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Abstract

In this paper, we propose to align sentence
representations from different languages into
a unified embedding space, where semantic
similarities (both cross-lingual and monolin-
gual) can be computed with a simple dot prod-
uct. Pre-trained language models are fine-
tuned with the translation ranking task. Exist-
ing work (Feng et al., 2020) uses sentences
within the same batch as negatives, which can
suffer from the issue of easy negatives. We
adapt MoCo (He et al., 2020) to further im-
prove the quality of alignment. As the ex-
perimental results show, the sentence repre-
sentations produced by our model achieve the
new state-of-the-art on several tasks, including
Tatoeba en-zh similarity search (Artetxe and
Schwenk, 2019b), BUCC en-zh bitext mining,
and semantic textual similarity on 7 datasets.

1 Introduction

Pre-trained language models like BERT (Devlin
et al., 2019) and GPT (Radford and Narasimhan,
2018) have achieved phenomenal successes on a
wide range of NLP tasks. However, sentence repre-
sentations for different languages are not very well
aligned, even for pre-trained multilingual models
such as mBERT (Pires et al., 2019; Wang et al.,
2020). This issue is more prominent for language
pairs from different families (e.g., English versus
Chinese). Also, previous work (Li et al., 2020)
has shown that the out-of-box BERT embeddings
perform poorly on monolingual semantic textual
similarity (STS) tasks.

There are two general goals for sentence repre-
sentation learning: cross-lingual representations
should be aligned, which is a crucial step for tasks
like bitext mining (Artetxe and Schwenk, 2019a),
unsupervised machine translation (Lample et al.,
2018b), and zero-shot cross-lingual transfer (Hu
et al., 2020) etc. Another goal is to induce a met-
ric space, where semantic similarities can be com-

puted with simple functions (e.g., dot product on
L2-normalized representations).

Translation ranking (Feng et al., 2020; Yang
et al., 2020) can serve as a surrogate task to align
sentence representations. Intuitively speaking, par-
allel sentences should have similar representations
and are therefore ranked higher, while non-parallel
sentences should have dissimilar representations.
Models are typically trained with in-batch nega-
tives, which need a large batch size to alleviate the
easy negatives issue (Chen et al., 2020a). Feng
et al. (2020) use cross-accelerator negative sam-
pling to enlarge the batch size to 2048 with 32 TPU
cores. Such a solution is hardware-intensive and
still struggles to scale.

Momentum Contrast (MoCo) (He et al., 2020)
decouples the batch size and the number of nega-
tives by maintaining a large memory queue and a
momentum encoder. MoCo requires that queries
and keys lie in a shared input space. In self-
supervised vision representation learning, both
queries and keys are transformed image patches.
However, for translation ranking task, the queries
and keys come from different input spaces. In this
paper, we present dual momentum contrast to solve
this issue. Dual momentum contrast maintains two
memory queues and two momentum encoders for
each language. It combines two contrastive losses
by performing bidirectional matching.

We conduct experiments on the English-Chinese
language pair. Language models that are sep-
arately pre-trained for English and Chinese are
fine-tuned using translation ranking task with
dual momentum contrast. To demonstrate the
improved quality of the aligned sentence repre-
sentations, we report state-of-the-art results on
both cross-lingual and monolingual evaluation
datasets: Tatoeba similarity search dataset (accu-
racy 95.9%→ 97.4%), BUCC 2018 bitext mining
dataset (f1 score 92.27% → 93.66%), and 7 En-
glish STS datasets (average Spearman’s correlation



3808

77.07% → 78.95%). We also carry out several
ablation studies to help understand the learning
dynamics of our proposed model.

2 Method
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Figure 1: Illustration of dual momentum contrast. sg
denotes “stop gradient”. x and y are sentences from
two different languages.

Dual Momentum Contrast is a variant of the
MoCo proposed by He et al. (2020). Our method
fits into the bigger picture of contrastive learning
for self-supervised representation learning (Le-
Khac et al., 2020). Given a collection of paral-
lel sentences {xi, yi}ni=1, as illustrated in Figure
1, we first encode each sentence using language-
specific BERT models (base encoder), then ap-
ply mean pooling on the last-layer outputs and
L2 normalization to get the representation vector
hxi ,hyi ∈ R768.

Each BERT encoder has a momentum encoder,
whose parameters θ are updated by exponential
moving average of the base encoder as follows:

θt ← mθt−1 + (1−m)θbase (1)

Where t is the iteration step. Two memory queues
are maintained for each language to storeK vectors
encoded by the corresponding momentum encoder
from most recent batches. The oldest vectors are re-
placed with the vectors from the current batch upon
each optimization step. The momentum coefficient
m ∈ [0, 1] is usually very close to 1 (e.g., 0.999) to
make sure the vectors in the memory queue are con-
sistent across batches. K can be very large (>105)
to provide enough negative samples for learning
robust representations.

To train the encoders, we use the InfoNCE loss

(Oord et al., 2018):

L(x, y) = − log
exp(hx · hy/τ)∑K
i=0 exp(hx · hyi/τ)

(2)

τ is a temperature hyperparameter. Intuitively,
Equation 2 is a (K+1)-way softmax classification,
where the translation sentence y = y0 is the pos-
itive, and the negatives are those in the memory
queue {yi}Ki=1. Note that the gradients do not back-
propagate through momentum encoders nor the
memory queues.

Symmetrically, we can get L(y, x). The final
loss function is the sum:

min L(x, y) + L(y, x) (3)

After the training is done, we throw away
the momentum encoders and the memory
queues, and only keep the base encoders to
compute the sentence representations. In the
following, our model is referred to as MoCo-BERT.

Application Given a sentence pair (xi, yj) from
different languages, we can compute cross-lingual
semantic similarity by taking dot product of L2-
normalized representations hxi · hyj . It is equiva-
lent to cosine similarity, and closely related to the
Euclidean distance.

Our model can also be used to compute monolin-
gual semantic similarity. Given a sentence pair
(xi, xj) from the same language, assume yj is
the translation of xj , if the model is well trained,
the representations of xj and yj should be close
to each other: hxj ≈ hyj . Therefore, we have
hxi ·hxj ≈ hxi ·hyj , the latter one is cross-lingual
similarity which is what our model is explicitly
optimizing for.

3 Experiments

3.1 Setup

Data Our training data consists of English-Chinese
corpora from UNCorpus 1, Tatoeba, News Com-
mentary 2, and corpora provided by CWMT 2018 3.
All parallel sentences that appear in the evaluation
datasets are excluded. We sample 5M sentences to
make the training cost manageable.

1https://conferences.unite.un.org/
uncorpus

2https://opus.nlpl.eu/
3http://www.cipsc.org.cn/cwmt/2018/

https://conferences.unite.un.org/uncorpus
https://conferences.unite.un.org/uncorpus
https://opus.nlpl.eu/
http://www.cipsc.org.cn/cwmt/2018/
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Hyperparameters The encoders are initialized
with bert-base-uncased (English) for fair compar-
ison, and RoBERTa-wwm-ext 4(Chinese version).
Using better pre-trained language models is orthog-
onal to our contribution. Following Reimers and
Gurevych (2019), sentence representation is com-
puted by the mean pooling of the final layer’s out-
puts. Memory queue size is 409600, temperature
τ is 0.04, and the momentum coefficient is 0.999.
We use AdamW optimizer with maximum learn-
ing rate 4 × 10−5 and cosine decay. Models are
trained with batch size 1024 for 15 epochs on 4
V100 GPUs. Please checkout the Appendix A for
more details about data and hyperparameters.

3.2 Cross-lingual Evaluation

Model Accuracy
mBERTbase (Hu et al., 2020) 71.6%
LASER (Artetxe and Schwenk, 2019b) 95.9%
VECO (Luo et al., 2020) 82.7%
SBERTbase-p † 95.0%
MoCo-BERTbase (zh→en) 97.4%
MoCo-BERTbase (en→zh) 96.6%

Table 1: Accuracy on the test set of Tatoeba en-zh lan-
guage pair. †: Reimers and Gurevych (2020).

Model F1
mBERTbase (Hu et al., 2020) 50.0%
LASER (Artetxe and Schwenk, 2019b) 92.27%
VECO (Luo et al., 2020) 78.5%
SBERTbase-p† 87.8%
LaBSE (Feng et al., 2020) 89.0%
MoCo-BERTbase 93.66%

Table 2: F1 score on the en-zh test set of BUCC 2018
dataset. †: Reimers and Gurevych (2020).

Tatoeba cross-lingual similarity search Intro-
duced by Artetxe and Schwenk (2019b), Tatoeba
corpus consists of 1000 English-aligned sentence
pairs. We find the nearest neighbor for each sen-
tence in the other language using cosine similarity.
Results for both forward and backward directions
are listed in Table 1. MoCo-BERT achieves an
accuracy of 97.4%.
BUCC 2018 bitext mining aims to identify paral-
lel sentences from a collection of sentences in two
languages (Zweigenbaum et al., 2018). Follow-
ing Artetxe and Schwenk (2019a), we adopt the
4https://github.com/ymcui/
Chinese-BERT-wwm

margin-based scoring by considering the average
cosine similarity of k nearest neighbors (k = 3 in
our experiments):

sim(x, y) = margin(cos(x, y),∑
z∈NNk(x)

cos(x, z)
2k

+
∑

z∈NNk(y)

cos(y, z)
2k

)

(4)
We use the distance margin function:

margin(a, b) = a − b, which performs slightly
better than the ratio margin function (Artetxe and
Schwenk, 2019a). All sentence pairs with scores
larger than threshold λ are identified as parallel.
λ is searched based on the validation set. The F1
score of our system is 93.66%, as shown in Table
2.

3.3 Monolingual STS Evaluation
We evaluate the performance of MoCo-BERT for
STS without training on any labeled STS data, fol-
lowing the procedure by Reimers and Gurevych
(2019). All results are based on BERTbase. Given
a pair of English sentences, the semantic similar-
ity is computed with a simple dot product. We
also report the results using labeled natural lan-
guage inference (NLI) data. A two-layer MLP with
256 hidden units and a 3-way classification head is
added on top of the sentence representations. The
training set of SNLI (Bowman et al., 2015) and
MNLI (Williams et al., 2018) are used for multi-
task training. See Appendix B for the detailed
setup.

As pointed out by Gao et al. (2021), existing
works follow inconsistent evaluation protocols, and
thus may cause unfair comparison. We report re-
sults for both “weighted mean” (wmean) and “all”
settings (Gao et al., 2021) in Table 3 and 8 re-
spectively.

When training on translation ranking task only,
MoCo-BERT improves the average correlation
from 67.67 to 76.50 (+8.83). With labeled NLI
supervision, MoCo-BERT+NLI advances state-of-
the-art from 77.07 to 78.95 (+1.88).

3.4 Model Analysis
We conduct a series of experiments to better
understand the behavior of MoCo-BERT. Unless
explicitly mentioned, we use a memory queue size
204800 for efficiency.

Memory queue size One primary motivation of
MoCo is to introduce more negatives to improve

https://github.com/ymcui/Chinese-BERT-wwm
https://github.com/ymcui/Chinese-BERT-wwm
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Model STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R Avg
w/o labeled NLI supervision
Avg GloVe† 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERTbase [CLS]† 20.16 30.01 20.09 36.88 38.08 16.05 42.63 29.19
BERTbase-flow 59.54 64.69 64.66 72.92 71.84 58.56 65.44 65.38
IS-BERTbase 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
BERTbase-whitening♠ 61.46 66.71 66.17 74.82 72.10 67.51 64.90 67.67
MoCo-BERTbase 68.85 77.52 75.85 83.14 80.15 77.50 72.48 76.50
w/ labeled NLI supervision
InferSent 52.86 66.75 62.15 72.77 66.87 68.03 65.65 65.01
SBERTbase-NLI† 68.70 74.37 74.73 79.65 75.21 77.63 74.84 75.02
BERTbase-flow 67.75 76.73 75.53 80.63 77.58 79.10 78.03 76.48
BERTbase-whitening♠ 69.87 77.11 76.13 82.73 78.08 79.16 76.44 77.07
MoCo-BERTbase+NLI 71.66 79.42 76.37 84.08 80.81 82.15 78.19 78.95

Table 3: Spearman’s correlation for 7 STS datasets downloaded from SentEval (Conneau and Kiela, 2018). We
report “weighted mean” (wmean) from SentEval toolkit. Baseline systems include BERTbase-flow (Li et al., 2020),
IS-BERTbase (Zhang et al., 2020), BERTbase-whitening♠ (Su et al., 2021), and InferSent (Conneau et al., 2017).
†: from Reimers and Gurevych (2019).
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Figure 2: Average Spearman’s correlation across 7 STS
datasets for different memory queue sizes. The perfor-
mance does not seem to saturate with queue size as
large as 409k. We do not run experiments > 409k as it
reaches the GPU memory limit.

the quality of the learned representations. In Figure
2, as expected, the performance consistently
increases as the memory queue becomes larger.
For visual representation learning, the performance
usually saturates with queue size ∼ 65536 (He
et al., 2020), but the ceiling is much higher in our
case. Also notice that the model can still reach
72.03 with a small batch size 256, which might be
because the encoders have already been pre-trained
with MLM.

Temperature A lower temperature τ in InfoNCE

Temperature 0.01 0.04 0.07 0.1
STS Avg 74.80 76.20 74.23 69.81
BUCC F1 90.76 93.14 90.42 77.04

Table 4: Performance of our proposed MoCo-BERT un-
der different temperatures.

loss makes the model focus more on the hard neg-
ative examples, but it also risks over-fitting label
noises. Table 4 shows that τ could dramatically
affect downstream performance, with τ = 0.04
getting the best results on both STS and BUCC
bitext mining tasks. The optimal τ is likely to be
task-specific.

Model STS Avg BUCC F1
MoCo-BERT 76.20 93.14
w/o momentum -0.01 0.00

Table 5: Ablation results for momentum update mech-
anism. w/o momentum shares the parameters between
the momentum encoder and the base encoder.

Momentum Update We also empirically verify
if the momentum update mechanism is really
necessary. Momentum update provides a more
consistent matching target but also complicates
the training procedure. In Table 5, without
momentum update, the model simply fails
to converge with the training loss oscillating
back and forth. The resulting Spearman’s cor-
relation is virtually the same as random predictions.
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Pooling STS Avg BUCC F1
mean pooling 76.20 93.14
max pooling 75.90 92.78
[CLS] 75.97 92.47

Table 6: Performance comparison between different
pooling mechanisms for MoCo-BERT.

Pooling mechanism Though the standard prac-
tices of fine-tuning BERT (Devlin et al., 2019) di-
rectly use hidden states from [CLS] token, Reimers
and Gurevych (2019); Li et al. (2020) have shown
that pooling mechanisms matter for downstream
STS tasks. We experiment with mean pooling, max
pooling, and [CLS] embedding, with results listed
in Table 6. Consistent with Reimers and Gurevych
(2019), mean pooling has a slight but pretty much
negligible advantage over other methods.

In Appendix C, we also showcase some visual-
ization and sentence retrieval results.

4 Related Work

Multilingual representation learning aims
to jointly model multiple languages. Such
representations are crucial for multilingual neural
machine translation (Aharoni et al., 2019),
zero-shot cross-lingual transfer (Artetxe and
Schwenk, 2019b), and cross-lingual semantic
retrieval (Yang et al., 2020) etc. Multilingual
BERT (Pires et al., 2019) simply pre-trains on the
concatenation of monolingual corpora and shows
good generalization for tasks like cross-lingual
text classification (Hu et al., 2020). Another line
of work explicitly aligns representations from
language-specific models, either unsupervised
(Lample et al., 2018a) or supervised (Reimers and
Gurevych, 2020; Feng et al., 2020).

Contrastive learning works by pulling positive
instances closer and pushing negatives far apart.
It has achieved great successes in self-supervised
vision representation learning, including SimCLR
(Chen et al., 2020a), MoCo (He et al., 2020;
Chen et al., 2020b), BYOL (Grill et al., 2020),
CLIP (Radford et al., 2021) etc. Recent efforts
introduced contrastive learning into various NLP
tasks (Xiong et al., 2020; Giorgi et al., 2020; Chi
et al., 2021; Gunel et al., 2020). Concurrent to our
work, SimCSE (Gao et al., 2021) uses dropout and
hard negatives from NLI datasets for contrastive

sentence similarity learning, Sentence-T5 (Ni
et al., 2021) outperforms SimCSE by scaling to
larger models, and xMoCo (Yang et al., 2021)
adopts a similar variant of MoCo for open-domain
question answering.

Semantic textual similarity is a long-standing
NLP task. Early approaches (Seco et al., 2004; Bu-
danitsky and Hirst, 2001) use lexical resources such
as WordNet to measure the similarity of texts. A
series of SemEval shared tasks (Agirre et al., 2012,
2014) provide a suite of benchmark datasets that
is now widely used for evaluation. Since obtaining
large amounts of high-quality STS training data is
non-trivial, most STS models are based on weak
supervision data, including conversations (Yang
et al., 2018), NLI (Conneau et al., 2017; Reimers
and Gurevych, 2019), and QA pairs (Ni et al.,
2021).

5 Conclusion

This paper proposes a novel method that aims to
solve the easy negatives issue to better align cross-
lingual sentence representations. Extensive experi-
ments on multiple cross-lingual and monolingual
evaluation datasets show the superiority of the re-
sulting representations. For future work, we would
like to explore other contrastive learning methods
(Grill et al., 2020; Xiong et al., 2020), and experi-
ment with more downstream tasks including para-
phrase mining, text clustering, and bilingual lexi-
con induction etc.
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A Details on Training Data and
Hyperparameters

Dataset # of sents # of sampled
Tatoeba 46k 46k
News Commentary 320k 320k
UNCorpus 16M 1M
CWMT-neu2017 2M 2M
CWMT-casia2015 1M 1M
CWMT-casict2015 2M 1M

Table 7: List of parallel corpora used. # of sampled
are randomly sampled subset from the corresponding
dataset to make the training cost manageable. Dupli-
cates are removed during preprocess.

We list all the parallel corpora used by this paper
in Table 7. Hyperparameters are available in Table
9. We start with the default hyperparameters from
MoCo (He et al., 2020) and use grid search to
find the optimal values for several hyperparameters.
The specific search ranges are {10−5, 2 × 10−5,
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Model STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R Avg
w/o labeled NLI supervision
BERTbase-flow 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERTbase-whitening 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
MoCo-BERTbase 70.99 76.51 73.17 82.09 78.32 77.50 72.48 75.87
w/ labeled NLI supervision
SBERTbase-NLI 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
BERTbase-flow 69.78 77.27 74.35 82.01 77.46 79.12 76.21 76.60
BERTbase-whitening 69.65 77.57 74.66 82.27 78.39 79.52 76.91 77.00
MoCo-BERTbase+NLI 76.07 78.33 74.51 84.19 78.74 82.15 78.19 78.88

Table 8: Spearman’s correlation for 7 STS datasets under the “all” evaluation setting (Gao et al., 2021). We use
the official script from SimCSE.

Hyperparameter value
# of epochs 15
# of GPUs 4
queue size 409k
temperature τ 0.04
momentum coefficient 0.999
learning rate 4× 10−5

gradient clip 10
warmup steps 400
batch size 1024
dropout 0.1
weight decay 10−4

pooling mean

Table 9: Hyperparameters for our proposed model.

4 × 10−5} for learning rate, {102k, 204k, 409k}
for queue size, {0.01, 0.04, 0.07, 0.1} for temper-
ature, and {0.9999, 0.999, 0.99} for momentum
coefficient. The entire training process takes ap-
proximately 15 hours with 4 V100 GPUs and auto-
matic mixed precision support from PyTorch.

B Multi-task with NLI

Given a premise xp and a hypothesis xh, the sen-
tence representations are computed as stated in the
paper. Then, a two-layer MLP with 256 hidden
units, ReLU activation, and a 3-way classification
head is added on top of the sentence representa-
tions. Dropout 0.1 is applied to the hidden units.
The loss function Lnli(xp, xh) is simply the cross-
entropy between gold label and softmax outputs.
The model is jointly optimized with the following:

min L(x, y) + L(y, x) + αLnli(xp, xh) (5)

Where α is used to balance different training ob-
jectives, we set α = 0.1 empirically. The batch size

for NLI loss is 128. The training set is the union of
SNLI (Bowman et al., 2015) and MNLI (Williams
et al., 2018) dataset (~1M sentence pairs).

C Visualization of Sentence
Representations

To visualize the learned sentence representations,
we use t-SNE (Maaten and Hinton, 2008) for di-
mensionality reduction. In Figure 3, we can see the
representations of parallel sentences are very close,
indicating that our proposed model is successful at
aligning cross-lingual representations.

In Table 10, we illustrate the results of monolin-
gual sentence retrieval. Most top-ranked sentences
indeed share similar semantics with the given query,
this paves the way for potential applications like
paraphrase mining.
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Figure 3: t-SNE visualization of the representations of 15 random parallel sentences from Tatoeba test set. For
visualization purpose, if two points are too close, we move them a little bit far apart. Enlarge the graph for better
views.

query: I am willing to devote my life to education career.

0.853 He dedicated his life to the cause of education.
0.776 He devoted his whole life to education.
0.764 She has dedicated herself to the cause of education.
query: The Committee resumed consideration of the item.

0.928 The Committee continued consideration of the item.
0.843 The Committee resumed its consideration of this agenda item.
0.686 The Committee began its consideration of the item.
query: There are a great many books on the bookshelf.

0.837 There are many books on the bookcase.
0.690 There is a heap of books on the table.
0.655 The bookshelf is crowded with books on different subjects.
query: Everyone has the privilege to be tried by a jury.

0.718 They have the right to have their case heard by a jury.
0.647 Every defendant charged with a felony has a right to be charged by the Grand Jury.
0.580 Everyone has the right to be educated.

Table 10: Examples of sentence retrieval using learned representations. Given a query, we use cosine similarity to
retrieve the 3 nearest neighbors (excluding exact match). The first column is the cosine similarity score between
the query and retrieved sentences. The corpus is 1M random English sentences from the training data.


