note that here, we explicitly focus on the change
in error rates due to the change in the secondary
variable Z, previously ignored by the baseline con-
straints. In the pronoun coreference resolution task,
this amounts to equalized error rates on all pro-
fessions, while conditioning on the gender of the
pronoun X: male, female.
Robustness Gains: We see a similar trend in the
overall accuracy for the coreference resolution task
in Table 2. Here, we compare against one other
baseline - dropout (Webster et al., 2020) where
the baseline BERT model’s dropout hyperparame-
ters have been optimally finetuned for robustness.
RDI outperforms existing baselines on both the
F1-accuracy (higher is better) and the gendered
correlation (lower is better). The lower gendered
correlation also translates to a more even distribu-
tion of gendered pronoun resolution across the 5
quantiles of gendered professions (Rudinger et al.,
2018).

8 Conclusion

We have demonstrated the value of incorporating
the impact of secondary variables in the objectives
for learning robust natural language processing
models. We have shown that incorporating context-
aware counterfactual robustness through the RDI
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algorithm, we improve performance on the coun-
terfactual augmented data, but also improve the
overall and sliced accuracy on the original dataset
by 2–7%.

9 Broader Impact Statement

As we are dealing with the toxicity detection task,
the concern of dual use for generating more toxic
content on social media has to be considered. That
being said, the identification of directed toxic com-
ments towards minority communities can greatly
improve the experience of members, often targeted
due to their membership in protected classes in
these online social communities. More so, when
these same members describe the toxicity they ex-
perience on those social online forums, the possibil-
ity of them being flagged as toxic, can be harmful.
We show that, without considering secondary vari-
ables, such errors, particularly in groups which are
the target of toxic comments, can further exacer-
bate this divide. By developing an approach for
controlling for known proxies, we hope this can
enable practitioners to incorporate more domain
knowledge, particularly from users in under-served
communities, to improve these systems. The tem-
plate based counterfactual augmentation in captur-
ing such nuances of secondary variables is a small
step towards enabling more user participation and
control in the design of these systems.
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