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Abstract

Transformer models are permutation equivari-
ant. To supply the order and type informa-
tion of the input tokens, position and seg-
ment embeddings are usually added to the in-
put. Recent works proposed variations of po-
sitional encodings with relative position en-
codings achieving better performance. Our
analysis shows that the gain actually comes
from moving positional information to atten-
tion layer from the input. Motivated by this,
we introduce Decoupled posItional attEntion
for Transformers (DIET), a simple yet effec-
tive mechanism to encode position and seg-
ment information into the Transformer mod-
els. The proposed method has faster training
and inference time, while achieving compet-
itive performance on GLUE, XTREME and
WMT benchmarks. We further generalize our
method to long-range transformers and show
performance gain.

1 Introduction

Transformers are sequence-to-sequence models
that achieve state of the art performance in many
Natural Language Processing (NLP) tasks, such as
machine translation, language modeling and ques-
tion answering (Vaswani et al., 2017; Devlin et al.,
2018; Yang et al., 2019; Liu et al., 2020). Trans-
formers have two major components: self-attention
and a position-wise feed forward layer. Both are
permutation equivariant and are not sensitive to
the order of input tokens. To make these mod-
els position-aware, the position information of the
input words is typically added as an additional em-
bedding to the input token embeddings (Vaswani
et al., 2017). For example, input embedding (W )
of a sentence is added to the position embeddings
(P ), resulting in input W + P to the Transformer.
These position embeddings only depend on the lo-
cation the word appears. For multi-segment tasks,
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additional segment embeddings can be added just
like the position embeddings (Devlin et al., 2018).

There have been multiple works exploring differ-
ent ways to include position information in Trans-
formers (Shaw et al., 2018; Yang et al., 2019; Raf-
fel et al., 2020). Many of those note the advan-
tages of using a relative position encoding scheme
over absolute position encodings (see also Fig 1).
However what causes this difference is not clear.
Yun et al. (2020) have shown that Transformers
with absolute position encodings are universal ap-
proximators of all sequence to sequence functions,
proving that absolute position encodings can cap-
ture the position information. Hence what causes
the superiority of relative position encodings? A
systematic study and understanding of the benefits
and drawbacks of different position encoding meth-
ods is missing. Ke et al. (2020) hypothesised that
the cross correlation between word and position
embeddings while computing attention could be
the cause of poor performance of absolute position
encodings. However such cross terms are present
in some of the relative position encoding methods
(Shaw et al., 2018; Yang et al., 2019), and these
methods perform on par or better than the other
position encoding schemes (see §4).

In this paper we undertake a systematic study
to understand different position encoding methods.
We argue that absolute position embeddings mainly
suffer from being added at the input. We show, with
our experiments on classification, question answer-
ing and machine translation tasks, that absolute po-
sition encodings added to attention matrices with
different parameters for each head improves sig-
nificantly over absolute position encodings added
to the input. This highlights that where the posi-
tion information is included in the Transformer is
important, providing an explanation for the gap in
performance between absolute and relative posi-
tion encodings. We also compare different position
encodings and the effect of sharing position encod-
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(a) English Transfer Learning on
MultiNLI

(b) Cross-lingual Transfer on
XNLI

(c) Translation on CS-EN

Figure 1: Performance effect of different positional encoding methods for Transformers (see § 2) on two Natural
language Inference datasets from GLUE (Wang et al., 2019), XTREME (Hu et al., 2020) and one Neural Machine
Translation dataset WMT 18 (Bojar et al., 2018). Absolute positional encoding (DIET-ABS) can achieve better
performance than the relative counterpart (DIET-REL), showing the importance of designing the right position
encoding method.

ings across different heads and layers of a Trans-
former. Based on these observations we propose
decoupled positional attention and a new segment
encoding approach (for tasks with multiple seg-
ments), and empirically show its superiority.

We summarize our contributions in this paper
below.

• We theoretically and empirically analyze the
limitation of the absolute position embeddings
added to the input. For both absolute and
relative information, we show that encoding
position to attention matrix per-head results
in superior performance.

• We propose a simple and efficient way to en-
code position and segment information. The
proposed encoding matches the SoTA meth-
ods on multiple standard NLP tasks while
having a simpler model with lower train-
ing/inference costs.

• Our proposed method can be easily applied to
long sequence models (DIET-ABSLIN ) and
improve all metrics compared with Linformer
(Wang et al., 2020).

• We present ablation studies comparing differ-
ent position encoding methods and ways of
sharing position encoding parameters across
heads and layers in Transformer.

2 Position Encoding for Transformers

In this section, we briefly review the Transformer
models (Vaswani et al., 2017) and discuss previ-
ous improvement of position encoding and analyze
the limitation of the additive position embedding
proposed in the initial and widely-adopted Trans-
former model.

2.1 Transformer
A Transformer block consists of two types of layers:
1) Self-attention layer and 2) Feed forward layers.

Self-Attention Module Given input sequence
length n, hidden size d, multi-head query-key
down-projection size dh, we define hidden layer
input to this attention head as X ∈ Rn×d, the query
projection matrix as Wi

Q ∈ Rd×dh , the key projec-
tion matrix as Wi

K ∈ Rd×dh and the value projec-
tion matrix as Wi

V ∈ Rd×dh , i ∈ [h], for h heads.
Usually, dh < d as we do multi-head attention
with a smaller representation per head (dh = d/h).
With that we can write dot-product attention score:

Ai = (XWi
Q)(XWi

K)>

This attention score is used to compute the output
for each head, after scaling and per row normaliza-
tion using softmax:

headi = Softmax(Ai/
√
d) · (XWi

V )

Output of all attention heads in a layer are concate-
nated and passed to the next feed-forward layer
applied token-wise.

2.2 Position Aware Self Attention
Many NLP tasks, such as machine translation, lan-
guage modeling, are sensitive to the ordering of
input words. Since Transformers are permutation
equivariant, we usually additionally include the po-
sition information in the input. Below we discuss
some of the popular position encoding methods.

2.2.1 Absolute Position Encodings
Absolute position encodings are computed in the
input layer and are summed with the input token
embeddings. Vaswani et al. (2017) proposed this
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for Transformers and it has been a popular choice
in the followup works (Radford et al., 2018; Devlin
et al., 2018). There are two common variations of
the absolute position encodings - fixed and learned.

2.2.2 Relative Position Encodings
One drawback of absolute position encoding is that
it requires fixed length of input sequence and does
not directly capture relative positions to each word.
To solve these problems several relative positions
schemes have been proposed.

Shaw et al. (2018) proposed using relative posi-
tion encoding instead of absolute position encoding,
and add position embeddings to the key and option-
ally value projections instead of the input. They
show that this new way of encoding position in-
formation leads to better performance on machine
translation tasks. Yang et al. (2019) simplified this
by removing the position embeddings in value pro-
jections and showed better performance on the lan-
guage modeling tasks. Both these approaches use
a vector representation to encode position informa-
tion.

Raffel et al. (2020) use scalars to encode rela-
tive position between query and key indices and
add directly to the attention scores matrix. They
further use logarithmic binning of position infor-
mation into a fixed number of buckets. All these
relative position methods further share the position
encoding parameters across layers.

Recently Ke et al. (2020) hypothesised that the
cross correlation between position and token em-
beddings can result in weaker performance of ad-
ditive absolute position embeddings and instead
proposed to add both absolute and relative posi-
tional information based attention directly in each
head. However such cross terms are present in the
method proposed by Shaw et al. (2018), which does
competitively with other approaches. We instead
hypothesise that position encodings at input limit
the rank of the position attention matrix leading to
its poor performance.

2.3 Limitations of the Input Additive
Position Embedding

In this section we discuss some limitations of the
de facto way of adding absolute position encodings
to the input token embeddings.

We first compare the representation power in
terms of the rank of attention matrices achievable
with different position encodings.

Figure 2: Rank of attention matrices: We present a
comparison of the rank of the attention score matrices
of a BERTBASE model with absolute position embed-
dings at input v.s. absolute position embeddings per-
head (DIET-ABS (1)). With additive positional embed-
ding at input, the attention matrices have much lower
rank, limiting the representative power. This is allevi-
ated by DIET-ABS.

Theorem 1. Let P ∈ Rn×d be the input position
embedding and P̂ ∈ Rn×dp be the layer-wise po-
sition embeddings. Let WQ,WK ∈ Rd×dh be
the query and key projection matrices with head
projection size dh, and dh < dp, d and n ≥
dh + dp. Let Aa = (X + P)WQW

>
K(X + P)>

and Ar = XWQW
>
KX> + P̂P̂> be the atten-

tion matrices computed using input and layer-wise
position embeddings respectively. Then for any
X,P,WQ,WK

rank(Aa) ≤ dh.

There exists a choice of X, P̂,WQ,WK such that

rank(Ar) = dp + dh > dh.

Remarks. This theorem shows us that the rank of
attention matrices is constrained with the absolute
position encodings at the input and using per-head
position encodings by adding position information
to attention matrix directly results in allowing for
higher rank attention. See § B for the proof.

Adding the position encodings directly to the in-
put further places a constraint on training dynamics
by forcing gradients to be same for both the input
token and position embeddings (see § B). Relative
position encodings discussed earlier, while address-
ing some of these concerns, suffer from slower
training/inference times (see Table 1) with com-
plex implementations (Shaw et al. (2018); Ke et al.
(2020)). In the next section, we present simple posi-
tion encoding methods that avoid these limitations.
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3 Proposed Position and Segment
Encodings

In the previous section, we learned about the limi-
tations of input additive positional embeddings and
existing works. Based on these observations, we
propose two minimal/efficient ways to incorporate
(absolute/relative) positional encodings along with
a novel absolute segment encoding approach. By
decoupling position and segment from token em-
beddings we match the SoTA performance while
improving training/inference time (see §3.3).

3.1 Decoupled Absolute Positional Attention
We propose the following simple absolute position
encoding method that adds position information to
the token attention matrix directly in each attention
head. We further also add segment information to
the token attention instead of the input embeddings.
This way we can set the rank of position encodings
independently resulting in higher rank attention
matrix, addressing the limitations discussed earlier.

DIET-ABS

AABS
i,j = (Xi:WQ)(Xj:WK)>/

√
d

+ (PQP
>
K)i,j + ES(S(i), S(j)),

(1)

where PQ,PK ∈ Rn×dp are low-rank position em-
bedding matrices and ES is the absolute segment
attention to model interactions between segments
defined as

ES(S(i), S(j)) = Sî,ĵ

where S(i) = î if index i is in segment î.
(2)

Please note that we use the following notation
in the above equation. Ai,j denotes the (i, j) entry
of matrix A. Xi: and X:j denote the ith row and
jth column of X respectively. We will follow this
notation in the remainder of the paper.

By default, we set dp same as dh. This already
results in potentially a rank dp+dh attention matrix
as shown in Theorem 1. To illustrate this, we com-
pare the rank of the attention matrices in the first
layer of a baseline BERT model and a DIET-ABS

model for a sampled batch in Figure 2. The figure
shows that attention matrices of DIET-ABS have
higher ranks than the baseline BERT. Our detailed
experiment results in § 4 also show that DIET-ABS

performs noticeably better. This confirms our ear-
lier observation in Theorem 1 that additive position
embeddings at input can constrain the model and

adding the position embeddings per-head removes
this constraint and results in better performance.

With the decoupled positional embedding, we
can increase dp to any width k to break the low-
rank bottleneck shown in Theorem 1. We call such
model DIET-ABS-Rank-k. We also address the ef-
ficiency issue introduced by one additional matrix
multiplication (PQP

>
K). As the positional embed-

dings are independent of the input, we only need
to compute the matrix multiplication once for each
training batch, and we can cache the computed
matrix before running inference. As a result, we
observe neglectable training and inference cost in-
crease in this model variant.

3.2 Decoupled Relative Positional Attention
To incorporate relative position inductive bias, we
consider a simplified version of the position encod-
ing proposed in T5 (Raffel et al., 2020) without
log-binning and per-layer parameter sharing. We
further also incorporate our per-head segment en-
coding as in DIET-ABS. The model can be written
as:

DIET-REL

AREL
i,j = (Xi:WQ)(Xj:WK)>/

√
d

+Ri−j + ES(S(i), S(j)).
(3)

We show an example of this model with two seg-
ments in Figure 3.

3.3 Training and Inference Costs
We next show the proposed models introduce
little computational overhead compared to the
baseline model, making our model more practi-
cal than alternatives. We consider two different
models - BERTBASE model and a smaller model,
BERTSMALL, that has hidden size 512, 4 layers and
8 attention heads.

In Table 1 we compare the training and inference
costs of position encoding methods of Shaw et al.
(2018), Ke et al. (2020), DIET-ABS and DIET-REL.
We notice that the simplicity of the proposed meth-
ods indeed translates to savings in both training and
inference times compared to other position encod-
ing approaches. The savings in step times are even
more significant for smaller models (BERTSMALL)
and during inference.

Note that the discrepancy between training and
inference speed is likely because gradient updates
dominate the cost at training time (Lan et al., 2020).
At inference time, we only measure the time of a
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Figure 3: Proposed efficient approach to include position and segment encoding by adding them directly to the
token attention matrix per-head. Left figure shows how we encode absolute positional attention. Right figure
represents relative positional attention.

Mode Shaw et al. (2018) Ke et al. (2020) DIET-ABS DIET-REL

BERTBASE Training +13% +1% +0% +0%
BERTBASE Inference +33% +19% +0% +0%
BERTSMALL Training +24% +4% +0% +0%
BERTSMALL Inference +65% +27% +1% +0%

Table 1: Pre-training and inference time of Transformers with different position encoding methods in comparison
to the baseline BERT model on TPU v2. We observe that simplicity of the DIET-REL and DIET-ABS result in
substantial gains in both training and inference time. We notice even more speedup for the smaller BERTSMALL
model compared to BERTBASE.

forward pass which corresponds to costs of using
such models in real systems.

3.4 Application to Long-range Transformers
Another advantage of our propose approaches is
they easily extend to long range Transformer mod-
els. For long sequence inputs, Transformers suf-
fer from quadratic dependence of computational
complexity with respect to the sequence length. A
class of methods reduce this complexity by using a
low rank projection of the input sequence for atten-
tion computation (Wang et al., 2020; Choromanski
et al., 2021; Dai et al., 2020). However, such meth-
ods use the default input position encodings, and
there has not been much work in incorporating po-
sition information per-head without introducing the
quadratic computation complexity on the input se-
quence length. We illustrate the applicability of our
methods to such settings by applying DIET-ABS to
Linformer (Wang et al., 2020), which projects the
attention key and value matrices to a lower dimen-
sion k during attention computation.

DIET-ABSLIN The proposed method can be
written as:

ALIN
i,j = (Xi:WQ)((EX)j:WK)>/

√
d

+ (PQP
>
K)i,j ,

(4)

where E ∈ Rk×n, PQ ∈ Rn×d, PK ∈ Rk×d.

4 Experiments

In this section, we present our experimental results
comparing different position and segment encod-
ing approaches discussed in earlier sections. We

conduct experiments in three different settings to
cover a wide range of use cases. First, we examine
the results of a popular transfer learning approach
from masked-LM pretraining to the end tasks in
GLUE (Devlin et al., 2018). Second, we study
zero-shot cross-lingual transferability of the mul-
tilingual pretrained models (Hu et al., 2020) to
classification and question answering tasks in the
XTREME benchmark (Hu et al., 2020). Lastly, we
consider training Transformer models from scratch
for machine translation.

We compare the following positional encoding
approaches - absolute positional embedding (De-
vlin et al., 2018), relative positional embedding
(Shaw et al., 2018), combined absolute and rela-
tive positional encoding (Ke et al., 2020), relative
scalar approach (Raffel et al., 2020), our proposed
DIET-ABS and DIET-REL per-head positional en-
coding approaches. We denote the methods that
add position/segment information directly to input
token embeddings with input, and methods that add
position/segment information directly in attention
layer with per-head. For complete experimental
setup, see Appendix A.

4.1 English Transfer Learning Results

Datasets and Model For pre-training, we use
English Wikipedia and Books datasets (Devlin
et al., 2018). For Finetuning tasks we use the
datasets from the GLUE benchmark (Wang et al.,
2019). We apply sub-word tokenization on raw
text data using WordPiece (Wu et al., 2016) with a
30,000 token vocabulary.
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Model Position Segment MNLI QQP QNLI SST2 CoLA STS-B Avg393k 364k 105k 67k 8.5k 7k

Devlin et al. (2018) input input 85.8 / 85.9 91.1 89.9 93.2 58.7 89.0 84.8
Shaw et al. (2018) per-head input 86.3 / 86.0 91.2 90.5 93.2 59.8 89.3 85.2
Raffel et al. (2020) per-head input 86.4 / 86.2 91.2 90.1 93.0 59.6 90.1 85.2
Ke et al. (2020) per-head input 86.1 / 86.2 91.2 90.3 93.1 59.6 89.6 85.2
DIET-REL per-head input 86.0 / 86.1 91.0 89.8 92.8 59.6 89.0 84.9
DIET-REL per-head per-head 86.3 / 86.3 91.0 90.5 92.9 60.3 89.3 85.2
DIET-ABS (dp=128, share) per-head per-head 86.4 / 86.4 90.8 89.5 93.0 59.8 90.2 85.2

Wang et al. (2020) (dp=32) input input 82.3 / 82.6 90.2 86.3 91.4 53.9 87.6 82.0
DIET-ABSLIN (dp=32) per-head input 83.0 / 83.1 90.6 86.7 92.0 55.7 87.6 82.7

Table 2: GLUE: Results on the GLUE dev set of the finetuned models based on a pre-trained model with 12-
layer BERTBASE architecture. We report the median of the maximum accuracy over all checkpoints among five
runs. We notice that the shared DIET-ABS with rank 128 performs competitively with existing relative positional
embedding SoTA models without the inductive bias of the relative positions. The proposed method also improves
performance in the low-rank long range transformer setting of (Wang et al., 2020), where relative positional
embedding approaches are inefficient to use.

Model Position Segment
Classification Question Answering

AvgXNLI XQuAD MLQA TyDiQA
393k 88k 3.7k

Devlin et al. (2018) input input 67.0 66.0 / 49.9 56.2 / 41.0 59.0 / 47.9 55.3
Shaw et al. (2018) per-head input 67.9 69.5 / 53.9 58.2 / 43.1 64.8 / 49.9 58.2
Raffel et al. (2020) per-head input 68.5 69.9 / 53.5 59.5 / 44.3 63.8 / 50.6 58.6
Ke et al. (2020) per-head input 67.8 68.6 / 52.0 58.6 / 43.2 63.9 / 48.7 57.5
DIET-REL per-head input 68.0 68.1 / 52.8 57.7 / 42.7 63.3 / 50.9 57.6
DIET-REL per-head per-head 68.4 69.4 / 54.4 58.6 / 43.5 62.4 / 49.3 58.0
DIET-ABS (dp=128, share) per-head per-head 68.5 70.0 / 53.6 59.8 / 44.5 64.6 / 51.5 58.9

Wang et al. (2020) (dp=256) input input 63.6 59.1 / 43.7 48.9 / 34.0 50.5 / 37.9 48.2
DIET-ABSLIN (dp=256) per-head input 64.4 61.6 / 46.0 52.2 / 37.0 53.6 / 40.9 50.8

Table 3: XTREME: Fine-tune cross-lingual model on English training set (Cross-lingual Transfer). Performance
is measured by accuracy for classification, and f1 score / exact match for question answering. In agreement with
results in Table 2 we see in this table that using per-head position encodings is strictly better than absolute position
encodings at the input. With layer-wise sharing, DIET-ABS with rank 128 outperforms all SoTA models.

Model EN-DE DE-EN EN-CS CS-EN

Vaswani et al. (2017) 39.00 38.42 18.55 22.93
Shaw et al. (2018) 40.10 38.90 18.74 23.89
DIET-REL 39.47 38.49 18.68 23.93

Table 4: Machine Translation: We report results com-
paring different position encoding methods for Trans-
formers on machine translation tasks en-de, de-en, en-
cs and cs-en from the Newstest 2018 dataset. We no-
tice that all per-head position encoding schemes (all ex-
cept the first row) do better than the absolute position
embeddings added at the input. Further the proposed
simple DIET-REL approach is competitive with other
position encoding approaches.

Results We examine how different ways of en-
coding position and segment affect the transfer
learning ability of the pre-trained English BERT
models by fine-tuning on the GLUE benchmark
(Wang et al., 2019), and present the results in Ta-

ble 2. We first notice that all the approaches that
encode position features explicitly at per-head level
perform better than the baseline additive position
encodings at the input (Devlin et al., 2018). All
models incorporating relative positions (Shaw et al.,
2018; Raffel et al., 2020; Ke et al., 2020), despite
their modeling differences, have very similar av-
erage score. We show further gains (84.9 to 85.2
for DIET-REL) by moving segment features to per-
head.

Interestingly we notice that the proposed abso-
lute position encoding method DIET-ABS, with
layer-wise sharing, is on par with all previous
SoTA relative positional encodings. This shows
that even absolute position encodings can perform
better when included per-head instead at the input.
We present a detailed ablation study varying the
rank and sharing methods of absolute positional
attention (DIET-ABS) in Table 8 and Tables 9 in
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Appendix C.
For long range input, we consider Linformer

(Wang et al., 2020) with a projection dimension of
32. Due to down-projection, we see non-trivial per-
formance drop, when compared to a Transformer.
Even for this setting we see that our absolute posi-
tional attention DIET-ABS can be used to improve
the model’s performance.

4.2 Cross-lingual Model Results

Datasets and Model For our multilingual ex-
periments, we pre-train the models on Wikipedia
corpus in 100 languages similar to (Lample and
Conneau, 2019) for 125K steps with a sequence
length of 512, and then fine-tune on downstream
XTREME tasks (Hu et al., 2020). We use language-
independent tokenizer, Sentence Piece (Kudo and
Richardson, 2018) model, with 120,000 token vo-
cabulary to encode input text.

Classification We conduct 5 trials of fine-tuning
for each model on the MultiNLI (Williams et al.,
2018) training data, then perform zero-shot predic-
tions on XNLI (Conneau et al., 2018), choosing
median accuracy to report.

Question Answering We conduct 5 trials of fine-
tuning for each model on SQuAD V1.1 dataset,
following by zero-shot predictions on XQuAD (11
languages), MLQA (7 languages) and TyDiQA-
GoldP (9 languages), choosing median F1 / EM
scores to report.

Results We present our results on the classifi-
cation and question answering finetuning tasks in
XTREME for different position and segment en-
coding methods in Table 3. Again all per-head
position encoding methods outperform input addi-
tive position encodings. Interestingly, our simple
DIET-ABS turns out to be the best model, better
than other models using relative position features.
Layer-wise sharing and per-head segment attention
allows DIET-ABS to outperform DIET-REL. We
present a detailed ablation study in Table 5 to un-
derstand effect of decoupled positional attention
variants. Finally, we notice similar advantages in
using DIET-ABS with the Linformer (Wang et al.,
2020) model in the long range setting.

4.3 Translation Results

Datasets and Model For the machine translation
task we consider two language pairs (both direc-
tions) for training - WMT 2018 English-to-German

(en-de), German-to-English (de-en), English-to-
Czech (en-cs) and Czech-to-English (cs-en) (Bo-
jar et al., 2018). We test the corresponding mod-
els on Newstest 2018 datasets respectively and re-
port the BLEU score output by SacreBLEU (Post,
2018) with default setting. Our setup follows
Vaswani et al. (2017) closely and use their Ten-
sor2Tensor framework (Vaswani et al., 2018). Fol-
lowing Vaswani et al. (2017) we use a 6 layer Trans-
former with encoder-decoder architecture. For
more details of our experimental setup please see
Appendix A

Results We report the BLEU scores of the mod-
els in Table 4. We observe that moving positional
information from input to per-head attention layer
improves BLEU scores. Different variations of
per-head positional attention do not make much
difference with DIET-REL being competitive with
Shaw et al. (2018).

4.4 Ablation Study
In this section, we share our findings of key factors
that affect performance of decoupled positional
attention.

Sharing the Positional Encoding Previous
works (Raffel et al., 2020; Ke et al., 2020; Shaw
et al., 2018) used different sharing methods for the
positional encodings to reduce the model parame-
ters. We present a detailed study on different forms
of sharing positional encodings and its effect on
performance. In particular, we compare the fol-
lowing variations in sharing the position encoding
parameters across different heads and the layers in
the Transformer.

• head-wise - Same parameters are used for all
heads in a layer, with different layers using
different parameters (Shaw et al., 2018; Ke
et al., 2020).

• layer-wise - Sharing of position encoding pa-
rameters across layers with different parame-
ters for each head (Raffel et al., 2020).

• none - Every layer and head uses different
position encoding parameters.

We present results comparing different sharing
methods in Table 5 for XTREME tasks. We make
the following observations 1) head-wise sharing is
consistently worse than layer-wise, 2) sharing hurts
the performance of DIET-REL whereas it improves
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Model Sharing Segment Classification Question Answering AvgXNLI XQuAD MLQA TyDiQA-GoldP

DIET-REL - input 68.0 68.1 / 52.8 57.7 / 42.7 63.3 / 50.9 57.6
DIET-REL head-wise input 67.7 66.2 / 51.0 56.0 / 41.1 60.1 / 45.9 55.4
DIET-REL layer-wise input 68.0 68.6 / 53.3 58.1 / 43.1 61.3 / 48.2 57.2
DIET-REL - per-head 68.4 69.4 / 54.4 58.6 / 43.5 62.4 / 49.3 58.0
DIET-REL head-wise per-head 67.8 66.0 / 50.5 55.5 / 40.4 59.2 / 44.6 54.7
DIET-REL layer-wise per-head 68.1 68.7 / 53.8 58.4 / 43.2 61.0 / 48.4 57.3

DIET-ABS (dp=64) - input 68.0 67.4 / 50.5 57.8 / 42.3 61.3 / 46.8 56.3
DIET-ABS (dp=64) - per-head 67.9 67.5 / 52.4 57.3 / 42.3 61.6 / 46.8 56.5
DIET-ABS (dp=128) - per-head 68.1 68.2 / 52.0 57.9 / 42.6 61.5 / 47.6 56.8
DIET-ABS (dp=512) - per-head 68.5 68.0 / 52.0 57.7 / 42.4 61.6 / 48.4 56.9
DIET-ABS (dp=64) layer-wise input 68.0 69.3 / 53.1 59.3 / 43.9 63.2 / 48.6 57.9
DIET-ABS (dp=64) layer-wise per-head 68.4 69.3 / 53.2 59.4 / 44.1 63.3 / 48.6 58.0
DIET-ABS (dp=128) layer-wise per-head 68.5 70.0 / 53.6 59.8 / 44.5 64.6 / 51.5 58.9
DIET-ABS (dp=256) layer-wise per-head 68.4 69.9 / 53.8 59.6 / 44.2 62.8 / 49.1 58.3
DIET-ABS (dp=512) layer-wise per-head 67.8 69.0 / 53.2 58.4 / 43.0 62.5 / 48.8 57.5

Table 5: Ablation study on XTREME: We run decoupled positional attention ablation study to understand the
effect of 1) sharing positional attention parameters across layers and heads 2) segment attention added at per-head
3) performance of relative and absolute 4) absolute positional attention rank dp from 64 to 512.

English Multilingual
Parameters +∆ GLUE Parameters +∆ XTREME

Devlin et al. (2018) 110.1M - 84.8 178.9M - 55.3
Shaw et al. (2018) 112.9M +2.5% 85.2 181.7M +1.7% 57.9
DIET-REL 109.9M +0.0% 85.2 178.7M +0.0% 58.0
DIET-REL (share) 109.7M +0.0% 85.0 178.5M +0.0% 57.3
DIET-ABS (dp=128) 128.6M +16.8% 85.3 197.4M +10.0% 56.8
DIET-ABS (dp=128, share) 111.3M +1.1% 85.2 180.1M +0.6% 58.9

Table 6: Model Parameters: We list the number of model parameters and performance for different position en-
coding approaches. We observe that sharing hurts the performance of DIET-REL with negligible benefit in the
number of parameters. On the contrary, the regularization effect of sharing makes DIET-ABS more stable with
lesser parameters to achieve competitive performance.

the performance of DIET-ABS. We summarize the
key settings along with the number of model pa-
rameters in Table 6. For DIET-REL, sharing brings
little effect on saving parameters, and hurts the per-
formance. Hence, we recommend no sharing for
relative positional encodings (DIET-REL). On the
other hand, it is necessary to share parameters for
DIET-ABS in order to keep the number of parame-
ters low. Interestingly, sharing has regularization
effect on DIET-ABS, making the model perform
better. We choose layer-wise sharing over head-
wise sharing for its better performance.

Segment Encoding Our novel segment encod-
ing design further improves the model perfor-
mance showed in Table 5. Both relative and ab-
solute decoupled positional attention models ben-
efit from moving the segment encoding from in-
put to per-head: DIET-REL (+0.4%), layer-wise
shared DIET-REL (+0.1%), DIET-ABS (+0.2%),
layer-wise shared DIET-ABS (+0.1%). See Ap-
pendix D for the results of GLUE benchmark and

Appendix C for segment attention visualization.

Rank of Absolute Positional Attention The de-
sign of DIET-ABS allows to learn higher rank at-
tention matrices as shown in Theorem 1. To under-
stand the effect of absolute positional attention rank
(dp) in practice, we conduct experiments varying
the rank from dp = 64 to dp = 512. We present
the results in Table 5. We notice that the perfor-
mance improves as we increase the rank from 64 to
128. However there is a performance saturation in
further increasing it to 512. We present a visualiza-
tion of the rank of the positional attention matrix
in Appendix B.

4.5 Positional Attention Pattern Visualization

We next visualize the learned positional attention
patterns of DIET-ABS in Figure 4. We first note
that DIET-ABS has learned to capture the relative
positional relations between inputs. Also note that,
for the the index zero (the [CLS] token), decoupled
absolute positional attention usually learns a spe-



2982

Figure 4: Visualization of learned positional attention
patterns of DIET-ABS. Note that in addition to captur-
ing the the relative positional relations, the model also
learn to attend to [CLS] at index 0, suggesting the ded-
icated [CLS] untying design in Ke et al. (2020) is not
necessary with DIET-ABS.

cial pattern. This pattern cannot be solely modeled
by existing relative positional embedding methods,
and some existing works (Ke et al., 2020) handled
this case specifically by introducing new parame-
ters. This shows the benefit of DIET-ABS in not
requiring any carefully designed inductive biases
as in existing approaches( Shaw et al. (2018); Raf-
fel et al. (2020)), which may not generalize across
tasks.

5 Conclusion

In this paper we theoretically and empirically ex-
amined the limitation of additive position embed-
ding at input and showed that having per-head posi-
tion embeddings results in better performance. We
argued that the superior performance of some of
the relative position encoding methods come from
their per-head addition to attention matrix rather
than the position information being relative vs ab-
solute. Indeed we show that using absolute position
encodings per-head results in better performance.
Motivated by this we propose a simple per-head po-
sition and segment attention method that achieves
the state-of-the-art performance on multiple NLP
tasks and is more computationally efficient than
existing approaches.
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A Experimental setup

In this section we present more details of our experimental setup.

Pre-training We pre-train the models using a masked LM task (Devlin et al., 2018) and do not use
the Next Sentence Prediction (NSP) loss as suggested in RoBERTa (Liu et al., 2019). Each input is
constructed with full sentences from documents, and packed up to the maximum sequence length. We use
the same architecture as BERTBASE (Devlin et al., 2018) (L = 12, H = 768, A = 12) for our experiments.

Fine-tuning Some downstream tasks have different groups of full sentences provided at inputs. For
those tasks (e.g. MNLI, CoLA, XNLI, SQuAQ), we fine-tune models with supplemental segment encoding
discussed in Section §3. We leave models for other tasks unchanged as their pre-training correspondences.

Hyper-parameters Hyper-parameters we use are presented in Table 7.

English Multilingual
Pretrain Finetune Pretrain Finetune

Max Steps 500K 5 or 10 epochs 125K 3 epochs
Learning Rate 0.0018 {1e-5, 2e-5, 3e-5, 4e-5} 0.0018 {1e-5, 2e-5, 3e-5, 4e-5}
Warmup Proportion 0.025 0.1 0.025 0.1
Sequence Length 128 128 512 512
Batch Size 4096 32 4096 32
Checkpoint Interval 20k 3.5k 20k 3.5k

Table 7: Hyperparameters for all models

Translate For our Translate experiments we follow the setup of Vaswani et al. (2017) and use their
Tensor2Tensor framework (Vaswani et al., 2018). We train using WMT18 ((Europarl v7, Common Crawl
corpus and News Commentary v13) en-de, de-en, en-cs and cs-en datasets. We report BLUE scores
provided by SacreBLEU (Post, 2018) on newstest 2018 dataset. We train a 6 layer Transformer model.
Any changes to position encoding are applied to all the attention layers both in the encoder and decoder.
We use Adam optimizer and train for 250k steps. For decoding we use beam search with beam size 10
and length penalty 0.6.

B Proofs

Proof of Theorem 1. The first claim follows easily by observing that rank of product of an two matrices is
upper bounded by the minimum of the individual ranks.

rank(Aa) = rank((X+P)WQW
>
K(X+P)>)

≤ min(rank(X+P), rank(WQ), rank(X+P), rank(WK))

≤ dh.

rank((X+P)WQW
>
K(X+P)>) ≤ dh,where WQ,WK ∈ Rd×dh

The last inequality follows from rank(WQ) ≤ dh as WQ ∈ Rd×dh .
To prove the second claim we follow a construction approach. Let us first take WQ = WK to be same

matrices with first dh rows being identity matrix and the remaining d− dh rows being all zeros. Then

WQW
>
K =

(
Idh,dh 0dh,d−dh

0d−dh,dh 0d−dh,d−dh

)
.

Here Idh,dh denotes the identity matrix in Rdh×dh and 0dh,d denotes the all zeros matrix in Rdh,d.
We let X be such that the first d rows form an identity matrix and rest are zeros - X> = [Id,d, 0n−d,d].

Hence XWQW
>
KX> becomes a similar diagonal matrix with

XWQW
>
KX> =

(
Idh,dh 0dh,n−dh

0n−dh,dh 0n−dh,n−dh

)
.
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Choose dp = n > dh and let P̂ = I . Now chosing P̂ with zeros in the first n−dp columns and identity
in the last dp columns (P̂ = [0d,n−dp , Idp,dp ]) gives

P̂P̂> =

(
0n−dp,n−dp 0n−dp,dp
0dp,n−dp Idp,dp

)
.

Combining these two gives us

rank(Ar) = rank(XWQW
>
KX> + P̂P̂>)

= min(dh + dp, n) > dh.

Let X ∈ Rn×d be the input word embeddings in dimension d with sequence length n. We have trainable
position embeddings P ∈ Rn×d, which are added to the input sequence before feeding into the model g.
For a given input X and label y, the objective for a loss function ` is as follows:

L = ` (g(X+P), y) (5)

Theorem 2. Let X and P be trainable embedding matrices in Rn×d. Then the gradients of the loss
function in equation (5), at any point (X, y), and for any differentiable functions ` and g, are same for X
and P.

Remarks. This theorem shows us that the gradients are same for the input token embeddings and
position embeddings. While in standard NLP tasks the inputs X can be different in each step due to
different input tokens being present in each mini batch, the result still suggests that additive position
embedding can limit the model from learning the relative importance of position encodings with respect
to token embeddings based on the training task at hand.

Proof of Theorem 2. The above theorem follows by just computing the gradients and showing they are
equal for each step.

Gradients of the above objective w.r.t X and P are as follows.

∇XL = ∇gL · ∇X+Pg · ∇X(X+P)

= ∇gL · ∇X+Pg

∇PL = ∇gL · ∇X+Pg · ∇P(X+P)

= ∇gL · ∇X+Pg.

The above computation of gradient follows from chain rule. This shows that the gradients of L w.r.t. X
and P are the same.
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C Attention Visualization

In this section, we examine the model internals to understand how the proposed model works. We first
visualize the model internals of different modeling alternatives to argue our proposed model is sensible.

Why We Remove the Input Embedding To understand if it is sensible to remove the input additive
embedding after adding position scalars per-head, we add additive position embedding to our DIET-ABS

model. Then, we examine the position embedding of the BERT model and our DIET-ABS variant with
additive position embedding. Figure 5 shows that, when the model has both absolute scalar and additive
absolute position embedding, the position embedding encodes almost no information — all position
embeddings at input are similar.

Figure 5: The cosine similarity distribution between all absolute position pairs of the input additive positional
embedding for the baseline BERT model and the proposed DIET-ABS. We observed that, after the position features
are added to each head as in DIET-ABS, the input position embedding contains almost no information — all input
position pairs are similar.

The Effect of Segment Attention We also examine the effect of adding segment attention on top of
the position attention. Figure 6 shows some representative patterns. We observe that segment attention
enables the model to attend more to parts of the sequence that belongs to certain segments.

(a) Attend to the Second Segment (b) Down-weight Relative Position Attention

Figure 6: We consider input of length 32 with two segments. The second segment starts at index 16. We observe
the attention patterns in the DIET-REL model without token-to-token attention.
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Shifting Pattern Learned from Absolute Positional Attention Using relative position encoding gives
generally better results despite smaller improvement scale compared to moving feature encoding per-head.
To understand this, we visualize the attention pattern of the absolute positional attention and found two
representative patterns in DIET-ABS in Figure 7. We observe that even given absolute position features,
the model learns a “shifting pattern” for the most part. Different from Wang and Chen (2020) which
claimed absolute position only learns local patterns, we show the position attention can actually attend
to longer context. However, the shifting pattern can be modeled directly by relative position. Thus,
DIET-REL can be a better model choice with fewer parameters and more accurate inductive bias in some
applications.

(a) Attend to Forward Neighbors (b) Attend to Previous Tokens

Figure 7: Sampled position attention score patterns for the DIET-ABS model. We can see a clear shifting patterns
generated by the model. Such patterns can be modeled better by relative positional scalar encodigs.

Rank of Positional Attention Matrices In Figure 8, we present a comparison of rank of position
attention matrices for a BERTBASE model with absolute position embeddings at input (PQWQW

>
KP>K)

v.s. absolute position embeddings per-head (DIET-ABS (1), (PQP
>
K), where PQ,PK ∈ Rn×dp). With

additive positional embedding at input, position attention matrices have much lower rank, limiting the
representative power. This is alleviated by DIET-ABS.

Figure 8: Rank of positional attention matrices
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D Additional Ablation Study on GLUE

Earlier we present an ablation study on XTREME in Table 5 for decoupled positional attention variants.
We compare DIET-REL and DIET-ABS against the baseline (Devlin et al., 2018). We now present a
similar study on the GLUE benchmark in Table 8 and observe similar results.

Positional Encoding In Table 8, moving positional embeddings from input to per-head improves
average score for both DIET-REL (+0.1%) and DIET-ABS (+0.2%).

Segment Encoding In Table 8, moving segment embeddings from input to per-head improves both
DIET-REL (+0.3%) and DIET-ABS (+0.05%).

Sharing Strategies Sharing plays an important role for DIET-ABS. In Table 9, we find that sharing will
degrade the performance of DIET-REL (-0.2% layer-wise, -0.3% head-wise). For DIET-ABS, sharing
makes the model more stable, and able to compete with DIET-REL.

Model Position Segment MNLI QQP QNLI SST2 CoLA STS-B Avg393k 364k 105k 67k 8.5k 7k

Devlin et al. (2018) input input 85.8 / 85.9 91.1 89.9 93.2 58.7 89.0 84.8
DIET-REL per-head input 86.0 / 86.1 91.0 89.8 92.8 59.6 89.0 84.9
DIET-REL per-head per-head 86.3 / 86.3 91.0 90.5 92.9 60.3 89.3 85.2
DIET-ABS (dp=64) per-head input 86.1 / 85.8 91.2 90.0 93.0 58.9 89.9 85.0
DIET-ABS (dp=64) per-head per-head 86.1 / 86.1 91.2 90.2 93.0 58.9 89.8 85.0
DIET-ABS (dp=64, share) per-head per-head 86 / 86.8 91.1 90.4 92.9 59.3 89.8 85.2
DIET-ABS (dp=128, share) per-head per-head 86.4 / 86.4 90.8 89.5 93.0 59.8 90.2 85.2

Table 8: Position and segment ablation study on GLUE: DIET-REL and DIET-ABS demonstrate the advantages of
moving both positional and segment embedding from input to per-head.

Model Sharing MNLI QQP QNLI SST2 CoLA STS-B Avg393k 364k 105k 67k 8.5k 7k

DIET-REL - 86.3 / 86.3 91.0 90.5 92.9 60.3 89.3 85.2
DIET-REL layer-wise 86.5 / 86.3 91.1 90.0 93.0 58.8 89.6 85.0
DIET-REL head-wise 85.8 / 85.7 91.2 90.2 92.8 59.8 89.1 84.9
DIET-ABS (dp=64) - 86.1 / 86.1 91.2 90.2 93.0 58.9 89.8 85.0
DIET-ABS (dp=128) - 86.7 / 86.5 91.2 90.6 92.8 60.1 89.4 85.3
DIET-ABS (dp=64) layer-wise 86 / 86.8 91.1 90.4 92.9 59.3 89.8 85.2
DIET-ABS (dp=128) layer-wise 86.4 / 86.4 90.8 89.5 93.0 59.8 90.2 85.2

Table 9: Sharing ablation study on GLUE: We run ablation study to understand the effect of sharing position
encoding parameters across layers and heads. We notice that sharing improves the performance of DIET-ABS, but
hurts the performance of DIET-REL with both layer-wise or head-wise sharing.


