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Abstract

Growing interests have been attracted in
Conversational Recommender Systems (CRS),
which explore user preference through con-
versational interactions in order to make ap-
propriate recommendation. However, there is
still a lack of ability in existing CRS to (1)
traverse multiple reasoning paths over back-
ground knowledge to introduce relevant items
and attributes, and (2) arrange selected entities
appropriately under current system intents to
control response generation. To address these
issues, we propose CR-Walker in this paper,
a model that performs tree-structured reason-
ing on a knowledge graph, and generates in-
formative dialog acts to guide language gen-
eration. The unique scheme of tree-structured
reasoning views traversed entity at each hop as
part of dialog acts to facilitate language gen-
eration, which links how entities are selected
and expressed. Automatic and human evalua-
tions show that CR-Walker can arrive at more
accurate recommendation, and generate more
informative and engaging responses.

1 Introduction

Many researches have been drawn to combine con-
versational assistants with recommender agents
into one framework due to its significance and
value in practical use (Sun and Zhang, 2018; Jan-
nach et al., 2020), but creating a conversational
recommender system (CRS) that bridges conversa-
tion and recommendation still remains challenging.

One of the challenges lies in reasoning over
the background knowledge for accurate recom-
mendation. Prior studies usually focused on us-
ing context and knowledge as an enrichment to
recommendation (Chen et al., 2019; Zhou et al.,
2020a), but neglected to fully exploit the connec-
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Hello, I’m looking for a movie 
for tonight.

What can I help you find? 
Comedy? Romance? Maybe 

with your favorite actor?

Comedy would be nice, but 
maybe with some cool action 

scenes, like “Iron Man”.

How do you like superheroes? 
The new “Thor: Ragnarök” is 

funny and action packed.

I really love Chris Hemsworth.
he’s handsome and good at 

acting.

He really is!  He also stars in 
“Vacation”, which is another 

great comedy.
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Figure 1: First three turns of an example dialog. The
dialog is shown on the left with entities on the KG in
bold. The graph on each dialog turn’s right demon-
strates the reasoning process of CR-Walker, with the
reasoning tree marked red. Throughout this paper,
candidate items are noted with numbers, and generic
classes / attributes with upper-/lower-case letters. The
orange/blue color indicates that the entity is men-
tioned/unmentioned in the previous context.

tion between entities1 to infer the system action.
In particular, this requires the system to make
multi-path reasoning on background knowledge,
since one entity may have multiple relationships
with different entities through multi-hop reasoning.
For example in Fig. 1, after the user mentioned
“Hemsworth”, the agent chats on “Vacation” star-
ring “Hemsworth”, and further explores the user

1An entity can be any node on a knowledge graph through-
out this paper, including items and their attributes. The defini-
tion is provided in Sec. 3.1.
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interests in “Comedy” movies. It then recommends
“Thor” based on several distinct paths of reasoning
over user preference (“comedy” & “action”).

Another challenge lies in fully utilizing the se-
lected entities in response generation. Since dif-
ferent dialog actions can be applied in conversa-
tional recommendation, selected entities needs to
be properly expressed with the guide of dialog
acts, an abstract representation of dialog seman-
tics and intentions, in order to form natural, infor-
mative, and engaging utterances to interact with
users. However, most previous works (Moon et al.,
2019; Lei et al., 2020a) stopped at inferring entities
without modeling response generation. In Fig. 1
again, the agent first asks the user’s preferred gen-
res and actors, and then talks about the star and the
movie to engage the user in the conversation, and
last recommends a movie based on the user inter-
ests. In addition, the agent provides explanations
at the third turn to make recommendation more
interpretable and persuasive.

To address these issues, we propose Conver-
sational Recommendation Walker (CR-Walker)
in this paper. It first selects a system intent to
decide whether the system asks for information,
chats about something, or makes a recommenda-
tion. Then, it performs tree-structured reasoning
on a knowledge graph (KG) and dialog context,
creating a reasoning tree comprised of relevant en-
tities to be introduced in response. The hierarchical
arrangement of entities on the tree preserves the
logical selection order under current system intents,
which is transformed to dialog acts. The linearized
representation of dialog acts further guides on gen-
erating informative and engaging responses with
pre-trained language models. Results show that
CR-Walker outperforms strong CRS on two public
datasets in recommendation and generation tasks.

In brief, our contributions are summarised be-
low2: (1) CR-Walker conducts tree-structured rea-
soning on a knowledge graph and dialog context to
explore background knowledge and exploit connec-
tion between entities for more accurate recommen-
dation; (2) CR-Walker transforms the reasoning
tree into dialog acts that abstract the semantics and
hierarchy of selected entities, and thereby gener-
ates more engaging responses for recommendation;
(3) We evaluate CR-Walker on two conversational
recommendation datasets, achieving outstanding

2The codes are released at https://github.com/
truthless11/CR-Walker

performance in automatic and manual evaluation,
from both recommendation and conversation as-
pects.

2 Related Work

Conversational Recommender Systems (CRS)
learn and model user preference through dialog,
which support a richer set of user interactions in
recommendation (Jannach et al., 2020). Previous
CRS can be roughly categorized into two types.

One is recommendation-biased CRS (Sun and
Zhang, 2018; Zhang et al., 2018, 2020; Zou et al.,
2020) that asks questions about user preference
over pre-defined slots or attributes to recommend
items. As system response can be grouped into
some pre-defined intents, it can be implemented
with the help of language templates. Under this
simplified setting, approaches of this type do not
model language generation explicitly (Lei et al.,
2020a,b). Such dialogs can only provide limited
actions without revealing why the system makes
such recommendation (e.g. by asking on a fixed set
of attributes) (Christakopoulou et al., 2016, 2018),
thus leading to unsatisfactory user experience. Re-
cently, Moon et al. (2019) improves knowledge
selection by assuming a single chain of reason-
ing throughout the conversation. It relies on fine-
grained annotations that follow single-path reason-
ing scheme. However, multiple entities can be
selected at each reasoning hop (e.g. recommend
several items within one turn, each item with differ-
ent reasons). Therefore, we propose tree-structured
reasoning in this work to enable CRS to select
multiple entities through multi-path reasoning for
accurate recommendation. Xu et al. (2020) intro-
duces a dynamic user memory graph to address
the reasoning of user knowledge in CRS, which is
beyond the scope of this paper.

The other is dialog-biased CRS (Li et al., 2018;
Kang et al., 2019; Liao et al., 2019; Liu et al.,
2020) that makes recommendations using free text,
which have much flexibility to influence how the
dialog continues. As these systems suffer from
existing limitations in NLP (e.g. understand prefer-
ence implicitly from user expression), most meth-
ods incorporate external information such as KG
and user logs to enhance the dialog semantics (Yu
et al., 2019; Zhou et al., 2020a) or update the user
representation (Zhang et al., 2019; Chen et al.,
2019). However, these methods do not capture
higher-level strategic behaviors in recommendation

https://github.com/truthless11/CR-Walker
https://github.com/truthless11/CR-Walker
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Figure 2: Left: Illustration of CR-Walker’s overall architecture. CR-Walker first decides the system intent and then
applies walker cells to perform tree-structured reasoning on the knowledge graph in two stages. The transformed
dialog acts are used to guide response generation. Right: Detailed structure for a single walker cell. A walker
cell calculates the similarity between the entities on a graph and the context embedding that integrates utterance
embedding and user portrait. Entity selection is learned by logistic regression to enable multiple selections.

to guide the conversation. To solve this issue, Zhou
et al. (2020b) incorporates topic threads to enforce
transitions actively towards final recommendation,
but it models CRS as an open-ended chit-chat task,
which does not fully utilize relations between items
and their attributes in response. In contrast, CRS
can be regarded as a variation of task-oriented di-
alog system that supports its users in achieving
recommendation-related goals through multi-turn
conversations (Tran et al., 2020). Inspired by the
use of dialog acts (Traum, 1999), we choose a set
of system dialog acts in CRS to facilitate informa-
tion filtering and decision making as task-oriented
dialog policy (Takanobu et al., 2019, 2020) does.

3 CR-Walker: Conversational
Recommendation Walker

In this section, we start from defining the key con-
cepts of knowledge graph and dialog acts used in
CR-Walker. As illustrated in Fig. 2, CR-Walker
works as follows: First of all, dialog history is rep-
resented in two views: one is utterance embedding
in the content view, and the other is user portrait in
the user interest view. Then, CR-Walker makes rea-
soning on a KG to obtain a reasoning tree, which
is treated as a dialog act. Afterwards, the tree-
structured dialog act is linearized to a sequence, on
which CR-Walker finally generates responses with
a conditional language generation module.

3.1 Key Concepts

We construct a knowledge graph G = (E ,R) as
follows: the entities E on the graph are divided

into three categories, namely candidate items, at-
tributes, and generic classes. There are various
relations R among these entities. Each candidate
item is related to a set of attributes, while each at-
tribute is connected to its corresponding generic
class. There might also exist relationships between
different attributes. Taking movie recommenda-
tion as an example, the candidate movie Titanic is
linked to attributes Romance, Leonardo DiCaprio
and James Cameron, and these three attributes are
linked to generic classes Genre, Actor and Director,
respectively.

We also define a set of system actions in CRS.
We abstract three different system intents to rep-
resent actions commonly used in a dialog policy:
recommendation that provides item recommenda-
tion and persuades the user with supporting evi-
dence, query that asks for information to clarify
user needs or explore user preference, and chat
that talks on what has been mentioned to drive the
dialog naturally and smoothly. Example utterances
of three intents are shown in Fig. 1. Then, we
define a dialog act A as an assembly of a system
intent and entities selected by the system, along
with their hierarchy relations.

3.2 Reasoning Process
CR-Walker learns to reason over KG to select rel-
evant and informative entities for accurate recom-
mendation and generating engaging conversations.
Considering the large scale of KG and different
system actions in CRS, we design several two-hop
reasoning rules to help CR-Walker narrow down
the search space, thereby making the reasoning pro-
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Intent Hop 1 Hop 2

Recommend mentioned attributes candidate items
+ mentioned items’ attributes

Query generic classes attributes

Chat mentioned entities all entities

Table 1: Reasoning rules for narrowing down CR-
Walker’s search space. For each system intent, we only
maintain the legal entities at each hop during reasoning.

cess more efficient on large KG. As shown in Table
1, all the reasoning rules are designed in line with
the conceptual definition of corresponding intents.
The reasoning process of CR-Walker starts from
one of the three intents. It then tries to explore
intermediate entities as a bridge to the final recom-
mendation, and finally reaches the target entities at
the second hop.

As explained in Sec. 2, multiple entities can be
selected at each hop in CRS, therefore forming a
tree structure on the graph instead of a single path
as in previous work (Moon et al., 2019). The child
entities at the second hop are neighboring to their
parent entities at the first hop on the graph, except
when the intent is “recommend”. We allow all can-
didate items to be recommended, even if some of
them have no connection with other entities on the
graph. In addition, we maintain the status of each
entity whether the entity is mentioned or not in the
context, to facilitate reasoning during interaction.

3.3 Dialog and Knowledge Representation

In this subsection, we describe how to represent di-
alog context, external knowledge and user interests
in CR-Walker.

Utterance Embedding We formulate the dialog
history D = {x1, y1, . . . , xt−1, yt−1, xt}, where
xt and yt is user/system utterance respectively. At
each dialog turn t, we first use BERT (Devlin et al.,
2019) to encode last system utterance yt−1 and
current user utterance xt successively. The em-
bedding of “[CLS]” token of xt is applied as the
turn’s representation, denoted as BERT([yt−1;xt]).
Then the utterance embedding ut is obtained sim-
ply through a LSTM over BERT([yt−1;xt]) to cap-
ture the sentence-level dependencies. Formally,

ut = LSTM(ut−1,BERT([yt−1;xt])). (1)

The hidden state of LSTM ut ∈ Rd is taken as the
utterance embedding to represent dialog context.

Entity Embedding To introduce external struc-
tured knowledge in CR-Walker, we extract KG
from DBpedia (Auer et al., 2007) and add generic
classes (see Sec. 3.1). We encode the graph using
R-GCN (Schlichtkrull et al., 2018), by virtue of
its capability of modeling neighboring connections
more accurately by considering different relations.
Formally, for each entity e ∈ E , the entity embed-
ding h(l)

e ∈ Rd at each layer l is calculated as:

h(l+1)
e = σ(

∑
r∈R

∑
e′∈N r

e

1

|N r
e |
W (l)

r h
(l)
e′ +W

(l)
0 h

(l)
e ),

(2)

whereN r
e denotes the set of neighboring entities of

e under the relation r, andW (l)
r ,W (l)

0 ∈ Rd×d are
learnable matrices for integrating relation-specific
information from neighbors and the current layer’s
features respectively. At the final layer L, the em-
bedding h(L)

e is taken as the entity representation,
and is denoted as he ∈ Rd in the following text.

User Portrait We build a user portrait to rep-
resent user interests using both dialog and KG
here. Given the dialog history, we performed
named entity recognition (NER) to identify en-
tities mentioned in the previous user utterances
{x1, . . . , xt−1, xt} using spaCy, then linked them
to the entities in the KG with simple fuzzy string
matching. The status of identified entities is up-
dated as “mentioned”. We thus obtain all the repre-
sentation of mentioned entitiesM t ∈ Rd×|Mt| by
looking up entity embedding:

M t = (h1,h2, ...,h|Mt|).

Following Chen et al. (2019), we calculate the user
portrait pt ∈ Rd via self-attention:

αt = softmax(wp · tanh(W pM t)),

pt = αt ∗M t. (3)

3.4 Tree-Structured Graph Reasoning

The reasoning process of CR-Walker initiates from
a system intent as the start point on the graph, and
expands into multiple paths to get a reasoning tree.

First of all, we treat intent selection as a simple
3-way classification problem parameterized by θi:

pθi(y
int
t |xt) = softmax(W 2

intReLU(W 1
intut)),

Lint = − log pθi(y
int
t |xt). (4)
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Noting that we only use utterance embedding ut
as input, since we empirically find that introduc-
ing pt does not promote the performance of intent
selection.

To expand a system intent into a reasoning tree,
we propose the walker cell, a neural module shown
in Fig. 2. Particularly, each time a walker cell C
performs one-hop reasoning to select entities, to
expand the tree from a given intent i, or a given
entity e at hop n=1 or >1 respectively. It first inte-
grates the dialog history representation via a gate
mechanism to obtain context embedding ct:

γ(n) =

{
σ(w · [ut;pt; it]), n=1
σ(w · [ut;pt; it;he]), n>1

c
(n)
t = γ(n) · ut + (1− γ(n)) · pt, (5)

where it ∈ Rd indicates trainable embedding of
the selected intent. The cell then outputs the score
of each entity e′ using its entity embedding he′ :

ŝe′ = σ(he′ ·
n∑
j=1

c
(j)
t ). (6)

The estimated selection score ŝe′ indicates whether
e′ is selected for tree expansion. By incorporating
c
(j<n)
t , the current reasoning hop n is aware of the

previous reasoning hop j. We describe this process
of applying a single walker cell for entity selection
from e (similar for intent i) as a function below:

WALK(e) = {e′|ŝe′ > τ, e′ ∈ Z(n)
e }, (7)

where Z(n)
e is the set of legal entities to be selected

starting from e according to the reasoning rule in
Sec. 3.2, and τ is a threshold hyper-parameter.

In practice, we select at most m entities at hop 1
to control the reasoning tree’s width. The reasoning
path stops when no entities are selected at a certain
hop or reaches hop 2.

3.5 Conditional Language Generation
Having selected the entities on the reasoning tree,
we generate system response yt conditioned on
the user utterance xt and tree-structured dialog act
At. We formulate this as a language generation
problem. The goal is to build a statistical model
parameterized by θg as follows:

pθg(yt|xt, At) =
K∏
k=1

pθg(yk,t|y<k,t, xt, At). (8)

To facilitate response generation using a pre-
trained language model (PLM), we convert the di-
alog act into a token sequence. As a dialog act of
CR-Walker contains an intent and selected entities,
and it is arranged in a tree structure, we can lin-
earize the dialog act into a token sequence in the
same way that a parser serializes a tree into a string
with preorder traversal. As shown in Fig. 2, the
brackets characterize the hierarchy of the dialog act
with regard to the logical order of entity selection.

In this paper, we employ GPT-2 (Radford et al.,
2019) as the backbone for response generation,
where the model successively encodes the user ut-
terance xt and sequence dialog act At as input, and
then decodes the response yt in an auto-regressive
generation process. During inference, Top-p sam-
pling (Holtzman et al., 2020) is used for response
decoding.

3.6 Model Optimization

At each turn t, we train the parameters of walker
cells θw at each hop n using standard logistic re-
gression loss:

Ln =
∑

e∈E(n−1)
t

∑
e′∈Z(n)

e

−se′ log(ŝe′)

− (1− se′) log(1− ŝe′), (9)

where se′ ∈ {0, 1} is the label indicating the selec-
tion of entity e′, and E(n−1)t denotes the extracted
entity set at dialog turn t at hop n-13. Training
the generation model is performed via maximiz-
ing the log-likelihood (MLE) of the conditional
probabilities in Eq. 8 over the user utterance:

Lgen = −
K∑
k=1

log pθg(yk,t|y<k,t, xt, At). (10)

Noting that we use the extracted dialog acts in the
corpus during training.

We jointly optimize all trainable parameters men-
tioned above. The final loss for optimization L is a
weighted sum of all losses4:

L = Lint +
2∑

n=1

λnLn + Lgen. (11)

3Specially, E(0)
t is the singleton of selected intent.

4The outlined algorithm and implementation details of
CR-Walker are presented in the appendix.
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4 Experimental Setting

4.1 Data

We use two public conversational recommendation
datasets to verify the effectiveness of CR-Walker.
(1) ReDial (Li et al., 2018) is collected by crowd-
sourcing workers from Amazon Mechanical Turk
(AMT). Two paired workers are assigned with a
role of either recommender or seeker. At least 4 dif-
ferent movies are mentioned in each conversation.
Each movie mentioned in the dialog is annotated
explicitly. (2) GoRecDial (Kang et al., 2019) is col-
lected in a similar way using ParlAI. In each dialog,
each worker is given a set of 5 movies with corre-
sponding descriptions. The seeker’s set represents
his or her watching history, and the recommender’s
set represents candidate movies to choose from.
The recommender should recommend the correct
movie among the candidates to the seeker. We
then construct the KG and perform entity linking
separately for GoRecDial and Redial.5

4.2 Baselines

We have compared CR-Walker with several strong
approaches in Redial: (1) ReDial (Li et al., 2018):
a benchmark model of ReDial that applies an au-
toencoder recommender, a RNN-based NLG and a
sentiment prediction module. (2) DCR (Liao et al.,
2019): Deep Conversational Recommender uses a
pointer network to incorporate global topic control
and GCN-based recommendation in response gen-
eration. (3) KBRD (Chen et al., 2019): Knowledge-
Based Recommender Dialog enriches user repre-
sentation with a KG to give responses and recom-
mendation following the user interests. (4) KGSF
(Zhou et al., 2020a): KG-Based Semantic Fusion in-
corporates both word-oriented and entity-oriented
KGs to enhance the data representations in CRS.

We also adopt several conversation recommen-
dation methods as the baselines in GoRecDial: (1)
BERT (Devlin et al., 2019): A BERT fine-tuned
on GoRecDial, which encodes dialog contexts and
movie descriptions. BERT features are used for
response retrieval and movie recommendation. (2)
R-GCN+GPT: A joint model combining a R-GCN
(Schlichtkrull et al., 2018) for movie recommen-
dation with a Transformer-based language model
(Vaswani et al., 2017) for response generation. The
movies are scored using similar structures within

5The KG construction details and dataset statistics are
shown in the appendix.

our walker cell by calculating the dot-product be-
tween encoder hidden states and R-GCN embed-
dings. (3) GoRecDial (Kang et al., 2019): a bench-
mark model of GoRecDial, which is trained via
multi-task supervised learning and bot-play learn-
ing by formulating the recommendation task as a
task-oriented game.

5 Results

Model
Recommendation

R@1 R@10 R@50 Cov.

ReDial 2.3 12.9 28.7 5.8
DCR 2.7 14.8 30.6 1.5

KBRD 3.0 16.3 33.8 11.2
KGSF 3.9 18.3 37.8 12.2

CR-Walker 3.7 17.6 37.1 14.7
-depth=1 2.9 14.9 34.3 11.4

+ConceptNet 4.0 18.7 37.6 15.2

Table 2: Automatic evaluation of recommendation
tasks on ReDial.

Model
Generation Knowledge

BLEU Dist-2 Dist-3 Prec. Rec. F1

ReDial 21.9 3.72 5.24 28.3 23.0 24.0
DCR 21.9 1.91 3.12 48.1 37.7 40.8

KBRD 22.8 4.92 9.21 42.1 33.3 35.9
KGSF 18.6 4.00 5.34 37.7 32.0 33.2

CR-Walker 26.6 21.2 48.1 46.3 60.3 47.7
-depth=1 28.0 19.2 40.8 50.0 47.7 45.1

Table 3: Automatic evaluation of generation tasks on
ReDial.

Model
Recommendation Gen.

T@1 T@3 C@1 C@3 BLEU

BERT 25.5 66.3 26.4 68.3 23.9
R-GCN+GPT 75.6 95.7 76.1 96.3 25.2

GoRecDial 77.8 97.1 78.2 97.7 27.4

CR-Walker 81.1 97.5 81.3 98.1 29.6

Table 4: Automatic evaluation on GoRecDial, where
users chat in the context of their watching history.

5.1 Automatic Evaluation

The results on Redial and GoRecDial are shown in
Table 2, 3 and 4. As can be seen, CR-Walker outper-
forms most baselines in both item recommendation
and response generation.
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Figure 3: CR-Walker’s recommendation performance with regard to the number of selected nodes at the first hop
during reasoning. Most metrics improve as more supporting entities are allowed to be selected.

Item Recommendation We evaluate CR-Walker
on item recommendation quality in different
settings using metrics proposed in the original
datasets: In Redial, we adopt Recall@k for evalua-
tion since there are multiple movies recommended
in a dialog. In GoRecDial, since the ground-truth
movie to recommend is annotated in each dialog,
we evaluate the hit rate among top-k recommen-
dation at each turn (T@k), and also the hit rate
only at the end of each dialog (C@k) to observe
the usefulness of conversation further. On Redial,
we also use Coverage to evaluate recommendation
diversity, which is calculated by the proportion of
candidate items recommended on test set.

In Table 2, we can find that CR-Walker out-
performed all baselines using a single KG on
recommendation quality, including ReDial, DCR
and KBRD. This indicates use of multi-path reason-
ing can more effectively utilize background knowl-
edge. KGSF uses an additional KG from Con-
ceptNet (Speer et al., 2017) compared with ours,
and performs slightly better on Recall. However,
CR-Walker can obtain a performance gain as well
by incorporating ConceptNet as additional feature
(+ConceptNet in Table 2), and even outperforms
KGSF on Recall@1 and Recall@10, but this is not
the focus of this paper. Regarding recommendation
diversity, CR-Walker outperformed all baselines
including KGSF. The tree structured reasoning en-
ables multiple items to be recommended at the
second hop, each with its certain attributes related
to earlier conversation. This results in a higher
coverage of candidate items compared with 1-hop
reasoning that directly arrives at recommendation.

In Table 4, we can find that CR-Walker obtains
the best performance on all recommendation
metrics if the user has a clearer preference. Sur-
prisingly, we also find that T@1 is close to C@1 in
CR-Walker in GoRecDial. This is because entity
embedding provides overly strong information to
distinguish the correct movie from only five can-
didates so that it can offer good recommendations

easily, even without user utterances.

Response Generation We apply BLEU and
Distinct-n (Li et al., 2016) to measure the generated
response on word-level matches and diversity. Not-
ing that different from Chen et al. (2019) that cal-
culate sentence-level Distinct, we use corpus-level
Distinct to give a more comprehensive assessment.
Following Wu et al. (2019), we also adopt knowl-
edge F1-score to measure knowledge exploitation.
Unlike metrics in item recommendation, the knowl-
edge score is calculated by corresponding generic
classes rather than the exact match. For example,
it only evaluates whether the system mentioned the
genre to promote movie recommendation but does
not care about the exact genre.

Results show that CR-Walker outperforms all
baselines on corpus-level language diversity by
a large margin (dist-2,3 in Table 3). Noticeably,
while CR-Walker achieves the highest BLEU in
GoRecDial, BLEU in ReDial drops a little when
incorporating tree-structured reasoning into the re-
sponse generation process (26.6 vs. 28.0). This
is because CR-Walker sometimes infers different
reasoning trees, and afterwards generates sentences
that differ from the references but may also be rea-
sonable. We resort to human evaluation (Sec. 5.3)
to further evaluate the language quality.

In addition, CR-Walker obtains the best knowl-
edge recall and F1 scores. This indicates that CR-
Walker reasonably utilizes informative entities
during conversational recommendation. A slightly
lower precision in CR-Walker is also because it
produces different reasoning trees.

5.2 Ablation Study

To understand CR-Walker’s superiority against
other baselines, we further examine the influence
of tree-structured reasoning on the recommenda-
tion performance. We first study the effect of tree
depth. When we simplify the reasoning process
by removing the first hop reasoning and force the
model to directly predict the entities at the second
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hop (-depth=1 in Table 2), there is an apparent
decline in all Recall@k. R-GCN+GPT shares a
similar framework with CR-Walker-depth=1 which
directly recommends items using R-GCN, and CR-
Walker outperforms it much on item recommen-
dation. These results demonstrate that two-hop
graph reasoning better exploits the connection be-
tween entities by exploring intermediate entities,
and it is crucial for successful recommendation.

We then study the effect of tree width. We con-
trol the width of reasoning paths by setting the
maximum number of entities m allowed to be se-
lected at the first hop, and observe the performance
in Recall@k, as shown in Fig. 3. Overall, the per-
formance of CR-Walker increases as m goes up.
Though there is a slight decrease in Recall@1 when
the width grows to around 6, the performance gains
in the end. This can be interpreted as multi-path
reasoning is superior to single-path reasoning by
providing the model with multiple guidance to ar-
rive at the final recommendation.

5.3 Human Evaluation

In addition to automatic evaluation, we conduct
point-wise human evaluation. 300 posts are ran-
domly sampled from the test set. For each response
generated by each model, we ask 3 worker from
AMT to give their ratings according to each met-
ric with a 3-point scale (3/2/1 for good/fair/bad
respectively). The average score of each metric
is reported. Among the metrics, fluency and co-
herence focus on the response generation quality,
informativeness and effectiveness evaluate whether
the conversation is well-grounded in a recommen-
dation scenario. In particular, informativeness eval-
uates whether the system introduces rich movie
knowledge, and effectiveness evaluates whether the
system engages users towards finding a movie of
interest successfully.

We present human evaluation results on ReDial
in Table 5. We adopt GPT-2 as an additional base-
line fine-tuned on the training set and generates
response directly. We find that it serves as a solid
baseline due to the success of PLMs in language
generation and incorporating knowledge implic-
itly. Although GPT-2 cannot make actual recom-
mendation since it does not “select” a movie, it
outperforms all the previous baselines even on in-
formativeness and effectiveness. This implies that
finding the appropriate recommendation is insuffi-
cient to satisfy users under the conversational rec-

Model Fluency Coherence Inform. Effect.

ReDial 2.31 1.96 1.69 1.74
DCR 2.12 1.84 1.68 1.63

KBRD 2.45 2.14 1.95 1.89
KGSF 2.17 1.96 1.98 1.93
GPT-2 2.47 2.24 2.05 1.98

Human 2.52 2.34 2.18 2.10
CR-Walker 2.60* 2.41* 2.33* 2.22*

Table 5: Human evaluation on ReDial. Human re-
sponses come from the ground truth responses pro-
vided in the dataset. Numbers marked with * indicate
that the improvement is statistically significant (t-test
with p-value < 0.05).

Model Fluency Coherence Inform. Effect.

Human(+) 2.54 2.38 2.26 2.15
CR-Walker(+) 2.61 2.41 2.33 2.23

Human(-) 2.46 2.23 1.99 1.98
CR-Walker(-) 2.57 2.41 2.33 2.18

Table 6: Human vs. CR-Walker. (+) and (-) indicate
the subset of responses where two competitors share
the same intent and pose different intent respectively.

ommendation setting, but the quality of natural
language may also determine how well recommen-
dations will be accepted. CR-Walker, equipping
the PLM with external knowledge and reasoning
ability, further boosts GPT-2’s performance by pro-
viding interpretable recommendation through ut-
terance. Among all the metrics, CR-Walker im-
proves informativeness and effectiveness more sig-
nificantly. We observe that CR-Walker can gen-
erate utterance with more detailed attribute infor-
mation to support recommendation compared to
GPT-2 alone. This demonstrates that CR-Walker
succeeds in generating engaging responses with
tree-structured dialog acts beyond PLMs.

We further study why CR-Walker can outper-
form human responses. In terms of the system
action, the intent accuracy of CR-Walker reaches
only 67.8%, but we find that a different intent from
the human’s choice sometimes results in better in-
formativeness and effectiveness. We calculate the
score separately for humans and CR-Walker based
on whether the intent selection is the same or differ-
ent in Table 6. For identical intents, CR-Walker’s
improvements on four metrics are all marginal, as
the improvement only comes from providing more
information at the first hop reasoning. For differ-
ent intents, however, the human performance drops
remarkably, while our performance remains con-
sistent. We observe several samples and find that
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the human usually performs perfunctory chit-chat
like “haha” or “lol” in these cases. By contrast, CR-
Walker replies with a relevant query or appropriate
recommendation6. This implies that the score ad-
vantage may come from the explicit reasoning on
system actions that CR-Walker learns.

5.4 Recommendations in Dialog Flow

We also analyze the flow of recommended items
throughout conversation among various interac-
tion cases, where we roughly categorize the flow
into two patterns. In one pattern, the seeker chats
around a fixed topic of interest and ask for simi-
lar recommendations. This pattern is common on
Redial, and CR-Walker efficiently handles it by
making appropriate recommendation through tree
structure reasoning. However, in a less common
case where user suddenly change to a new topic,
earlier recommendations would have little effect
on the latter ones. In these cases, reasoning on
previous items may result in inappropriate recom-
mendations. In practice, we weigh the two patterns
by setting the maximum length of dialog history
lmax, where we only used last lmax utterances in
D to compute utterance embedding and user por-
trait. When we set lmax = 3, we empirically find
CR-Walker can handle most topic changes while
still providing appropriate recommendation during
interaction.

6 Conclusion and Future Work

We have presented CR-Walker, a conversational
recommender system that applies tree-structured
reasoning and dialog acts. By leveraging inter-
mediate entities on the reasoning tree as additional
guidance, CR-Walker better exploits the connection
between entities, which leads to more accurate rec-
ommendation and informative response generation.
Automatic and human evaluations demonstrate CR-
Walker’s effectiveness in both conversation and
recommendation. It is worth noting that the dialog
acts used in CR-Walker are automatically obtained
by entity linking to a KG with simple heuristics.
Therefore, our work can be easily applied to differ-
ent conversational recommendation scenarios.

There are still some topics to be explored based
on CR-Walker. It would be promising to equip
CR-Walker with a language understanding module
to capture users’ negative feedback and propose
other reasoning rules to handle such situations. An

6The case study is provided in the appendix.

efficient way to learn reasoning more than two hops
can be investigated in the future as well.
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A Notation

Notations used in this paper are summarized in
Table 7.

Notation Description

e, E Entity, entity set
r,R Relation, relation set
t Dialog turn
N r

e Neighbors of e in relation r

Z(n)
e Neighbors of e at n-th hop reasoning

he Entity embedding of e
ut Utterance embedding
pt User portrait
E(n)
t Entity set at n-th hop reasoning

A Dialog act

Table 7: Notations used in the CR-Walker.

B Pseudocode

The entire reasoning and training process of CR-
Walker is described in Algorithm 1.

C Implementation Details

In experiments, we train the model on a single
Tesla-V100 GPU with a learning rate of 1e-3, batch
size of 36, and max epoch of 60. Adam is used as
the optimization algorithm, with a weight decay of
1e-2. We set the max number of selection at the
first hop m = 5 during training, and used negative
sampling for the candidate items (second hop when
system intent is recommend). The ratio between
negative and positive samples is set to 5. The di-
mension of entity embedding d is set to 128. The
layer size of R-GCN L is set to 1. BERT-base and
GPT-2-medium are applied from Wolf et al. (2020)
and the parameters of the BERT encoder are frozen
during the training process. The weights of graph
walker loss at each hop are λ1 = 1, λ2 = 0.1 for
GoRecDial and λ1 = 1, λ2 = 1 for Redial, respec-
tively. During inference, we apply τ = 0.5 as the
entity selection threshold and p = 0.9 for the re-
sponse decoding strategy. Bag of words (BOW)
of the movie description are encoded using a fully
connected layer as additional features in GoRec-
Dial.

During KG construction, the generic classes we
introduce are the director, actor, time, genre, sub-
ject related to each movie. All entities are directly
extracted from DBpedia, except for genres, which
are taken from MovieLens. There are 12 types of
relationships between entities, namely actor of /
director of / genre of / subject of / time of / is a
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Algorithm 1: Conversational Recommen-
dation Walker
Input: Knowledge graph G, training data D

1 Initialize the parameters of intent classifier
θi, walker cell θw and generation model θg

2 for j = 1 to |D| do
3 Set all the entities on G “unmentioned”
4 for t = 1 to Tj do

// Intent selection
5 Obtain utterance embedding ut w/

Eq. 1
6 Calculate Lint based on Eq. 4

// Graph reasoning
7 Obtain user portrait pt w/ Eq. 3
8 Update the entities mentioned in

user utterances on G as
“mentioned”

9 Set Et as singleton of the selected
intent

10 for Hop n = 1 to 2 do
11 Select entities using all elements

in Et w/ Eq. 7
12 Calculate Li at current hop w/

Eq. 9
13 Update the selected entities on

G as “mentioned”
14 Set Et as all selected entities at

current hop
15 end

// Response generation
16 Transform the reasoning tree into

the dialog act A
17 Calculate Lgen w/ Eq. 10
18 Perform gradient descent on L w/

Eq. 11
19 end
20 end

and their corresponding reverse relationships. The
last relationship is a and its reverse appears be-
tween attributes and generic classes, while other
relationships appear between attributes and candi-
date items. We then perform entity linking in each
sentence, and use regular expressions to determine
its intent and entities on the reasoning tree. Noting
that no annotation is available in two datasets, and
we label them in an automatic way. Dataset statis-
tics are shown in table 8, while detailed entity and
relation statistics for KG are listed in table 9.

Dataset Dialogs Utterances Items Entities Relations

GoRecDial 9K 171K 3.8K 19.3K 227K
ReDial 10K 182K 6.9K 30.5K 393K

Table 8: Dataset statistics.

Dataset GoRecdial Redial

Entities

Movies 3,782 6,924
Persons 7,936 12,803
Subjects 7,558 10,707
Genres 18 18
Times 7 12

Generals 7 7
total 19,308 30,471

Relations

actor_of 16,472 27,639
director_of 3,634 6,063
genre_of 8,386 18,259

subject_of 61,940 107,356
time_of 3,782 6,309

is_a 19,478 30,715
total 227,384 392,682

Table 9: Knowledge graph statistics of GoRecdial and
Redial. The total relations are twice the sum of 6 types
of relationships listed on the table due to the addition
of corresponding reverse relationships.

D Case Study

We finally present an interactive case here to
demonstrate our model’s capability during inter-
active dialog and our model’s explainable nature.
The sequential dialog acts corresponding to the rea-
soning tree generated by CR-Walker is presented
in Table 10 along with the dialog. We mark all the
mentioned entities either in bold (user turn) or in
colors (system turn) according to the reasoning hop.
The dialog starts with greetings between the user
and CR-Walker, followed by CR-Walker proac-
tively seeking user preference by asking which
kind of movie he or she likes. The following few
turns focus on recommending action movies, and
CR-Walker provides an appropriate description of
the recommended movies and some comments on
Arnold Schwarzenegger’s muscles. The topic then
switches to horror movies after the user explicitly
requires scary ones, with the system recommend-
ing four appropriate movies within two turns. The
dialog finally ends with the user expressing grati-
tude and CR-Walker expressing goodwill. Overall,
at the utterance level, the whole dialog contains
appropriate amounts of information and various di-
alog acts from the model, enabling the conversation
to appear coherent and fluent.

The intermediate dialog acts that CR-walker gen-
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U: Hi there, good evening to you!
D: [ Query ( Genre ) ]
R: Good evening to you also! What kind of films do you

like?
U: I’m looking for some action flicks like Lethal

Weapon to watch with my friends tomorrow. Any
ideas?

D: [ Recommend ( Action ( The Terminator ) ) ( 1980s (
The Terminator ) ) ]

R: Okay one sec. what about The Terminator. It’s old but
really great action flick.

U: Terminator’s great! Arnold Schwarzenegger is a
beast in it. We have watched it several times though.

D: [ Chat ( Action ( Die Hard ) ) ]
R: Indeed he is, all that muscle. I would also recommend

Die hard then. It’s a really good mixed action movie.
U: Great. Can you also give me some scary ones like

Halloween or Annabelle?
D: [ Recommend ( Horrow ( Shining ) ( It ) ) ]
R: Oh yes! Have you seen The Shining or It?
U: Yeah... those are really good. We watched The Shin-

ing one time and had trouble sleeping...
D: [ Recommend ( Horrow ( Split ) ( Saw ) ) ]
R: Split and Saw are even more on the scary side!
U: Great, I’ll check these too. Thanks a lot for the help!
D: [ Chat ]
R: No problem. Have a great day!

Table 10: A sampled case between CR-Walker (R) and
a real user (U). The sequential dialog acts (D) at each di-
alog turn derived from the reasoning tree are presented
as well. Entities mentioned in user’s turn are marked
in bold, while entities in system’s turn are marked in
colors based on the number of reasoning hop (blue-hop
1, purple-hop 2)

erates help us to better control and understand the
generated utterance. On one hand, the entity on
the reasoning tree provides additional insight into
the model’s particular statement. Generated sen-
tences may contain the entity name directly, but
may also contain paraphrase of entities, as in cases
of Genre, 1980s and Horror mapping to kind of
films, old and scary respectively. The model also
learns to omit some of the entities on the reason-
ing path based on the dialog context, such as entity
Horror when the system recommended Shining and
It. Such non-trivial paraphrasing would be hard to
interpret in the absence of the reasoning tree. On
the other hand, the reasoning tree’s structure even
gives a hint to the approach our model takes when
it mentions an entity. An interesting case happens
in the third turn of the dialog when CR-Walker rec-
ommends Die Hard. The predicted dialog intent
appears to be “chit-chat”, and Die Hard is selected
at hop 2 in the reasoning process during inference.
As a result, the system talks about the attributes of
Die Hard (use of Action) instead of directly recom-
mending it, and the tone taken by the model is more

casual and relevant to the previous context (use of
then and comment of all that muscle). Together,
the above advantages add to our model’s explain-
ability, giving our model the edge to be interpreted
beyond words.


