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Abstract

During the fine-tuning phase of transfer learn-
ing, the pretrained vocabulary remains un-
changed, while model parameters are updated.
The vocabulary generated based on the pre-
trained data is suboptimal for downstream data
when domain discrepancy exists. We propose
to consider the vocabulary as an optimizable
parameter, allowing us to update the vocabu-
lary by expanding it with domain-specific vo-
cabulary based on a tokenization statistic. Fur-
thermore, we preserve the embeddings of the
added words from overfitting to downstream
data by utilizing knowledge learned from a pre-
trained language model with a regularization
term. Our method achieved consistent perfor-
mance improvements on diverse domains (i.e.,
biomedical, computer science, news, and re-
views).

1 Introduction

A language model (LM) is pretrained with a large
corpus in a general domain and then is fine-tuned
to perform various downstream tasks, such as text
classification, named entity recognition, and ques-
tion answering. However, fine-tuning the LM is
challenging when the downstream domain is signif-
icantly different from the pretrained domain, requir-
ing domain adaptation to improve the downstream
performance [Gururangan et al., 2020, Lee et al.,
2020, Beltagy et al., 2019].

Prior approaches conducted additional training
with a large domain-specific corpus in between
pretraining and fine-tuning. In these approaches,
the pretrained vocabulary remains unchanged, al-
though the model is being adapted to a downstream
domain, such as biomedicine or politics.

We argue that the vocabulary should also be
adapted during the fine-tuning process towards
downstream data. Recent studies (e.g., SciB-
ERT [Beltagy et al., 2019]) showed that using an
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Figure 1: Overview of AVocaDo. AVocaDo updates the
vocabulary (b) not only fine-tuning the model parame-
ters as done by previous approaches (a). fine-tuning the
vocabulary has benefit on tokenizing domain-specific
words (c).

optimized vocabulary for a particular downstream
domain is more effective than using the vocabulary
generated in pretraining stage. However, these ap-
proaches required a large domain-specific corpus
additional to the downstream data in order to con-
struct optimized vocabulary for the downstream
domain.

We propose to Adapt the Vocabulary to down-
stream Domain (AVocaDo), which updates the pre-
trained vocabulary by expanding it with words from
the downstream data without requiring additional
domain-specific corpus. The relative importance
of words is considered in determining the size of
the added vocabulary. As shown in Figure 1-(c),
domain-specific words are tokenized in unwilling
manner in the corresponding domain. For exam-
ple, in reviews domain, the "bluetooth" represents a
short-range wireless technology standard, but when
the word is tokenized into "blue" and "tooth", the
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combined meaning of each subword is totally dif-
ferent from the intended meaning of "bluetooth".
Furthermore, we propose a regularization term that
prevents the embeddings of added words from over-
fitting to downstream data, since downstream data
is relatively small compared to the pretraining data.

The experimental results show that our proposed
method improves the overall performance in a wide
variety of domains, including biomedicine, com-
puter science, news, and reviews. Moreover, the
advantage of the domain adapted vocabulary over
the original pretrained vocabulary is shown in qual-
itative results.

2 Related Work

As transfer learning has shown promising results in
natural language processing (NLP), recent work
leveraged the knowledge learned from the pre-
trained model, such as BERT [Devlin et al., 2018]
in various domains.

SciBERT [Beltagy et al., 2019] trains a language
model with the large domain-specific corpus from
scratch, showing that the vocabulary constructed
from the domain-specific corpus contributes to im-
proving performance. Lee et al. [2020] and Gu-
rurangan et al. [2020] conducted additional train-
ing on a pretrained LM with a large domain-
specific corpus before fine-tuning. On the other
hand, exBERT [Tai et al., 2020] extended the pre-
trained model with new vocabulary to adapt to
biomedical domain. Similarly, Poerner et al. [2020]
and Sato et al. [2020] proposed to expand vocabu-
lary and leverage external domain-specific corpus
to train new embedding layers.

On the contrary, AVocaDo requires only down-
stream dataset in domain adaptation. Furthermore,
our method selects a subset of domain-specific vo-
cabulary considering the relative importance of
words.

3 Methods

In AVocaDo, we generate domain-specific vocabu-
lary based on the downstream corpus. The subset
of the generated vocabulary is merged with the
original pretrained vocabulary. The size of subset
is controlled by the fragment score. Afterwards,
we apply a regularization term during fine-tuning
to prevent the embeddings of added words from
overfitting to the downstream data.

Algorithm 1 Adapting Vocab in AVocaDo

1: Input: pretrained vocab VP ; corpus C;
domain-specific vocab VD.

2: Output: adapted vocab VA.
3: Initialize hyperparamenters α, β, γ.
4: VA ← VP ∪ {VDi}αi=0

5: while fC(VA) > γ do
6: VA ← VA ∪ {VDi}

α+β
i=α

7: α← α+ β
8: end while
9: return VA

3.1 Adapting Vocabulary
In this section, we describe the procedure of adapt-
ing the vocabulary to the downstream domain
through Algorithm 1. First, the domain-specific
vocabulary set VD is constructed from the down-
stream corpus C given a vocabulary size ND and a
tokenizing algorithm. The adapted vocabulary set
VA is constructed by merging the subset of VD, size
of nD, with the original pretrained vocabulary set
VP , size of NP . In other words, NA, the size of
VA, is equal to the sum of the merged vocabulary
sets, i.e, NA = nD +NP . Note that nD < ND, be-
cause when too many words are added, the added
infrequent subwords might cause the rare word
problem [Luong et al., 2015, Schick and Schütze,
2020].

The subset of VD, that is added to VP , is deter-
mined by the fragment score fC(V ) ∈ R, which
we introduce as a new metric that measures the rela-
tive number of subwords tokenized by a vocabulary
V from a single word in corpus C, i.e.,

fC(V ) = the number of subwords tokenized by V
the number of words in C . (1)

Motivated by Rust et al. [2020], we keep fC(VA)
from exceeding a certain threshold γ. γ is a hy-
perparameter determining the lower bound of the
fC(VA). Decreasing the lower bound leads VA to
less finely tokenize C. In contrast, increasing the
lower bound leads VA to finely tokenize C.

We sought to consider the importance of sub-
words when adding VD. We simply selected a sub-
set of VD following the order of merging subwords
used in byte pair encoding algorithm [Sennrich
et al., 2015]. The number of added vocabulary in
each iteration is indicated by the hyperparameters
α and β.

In summary, as frequent subword pairs are added
from VD to VA as subwords, the fC(VA) decreases.
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Figure 2: Fine-tuning with regularization. Identical sentence "... the bluetooth function in my car ...", sampled
from AMAZON, is tokenized with pretrained vocabulary (left) and with adapted vocabulary (right). The domain-
specific word "bluetooth" is tokenized in two ways, which are highlighted as green and yellow respectively. The
model is fine-tuned with regularization on l-th layer, highlighted as brown box, to preserve the embeddings of
added words (e.g., bluetooth) from overfitting to downstream dataset.

The objective of adding VD to VA is to decrease the
fC(VA), but we make sure that fC(VA) does not
become too small, i.e., lower than the threshold γ.
Therefore, we continue to add VD to VA if fC(VA)
is higher than γ, and terminate the merging step
otherwise.

3.2 Fine-tuning with Regularization

The embeddings of words in the subset of VD
which is merged with VP to construct the adapted
vocabulary VA are trained only with downstream
data during fine-tuning. Since the size of down-
stream data is much smaller than that of the pre-
training corpus, the embeddings trained only with
the downstream data possibly suffer from overfit-
ting. To prevent the potential overfitting, we lever-
age the pretrained contextual representation learned
from a large corpus.

In contrastive learning [Chen et al., 2020], a pair
of instances is encouraged to learn representations
in relation to the similarity of the instances. We
apply this contrastive learning framework as a reg-
ularization in fine-tuning. As described in Figure 2,
an identical sentence is tokenized in two ways: one
with the pretrained vocabulary VP and the other
with the adapted vocabulary VA. A minibatch con-
sists of B input sentences x = {x1, . . . xB}. Each
input xi is tokenized with two types of vocabular-
ies, and their l-th layer encoder outputs are denoted
as h(l)P,i and h(l)A,i. Note that they are encoded with a
single encoder given the identical input sentence,
but with different tokenizations. h(l)P,i and h(l)A,j are
considered as a positive pair when i = j, and as
a negative pair when i 6= j. The positive pair h(l)P,i
and h(l)A,i are trained to maximize the agreement by

the regularization term Lreg i.e.,

Lreg(h
(l)
A ,h

(l)
P )

= − 1

B
log

B∑
i=1

e(sim(h
(l)
A,i

,h
(l)
P,i

)/τ)∑B
j=1 e

(sim(h
(l)
A,i

,h
(l)
P,j

)/τ)
,

(2)

where τ is a softmax temperature, B is a batch
size, h

(l)
A = {h(l)A,1, . . . , h

(l)
A,B} and h

(l)
P =

{h(l)P,1, . . . , h
(l)
P,B}. The cosine similarity function

is used for sim(·). h(l)
A is prevented from overfitting

by making it closer to its positive sample.
The model is trained to perform the target task

with the regularization term Lreg. The output of
the encoder with VA is supervised by the label
of downstream data with cross entropy loss LCE .
The total loss L for domain adaptive fine-tuning is
formalized as

L = LCE + λLreg,

LCE = − 1

B

B∑ C∑
i=1

ti log(f(si)),
(3)

where f is a softmax function, C is the total num-
ber of classes, si is the logit for i-th class, B is the
batch size, and ti is the target label. In our imple-
mentation, we set λ as 1.0 for all experiments.

4 Experimental Settings

Datasets We conducted experiments on four do-
mains that are significantly different from the pre-
training domain; biomedical (BIOMED) papers,
computer science (CS) papers, NEWS, and ama-
zon reviews (REVIEWS). CHEMPROT [Kringelum
et al.], ACL-ARC [Jurgens et al.], HYPERPARTI-
SAN [Kiesel et al., 2019], and AMAZON [McAuley
et al., 2015] datasets are used in respective domains.
Target task for each dataset is text classification.
Appendix C describes more details.
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Domain Dataset BERTbase BERTAVocaDo SciBERT SciBERTAVocaDo BioBERT BioBERTAVocaDo

BIOMED CHEMPROT 79.38 81.07(+1.69) 82.16 82.71(+0.55) 83.58 84.42(+0.84)

CS ACL-ARC 56.82 67.28(+10.46) 66.89 75.02(+8.13) -
NEWS HYPERPARTISAN 84.51 89.31(+4.80) - - - -
REVIEWS AMAZON 55.50 68.51(+13.01) - - - -

Table 1: Comparisons with baselines in four different domains. Pretrained LMs (i.e., BERTbase, SciBERT, and
BioBERT) are fine-tuned in two ways: one with pretrained vocabulary (represented without a subscription) and
the other with adapted vocabulary (represented with subscription AVocaDo). The performance improvement is
represented inside the parentheses with +. The reported value is averaged F1 score (micro-F1 for CHEMPROT and
macro-F1 for the others) over five random seeds. Invalid comparisons are represented as -.

Evaluation Protocol We report the macro-F1

score for ACL-ARC, HYPERPARTISAN, and AMA-
ZON and micro-F1 score for CHEMPROT as done
by previous work [Lee et al., 2020, Beltagy et al.,
2019]. The score is averaged over five random
seeds.

5 Results

5.1 Quantitative Results

BERTbase [Devlin et al., 2018], SciBERT [Beltagy
et al., 2019], and BioBERT [Lee et al., 2020] are
chosen as the pretrained LMs for our experiments.
Each model is fine-tuned in two ways: one with
pretrained vocabulary and the other with adapted
vocabulary.

SciBERT is pretrained with scientific corpus
while BERT is pretrained with general domain cor-
pus (e.g., Wikipedia), and thus SciBERT can be
fine-tuned only with BIOMED and CS. BioBERT
conducted additional training with biomedical cor-
pus, so that BioBERT can be fine-tuned only with
BIOMED.

As described in Table 1, fine-tuning with AVo-
caDo significantly improved the performance of the
downstream task in all domains. Note that the per-
formance is improved despite the low-resource en-
vironment, where the size of dataset is smaller than
5,000 as described in Appendix C (CHEMPROT,
ACL-ARC, and HYPERPARTISAN). In BIOMED

domain, applying AvocaDo improved the overall
performance in various pretrained language models.
This improvement shows that utilizing the domain-
specific vocabulary has additional benefits on the
downstream domain. In CS, AVocaDo outperforms
BERTbase and SciBERT, showing the performance
improvements of 10.46 in BERTbase and 8.13 in
SciBERT. In NEWS and REVIEWS, our strategy
significantly improved the performance; 4.80 in
NEWS and 13.01 in REVIEWS.

Domain Domain Word Pretrained Vocab VP Adapted Vocab VA

BIOMED
glucuronidation g, lu, cu, ron, ida, tion glucuron, ida, tion
sulfhydration sul, f, hy, dra, tion sulf, hydr, ation

CS
nlp∗ nl, p nlp
syntactic syn, ta, ctic syntactic

NEWS
tweet t, wee, t tweet
disrespectful di, sr, es, pe, ct, ful disrespect, ful

REVIEWS
otterbox otter, box otterbox
thunderbolt thunder, bolt thunderbolt

Table 2: Qualitative results. Carefully selected tok-
enization examples from VP and VA. ∗ represents capi-
talized in the original sentence.

5.2 Qualitative Results

To analyze the effectiveness of the adapted vocab-
ulary VA, we show the sampled words from each
domain that are tokenized with two types of vocab-
ulary in Table 2.

The adapted vocabulary VA tokenizes the
domain-specific word into subwords that are in-
formative in the target domain. For example, in
the case of "sulfhydration", the word is tokenized
as "sul, f, hy, dra, tion" with VP and "sulf, hydr,
ation" with VA. "sulf" and "hydr" imply "sulfur"
and "water" respectively, which are frequently used
in BIOMED domain.

Furthermore, VA preserves the semantic of a
domain-specific word by keeping it as a whole
word, where the subwords tokenized with VP have
completely different semantics from its original
meaning. For instance, "otterbox" is an electron-
ics accessory company in the REVIEWS domain.
However, with VP , it is split into "otter" and "box",
where the "otter" is a carnivorous mammal and
"box" is a type of container. Randomly sampled to-
kenization examples from VP and VA are presented
in Appendix Table 8.

5.3 Ablation Studies

The effectiveness of each component in AVocaDo,
i.e., vocabulary adaptation and contrastive regular-
ization, is shown in this section. As described in
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Model CHEMPROT ACL-ARC HYPERPARTISAN AMAZON

AVocaDo 81.07 67.28 89.31 68.51
w/o Lreg 78.45(-2.62) 64.00(-3.28) 87.84(-1.47) 61.23(-7.28)
BERTbase 79.35(-1.72) 56.82(-10.46) 84.51(-4.80) 55.50(-13.01)

Table 3: Ablation study. w/o Lreg denotes that the
model is fine-tuned with the adapted vocabulary but not
applying regularization loss. BERTbase denotes that the
model is fine-tuned without applying AVocaDo. The
performance difference is represented inside the paren-
theses.

Table 3, vocabulary adaptation improves the perfor-
mance in three domains (i.e., ACL-ARC, HYPER-
PARTISAN, and AMAZON) even in the absence of
the regularization term.

5.4 Size of Added Vocabulary

The size of the added vocabulary nD is auto-
matically determined by the fragment score of
the adapted vocabulary VA, as described in Algo-
rithm 1. In order to analyze how nD affects the per-
formance, we compare the performance of down-
stream tasks by manually setting the nD as 500,
1000, 2000, and 3000 without using the fragment
score, as shown in Table 4. Automatically deter-
mined nD is 1600, 700, 2850 and 1300 for each
dataset. Except for AMAZON dataset, we demon-
strate that determining nD by the fragment score
shows the optimal performance.

6 Conclusion

In this paper, we demonstrate that a pretrained vo-
cabulary should be updated towards a downstream
domain when fine-tuning. We propose a fine-tuning
strategy called AVocaDo that adapts the vocabulary
to the downstream domain by expanding the vo-
cabulary based on a tokenization statistic, and by
regularizing the newly added words. Our approach
shows consistent performance improvements in di-
verse domains on various pretrained language mod-
els. AVocaDo is applicable to a wide range of NLP
tasks in diverse domains without any restrictions,
such as massive computing resources or a large
domain-specific corpus.

Acknowledgment

This work was supported by Institute of Informa-
tion & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea gov-
ernment(MSIT) (No.2019-0-00075, Artificial Intel-
ligence Graduate School Program(KAIST)), and
Samsung Advanced Institute of Technology, Sam-

Size of added vocabulary nD
Dataset 500 1000 2000 3000 AVocaDo

CHEMPROT 80.36 80.43 80.24 79.89 81.06
ACL-ARC 65.24 64.43 66.08 65.37 67.28
HYPERPARTISAN 84.70 85.03 80.49 84.85 89.31
AMAZON 68.57 68.31 68.85 67.89 68.51

Table 4: Analysis on the size of the added vocabu-
lary. nD is manually set (500, 1000, 2000, and 3000)
or automatically determined (AVocaDo).

sung Electronics Co., Ltd. We thank the anonymous
reviewers for their helpful feedback and discus-
sions. We also thank Seong-Su Bae for his insight
and helpful opinion.

References
Iz Beltagy, Kyle Lo, and Arman Cohan. SciBERT:

A pretrained language model for scientific text. In
Proc. the Annual Meeting of the Association for
Computational Linguistics (ACL), 2019.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. A simple framework for con-
trastive learning of visual representations. In Proc.
the International Conference on Machine Learning
(ICML), 2020.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. Electra: Pre-training text
encoders as discriminators rather than generators. In
Proc. the International Conference on Learning Rep-
resentations (ICLR), 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proc. of The Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (NAACL), 2018.

Suchin Gururangan, Ana Marasović, Swabha
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Appendix

A Details on Fragment Score

Fragment score is a measure of the fineness of tok-
enization. We observed that the pretrained vocabu-
lary set VP tokenizes domain-specific words (i.e.,
words that are frequently appeared in a downstream
corpus but not in a pretrained corpus) into larger
number of subwords than the number of subwords
that non-domain-specific words are tokenized into
(Figure 3). These finely tokenized subwords are not
semantically informative enough.

Inspired by the observations, we construct a
new vocabulary VA that less finely tokenizes the
domain-specific words than VP , i.e., VA such that
fC(VA) < fC(VA). This is why we chose the frag-
ment score of the newly constructed vocabulary set
VA as a metric for selecting a subset of domain-
specific vocabulary VD.

B Different Aspects of the Vocabularies

Figure 3 shows the relative number of tok-
enized subwords from a single word in four do-
mains where the publicly available vocabulary in
BERT [Devlin et al., 2018] is denoted as VP and
domain adapted vocabularies are denoted as VA.
WikiText [Stephen et al., 2016] represents the gen-
eral domain that is similar to the corpus that is used
for pretraining BERT, while others are chosen as
the downtream domain. The red and orange bar
indicate the average number of subwords tokenized
with pretrain vocabulary and adapted vocabulary.
We observe that AVocaDo mitigates the domain
gap.

C Implementation Details

C.1 Downstream Datasets

Domain Dataset Task (# of Classes) Train Dev. Test

BIOMED CHEMPROT relation (13) 4169 2427 3469
CS ACL-ARC citation intent (6) 1688 114 139
NEWS HYPERPARTISAN partisanship (2) 515 65 65
REVIEWS AMAZON helpfulness (2) 115251 5000 25000

Table 5: Datasets used in experiments. Sources:
CHEMPROT [Kringelum et al.], ACL-ARC [Jurgens
et al.], HYPERPARTISAN [Kiesel et al., 2019], and
AMAZON [McAuley et al., 2015].

We used four datasets in various domains for
classification. As shown in Table 5, the size of the
training data varies from 500 to about 110,000. The

number of classes for each dataset varies from 2 to
13.

C.2 Experimental Settings
In all experiments, we trained the networks on a
single 3090 RTX GPU with 24GB of memory. We
implemented all models with PyTorch using Trans-
formers library from Huggingface. All baselines
are reproduced as described in previous works [Gu-
rurangan et al., 2020, Tai et al., 2020, Lee et al.,
2020, Beltagy et al., 2019]. In our experiment, the
performance in HYPERPARTISAN dataset tends to
have high variance depending on random seeds
since the size of the dataset is extremely small. To
produce reliable results on this dataset, we discard
and resample seeds.

The embeddings of newly added words in AV-
ocaDo are initialized as a mean value of BERT
embeddings of subword components. For in-
stance, if the word "bluetooth" is tokenized into
["blue","##tooth"] with VP and "bluetooth" with
VA, we initialize the embedding of "bluetooth"
with the average value of the two subword em-
beddings.

C.3 Hyperparameters

Hyperparameter Value

lower bound of fragment score γ 3
number of added vocabulary (initial) α 500

number of added vocabulary β 50
batch size B 16
learning rate 1e-5, 2e-5, 5e-5

number of epochs 10
temperature τ from 1.5 to 3.5

domain vocabulary size ND 10,000

Table 6: Hyperparameters used in experiments. We con-
duct grid search for finding the best hyperparameter set-
tings.

As shown in Table 6, we followed the hyperparam-
eter setting in the previous work [Lee et al., 2020,
Beltagy et al., 2019, Gururangan et al., 2020]. To
search the value for learning and temperature τ , we
use grid search.

D Qualitative Results

For each downstream dataset, we randomly sam-
pled ten words that are differently tokenized by
pretrained vocabulary VP and by adapted vocabu-
lary VA. As shown in Table 8, subwords tokenized
by VA are more informative in the target domain
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Figure 3: The analysis of the pretrained and adapted vocabularies on WikiText and downstream domains. P andA
denote the pretrained vocabulary and the adapted vocabulary respectively. AVocaDo mitigates the domain gap in
terms of the average number of subwords tokenized from a single word.

because they preserve the semantic of a domain-
specific word.

E Comparison with Previous Works

Model Adaptive Pretraining Domain-specific Corpus

AVocaDo × downstream corpus only
SciBERT X 3.17 billion words
BioBERT X 18.0 billion words
exBERT X 0.9 billion words
Gururangan et al. [2020] X 7.55 billion words

Table 7: Comparison with previous works. The adap-
tive pretraining phase and the size of biomedical do-
main corpus used for domain adaptation in previous
works. No additional training resource is needed in AV-
ocaDo.

AVocaDo does not require additional domain-
specific corpus. As shown in Table 7, all other base-
line models require an adaptive pretraining stage
before fine-tuning using domain-specific corpus. In
general, the corpus used for adaptive pretraining
is relatively large compared to the size of down-
stream dataset. Therefore, most methodologies that
require adaptive pretraining require large training
resources.

F Other Baselines

We perform additional experiments with other
baseline models. In this experiment, we set

exBERT [Tai et al., 2020], which expands the
pretrained vocabulary from original BERTbase vo-
cabulary, and SciBERTSCIVOCAB [Beltagy et al.,
2019], which constructs the customized vocabu-
lary based on science and biomedical large cor-
pora as baselines. Table 9 shows the overall perfor-
mance on BIOMED and CS domains. We outper-
form exBERT in BIOMED domain. In comparison
with SciBERTSCIVOCAB, AVocaDo shows the com-
petitive performance.

G Other Pretrained Language Models

To demonstrate the performance of AVocaDo on the
other pretrained language models, we additionally
conducted experiments on RoBERTa [Liu et al.,
2019] and ELECTRA [Clark et al., 2020]. Table 10
shows the overall performance on four downstream
domains. RoBERTa and ELECTRA with AVocaDo
shows the improvements on the various domains ex-
cept for NEWS and BIOMED domain respectively.
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Domain Word Pretrained Vocab VP Adapted Vocab VA

BIOMED

epidermal ep, ##ider, ##mal epidermal
cetuximab ce, ##tu, ##xi, ##ma, ##b ce, ##tu, ##xi, ##ma, ##b
lumiracoxib lu, ##mir, ##aco, ##xi, ##b lum, ##irac, ##oxib
peroxidation per, ##ox, ##ida, ##tion perox, ##ida, ##tion
reductase red, ##uc, ##tase reductase
dihydrotestosterone di, ##hy, ##dro, ##test, ##ost, ##eron dihydro, ##test, ##osterone
pparalpha pp, ##ara, ##pl, ##ha ppar, ##alpha
sulfhydration sul, ##f, ##hy, ##dra, ##tion sulf, ##hydr, ##ation
glucuronidation g, ##lu, ##cu, ##ron, ##ida, ##tion glucuron, ##ida, ##tion
proliferating pro, ##life, ##rating prolifer, ##ating

CS

annotation ann, ##ota, ##tions annotation
unsupervised un, ##su, ##per, ##vis, ##ed unsupervised
entails en, ##tails entail, ##s
sgd sg, ##d sgd
parser par, ##ser parser
nlp nl, ##p nlp
suumarization sum, ##mar, ##ization summarization
syntactic syn, ##ta, ##ctic syntactic
coreference core, ##ference coreference
ner ne, ##r ner

NEWS

manafort mana, ##fort manafort
disrespectful di, ##sr, ##es, ##pe, ##ct, ##ful disrespect ##ful
tweet t, ##wee, ##t tweet
divisive di, ##vis, ##ive div, ##isi, ##ve
recaptcha rec, ##ap, ##tch, ##a recaptcha
brexit br, ##ex, ##it brexit
irreplaceable ir, ##re, ##pl, ##ace, ##able ir, ##re, ##place, ##able
supermacists su, ##pre, ##mac, ##ists supermacists
politicize pol, ##itic, ##ize politic, ##ize
gop go, ##p gop

REVIEWS

telestial tel, ##est, ##ial tele, ##sti, ##al
rechargeminutes rec, ##har, ##ge, ##min, ##ute, ##s recharge, ##min, ##utes
verizon ve, ##riz, ##on verizon
thunderbolt thunder, ##bolt thunderbolt
bluetooth blue, ##tooth bluetooth
otterbox otter, ##box otterbox
headset heads, ##et headset
kickstand kicks, ##tan, ##d kickstand
detachable det, ##ach, ##able detach, ##able
htc h, ##tc htc

Table 8: Randomly sampled words that are differently tokenized by VP and VA.

Domain Dataset BERTbase BERTAVocaDo exBERT SciBERTBASEVOCAB† SciBERTAVocaDo

BIOMED CHEMPROT 79.38 81.07 74.63 83.64 82.71
CS ACL-ARC 56.82 67.28 - 70.98 75.02

Table 9: Comparisons with other baselines. The symbol † indicates the performance reported by Beltagy et al.
[2019].

Domain Dataset RoBERTabase† RoBERTaAVocaDo ELECTRAbase ELECTRAAVocaDo

BIOMED CHEMPROT 81.9 82.8(+0.9) 74.3 73.4(−0.9)
CS ACL-ARC 63.0 67.3(+4.3) 57.1 59.3(+2.2)

NEWS HYPERPARTISAN 86.6 84.5(−2.1) 70.6 77.8(+7.2)

REVIEWS AMAZON 65.1 70.8(+5.7) 66.2 69.9(+3.7)

Table 10: Experiments on other pretrained language models. The pretrained language models (i.e.,
RoBERTabase and ELECTRAbase) are fine-tuned with or without AVocaDo. The performance improvement is rep-
resented inside the parentheses with +. The symbol † indicates the performance reported by Gururangan et al.
[2020].


