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Abstract

The growing popularity of Virtual Assistants
poses new challenges for Entity Resolution,
the task of linking mentions in text to their
referent entities in a knowledge base. Specif-
ically, in the shopping domain, customers tend
to mention the entities implicitly (e.g., “or-
ganic milk”) rather than use the entity names
explicitly, leading to a large number of candi-
date products. Meanwhile, for the same query,
different customers may expect different re-
sults. For example, with “add milk to my cart”,
a customer may refer to a certain product from
his/her favorite brand, while some customers
may want to re-order products they regularly
purchase. Moreover, new customers may lack
persistent shopping history, which requires us
to enrich the connections between customers
through products and their attributes. To ad-
dress these issues, we propose a new frame-
work that leverages personalized features to
improve the accuracy of product ranking. We
first build a cross-source heterogeneous knowl-
edge graph from customer purchase history
and product knowledge graph to jointly learn
customer and product embeddings. After that,
we incorporate product, customer, and history
representations into a neural reranking model
to predict which candidate is most likely to be
purchased by a specific customer. Experiment
results show that our model substantially im-
proves the accuracy of the top ranked candi-
dates by 24.6% compared to the state-of-the-
art product search model.

1 Introduction

Given an entity mention as a query, the goal of
entity resolution (or entity linking) (Ji and Grish-
man, 2011) is to link the mention to its correspond-
ing entry in a target knowledge base (KB). In an
academic shared task setting, an entity mention

∗* This work was done when the first author was on an
internship at Amazon Alexa AI.

is usually a name string, which can be a person,
organization or geo-political entity in a news con-
text, and the KB is usually a Wikipedia dump with
rich structured properties and unstructured text de-
scriptions. State-of-the-art entity resolution meth-
ods can achieve higher than 90% accuracy in such
settings (Ji and Grishman, 2011; Ji et al., 2015;
Agarwal and Bikel, 2020), and they have been suc-
cessfully applied in hundreds of languages (Pan
et al., 2017) and various domains such as disaster
management (Zhang et al., 2018a) and scientific
discovery (Zheng et al., 2014; Wang et al., 2015).
Therefore, we tend to think entity resolution is a
solved problem in academia. However, in indus-
try, with the rise in popularity of Virtual Assistants
(VAs) in recent years, an increasing number of cus-
tomers now rely on VAs to perform daily tasks
involving entities, including shopping, playing mu-
sic or movies, calling a person, booking a flight,
and managing schedules. The scale and complex-
ity of industrial applications presents the following
unique new challenges.

Unpopular majority. There is a massive num-
ber of new entities emerging every day. The entity
resolver may know very little about them since
very few users interact with them. Handling these
tail entities effectively requires the use of property
linkages between entities and shared user interests.
Similarly, there might be many new users with lim-
ited interaction history, and we need to infer their
interests from other users who have interacted with
similar entities.

Large number of ambiguous variants. When
interacting with VAs, users tend to use short and
less informative utterances with the expectation
that the VAs can intelligently infer their actual in-
tentions. This raises the need for personalization
when resolving the entities. In the shopping do-
main, this problem is even more challenging as
customers typically use implicit entity mentions
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Figure 1: An illustration of the cross-source heterogeneous customer-product graph.

(e.g., “organic milk”) instead of explicit names
(e.g., “Horizon Organic Shelf-Stable 1% Lowfat
Milk”) which usually leads to a large number of
candidates due to the ambiguity. However, with
VAs’ voice user interface (VUI), the number of
products that can be presented to the customers is
very limited, if not only one. In this work, we focus
on the problem of personalized entity resolution in
the shopping domain. Given a query and a list of
retrieved candidates, we aim to return the product
that is most likely to be purchased by a customer.

Beyond ambiguity. In the traditional news en-
tity linking setting, each entity in the KB refers to
a unique world object. In contrast, in e-commerce,
the same product can have multiple variants. For
example, a customer may like to stick to a tooth-
paste product of a certain brand and flavor, but
choose different sizes (thus different entities) in
each purchase. These entities in the target KB refer
to the same product but have different properties
(in this case, size). Therefore it is important to
construct fine-grained knowledge graphs to profile
products and capture the implicit connections be-
tween customers based on the properties of their
purchased products.

We make three assumptions: (H1) customers
tend to purchase products they have purchased in
the past; (H2) customers tend to purchase prod-
ucts that share some properties; (H3) customers
who purchased products with similar properties
share similar interests. Based on these assumptions,
we propose to represent customers and products
as low-dimensional vectors learned from a graph
of customers and products. Unlike social media
networks with rich interactions among users, the
customers of most shopping services are isolated,

which prevents us from learning customer embed-
dings effectively. To address this issue, we propose
to build a cross-source heterogeneous knowledge
graph as Figure 1 depicts to indirectly establish
rich connections among customers from a) users’
purchase history (customer-product graph) and b) a
product knowledge graph, and further jointly learn
the representations of nodes in this graph using a
Graph Neural Network (GNN)-based method. In
Figure 1(c), for instance, we can build connections
between Customer 1 and Customer 2 because their
purchased products share the same ingredient at-
tribute, and thus possibly recommend Product 2
to Customer 1 even though it does not appear in
his/her purchase history. In addition to static cus-
tomer embeddings, we further propose an attentive
model to dynamically generate a history represen-
tation for each user based on the current query.
Finally, the model predicts how likely a candidate
will be purchased using entity, customer, and his-
tory representations.

Experiments on real purchase records collected
from an online shopping service show that our
method significantly improves the purchase rate
of the top ranked products.

2 Methodology

Given a query q from a customer c, and a list of
candidate products P = {p1, ..., pL}, where L is
the number of candidates, our goal is to predict
the product that the customer will purchase based
on their purchase history and the product knowl-
edge graph. Specifically, we use purchase records
{r1, ..., rH} where H is the number of historical
records. As Figure 2 illustrates, we jointly learn
customer and product embeddings from a cross-
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source customer-product graph using GNN. To
perform personalized ranking, we incorporate the
learned customer embedding and history represen-
tation as additional features when calculating the
confidence score of each candidate. We then rank
all candidates by confidence score and return the
top one.

History Encoder

Candidate
Encoder

Query CandidateCustomer

Query Embedding

Query Encoder

History
Representation

Candidate
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Customer
Purchase History

Customer
Embedding

Candidate Score

Figure 2: An illustration of our framework.

2.1 Candidate Retrieval

We first retrieve candidate products for each query
using QUARTS (Nigam et al., 2019; Nguyen et al.,
2020), which is an end-to-end neural model for
product search. QUARTS has three major compo-
nents: (1) an LSTM-based (long short-term mem-
ory) classifier adapted from the entailment model
in (Rocktäschel et al., 2016) to predict whether a
product-query pair is matched; (2) a variational
encoder-decoder (VED) query generator that gener-
ates difficult negative examples to tackle the class
imbalance issue in the training data as a search
engine typically returns much more matched query-
item examples than mismatched ones, and (3) a
state combiner that switches between query repre-
sentations computed by the classifier and generator.
During training, the VED generator takes as input
a matched product-query pair (I,Q) and gener-
ates a mismatched query Qgen which is lexically
similar to Q. The state combiner then merges H ,
the representation computed by the classifier, and
Hgen, the representation computed by the gener-
ator, as sHgen + (1 − s)H , where s is a binary
value that controls which query to use and whether
the gradients are back-propagated to the classifier
or generator.

2.2 Joint Customer and Product Embedding
The next step is to obtain the representations of
customers and products. Customer embeddings are
usually learned from user-generated texts (Preoţiuc-
Pietro et al., 2015; Yu et al., 2016; Ribeiro et al.,
2018) or social relations (Perozzi et al., 2014a;
Grover and Leskovec, 2016; Zhang et al., 2018b),
neither of which are available in the shopping
dataset we use. Alternatively, we establish indi-
rect connections among customers through their
purchased products under hypothesis H3, and form
a customer-product graph as shown in Figure 1(a).
This graph only contains a single type of relation
(i.e., purchase) and ignores product attributes. As
a result, it tends to be sparse and less effective for
customer representation learning.

In order to learn more informative embeddings,
we propose to incorporate richer information from
a product knowledge graph (Figure 1(b)) where
products are not only connected to different at-
tribute nodes (e.g., brands, flavors), but they
may also be associated with textual features (e.g.,
title) and boolean features (e.g., isOrganic, en-
coded as a boolean vector).

By merging the product knowledge graph and
the customer-product graph, we obtain a more com-
prehensive graph (Figure 1(c)) of higher connectiv-
ity. For example, in the original customer-product
graph, Customer 1 and Customer 2 are discon-
nected because they do not share any purchase. In
the new graph, they have an indirect connection
through Product 2 and Product 3, which share
the same flavor and ingredient.

From this heterogeneous graph, we jointly learn
customer and product representations using a
two-layer Relational Graph Convolutional Net-
work (Schlichtkrull et al., 2018). The embedding
of each node is updated as:

hl+1
i = ReLU

(
W l

0h
l
i +
∑
r∈R

∑
j∈Nr

i

1

|N r
i |
W l

rh
l
j

)
,

where hl
i is the representation of node i at the l-th

layer, N r
i is the set of neighbor indices of node i un-

der relation r ∈ R, and W l
0 and W l

r are learnable
weight matrices.

In order to capture textual features (i.e., prod-
uct titles, descriptions, and bullet1), we use a pre-
trained RoBERTa (Liu et al., 2019) encoder to gen-
erate a fix-sized representation for each product.

1Bullet points that outline the main features of a product.
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Specifically, we concatenate textual features us-
ing a special separator token [SEP], obtain the
RoBERTa representation for each token, and then
use the averaged embedding to represent the whole
sequence. To reduce the runtime, we calculate cus-
tomer and product embeddings offline and cache
the results.

2.3 Candidate Representation
In addition to the product embedding, we further
incorporate the following features to enrich the
representation of each candidate.

Rank: the order of the candidate returned by the
product retrieval system.

Relative Price: how much a product’s absolute
price is higher or lower than the average price of all
retrieved candidates as price is an important factor
that affects purchasing decision.

Previously Purchased: a binary flag indicating
whether a candidate has been purchased by the
customer or not.

Textual Feature: we use RoBERTa to encode
each candidate’s textual features (i.e., title, bullet,
description). This RoBERTa encoder is fine-tuned
during training.

We concatenate these features with the product
embedding and project the vector into a lower di-
mensional space using a feed forward network.

2.4 History Representation
Although customer embeddings can encode pur-
chase history information, they are static and may
not effectively provide the most relevant informa-
tion for each specific query. For example, if the
query is “bookshelf”, the furniture-related purchase
records are more likely to help the model predict
the product that the customer will purchase, while
if the query is “sulfate-free shampoo”, the purchase
records of beauty products are more relevant. To
tackle this issue, we propose to generate a query-
aware history representation v based on the current
query q from all purchase record representations
{v1, ...,vH} of the customer.

We first represent each purchase record as the
concatenation of the product embedding, prod-
uct price, and purchase timestamp. The query-
aware history representation is then calculated as
a weighted sum of the customer’s purchase record
representations using an attention mechanism as
follows.

ei = v> tanh
(
W qq +W vvi

)
,

ai = Softmax(ei) =
exp (ei)∑M
k exp (ek)

,

v =
H∑
i

aivi,

where v>, W q, and W v are learnable weights.

2.5 Candidate Ranking

We adopt a feed forward neural network that takes
in the candidate, customer, and history represen-
tations, and returns a confidence score ŷi which
indicates how likely a candidate will be purchased.
The confidence score is scaled to (0, 1) using a Sig-
moid function. During training, we optimize the
model by minimizing the following binary cross
entropy loss function.

L = − 1

N

N∑
i=1

yi log ŷi + (1− yi) log (1− ŷi),

where N denotes the total number of candidates,
and yi ∈ {0, 1} is the true label. In the inference
phase, we calculate confidence scores for all candi-
dates for each session and return the one with the
highest score.

3 Experiment

3.1 Data

Product Knowledge Graph. In our experiment,
we use a knowledge graph of products in five cat-
egories (i.e., grocery, beauty, luxury beauty, baby,
and health care), which contains 24,287,337 unique
product entities. As Figure 1(b) depicts, the prod-
ucts in this knowledge graph are connected through
attribute nodes, including brands, scents, flavors,
and ingredients. This knowledge graph also pro-
vides rich attributes for each product node. We
use two types of attributes in this work, textual fea-
tures (i.e., title, description, and bullet) and binary
features (e.g., isOrganic, isNatural).
Evalution Dataset. We randomly collect 1 million
users’ purchase sessions from November 2018 to
October 2019 on an online shopping service. Each
session contains a query, an obfuscated identifier,
a timestamp, and a list of candidate products re-
trieved using QUARTS where only one product is
purchased.

We split the sessions before and after Septem-
ber 1, 2019 into two subsets. The first subset only
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serves as the purchase history and is used to con-
struct the customer-product graph. From the sec-
ond subset, we randomly sample 22,000 customers
with at least one purchase record in the first subset
and take their last purchase sessions for training or
evaluation. Specifically, we use 20,000 sessions for
training, 1,000 for validation, and 1,000 for test. If
a customer has multiple purchase sessions in the
second subset, other sessions before the last one
are also considered as purchase history when we
generate history representations, while they are ex-
cluded from the customer-product graph, which is
constructed from the first subset.

3.2 Experimental Setup
We optimize our model with AdamW (Loshchilov
and Hutter, 2018) for 10 epochs with a learning
rate of 1e-5 for the RoBERTa encoder, a learning
rate of 1e-4 for other parameters, weight decay of
1e-3, a warmup rate of 10%, and a batch size of
100.

To encode textual features, we use the RoBERTa
base model2 with an output dropout rate of 0.5. To
represent query words, we use 100-dimensional
GloVe embeddings (Pennington et al., 2014) pre-
trained on Wikipedia and Gigaword3. We set the
size of pre-trained customer and product embed-
dings to 100 and freeze them during training.

We use separate fully connected layers to project
candidate and history representations into 100-
dimensional feature vectors before concatenating
them for ranking. We use a two-layer feed forward
neural network with a hidden layer size of 50 as
the ranker and apply a dropout layer with a dropout
rate of 0.5 to its input.

3.3 Quantitative Analysis
We compare our model to the state-of-the-art prod-
uct search model QUARTS as the baseline. Be-
cause our target usage scenarios are VAs where
only one result will be returned to the user, we use
accuracy as our evaluation metric. We implement
the following baseline ranking methods.
Purchased: We prioritize products previously pur-
chased by the customer. If multiple candidates are
previously purchased, we return the one ranked
highest by QUARTS.
ComplEx: Customer and product embeddings are
learned using ComplEx (Trouillon et al., 2016), a

2https://huggingface.co/transformers/
pretrained_models.html

3https://nlp.stanford.edu/projects/glove/

widely used knowledge embedding model that rep-
resents nodes in a knowledge graph as complex
vectors and is able to capture antisymmetric rela-
tions using efficient dot product.

In Table 1, we show the relative gains compared
to the baseline model QUARTS. With personalized
features, our method effectively improves accuracy
on both development and test sets.

We also conduct ablation studies by removing
the following features and show results in Table 2.
Ranking: In this setting, our model ignores the
original retrieval ranking returned by QUARTS.
Personalized Features: We remove personalized
features (e.g., customer embedding, whether a prod-
uct is previously purchased) in this setting.
Product Embedding: We remove pre-trained
product embedding but still use textual features
and binary features to represent products.
Joint Embedding: Customer and product embed-
dings are not jointly learned from the merged graph.
Alternatively, customer embeddings are learned
from the customer-product graph, and product em-
beddings are learned from the product knowledge
graph.

In Table 2, from the results of Methods 6 and
7, we can see that removing either product or cus-
tomer embedding degrades the performance of the
model. The result of Method 8 shows that em-
beddings jointly learned from the merged cross-
source graph achieve better performance on our
downstream task. We also observe that the ranking
returned by the product search system is still an
important feature as Method 6 shows.

Method Dev Accuracy Test Accuracy
1 QUARTS 0.0 0.0
2 Purchased +10.5 +8.5
3 ComplEx +25.7 +16.1
4 Our Model +32.9 +24.6

Table 1: Relative gains compared to QUARTS. (%)

Method Dev Acc Test Acc
4 Our Model +32.9 +24.6
5 w/o Ranking -17.1 -20.4
6 w/o Personalized Features -10.5 -18.0
7 w/o Product Embedding +25.2 +19.0
8 w/o Joint Embedding +28.1 +20.4

Table 2: Ablation study. (%, relative gains compared to
QUARTS.)

https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html
https://nlp.stanford.edu/projects/glove/
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Query Candidates History
#1 vitamin c
serum

* [3] instanatural vitamin c serum with hyaluronic acid
& vit e - natural & organic anti wrinkle ...

* foundation makeup brush flat top kabuki for face -
perfect for blending liquid, cream or flawless powder

* [1] truskin vitamin c serum for face, topical facial
serum with hyaluronic acid, vitamin e, 1 fl oz

* women’s rogaine 5% minoxidil foam for hair thin-
ning and loss, topical treatment for women’s hair ...

* [2] vitamin c serum for face - anti aging facial serum * vita liberata advanced organics fabulous self-tanning
gradual lotion with marula oil, 6.76 fl oz

* [4] vitamin c serum plus 2% retinol, 3.5% niaci-
namide, 5% hyaluronic acid, 2% salicylic acid ...

* instanatural vitamin c serum with hyaluronic acid &
vit e - natural & organic anti wrinkle reducer ...

Our model promotes candidate 3 as this product was purchased by the customer.
#2 toothpaste * [2] crest 3d white whitening toothpaste, radiant mint,

3.5oz, twin pack
* crest 3d white toothpaste radiant mint (3 count of 4.1
oz tubes), 12.3 oz packaging may vary

* [1] crest + scope complete whitening toothpaste,
minty fresh, 5.4 oz, pack of 3

* skindinavia the makeup of countrol finishing spray,
8 fluid ounce

* [3] pronamel gentle whitening enamel toothpaste for
sensitive teeth, alpine breeze-4 ounces (pack of 3)

* crest 3d white toothpaste radiant mint (3 count of 4.1
oz tubes), 12.3 oz packaging may vary

* [4] colgate cavity protection toothpaste with fluoride
- 6 ounce (pack of 6)

* nivea shea daily mointure body lotion - 48 hour
moisture for dry skin - 16.9 fl. oz. pump bottle, ...

Although the previously purchased item is no longer available, with entity embedding learned from the
cross-source graph, our model successfully promotes the most similar product.

#3 sun dried
tomatoes

* [3] 365 everyday value, organic sundried tomatoes
in extra virgin olive oil, 8.5 oz

* #1 usda organic aloe vera gel - no preservatives, no
alcohol - from freshly cut usa grown 100% pure ...

* [1] 35 oz bella sun luci sun dried tomatoes julienne
cut in olive oil (original version)

* organic aloe vera gel with 100% pure aloe from
freshly cut aloe plant, not powder - no xanthan ...

* [2] julienne sun-dried tomatoes - 16oz bag (kosher) * wicked joe organic coffee wicked italian ground
* [4] organic sun-dried tomatoes with sea salt, 8
ounces - salted, non-gmo, kosher, raw, vegan, ...

*thayers alcohol-free original witch hazel facial toner
with aloe vera formula, clear, 12oz

Our model promotes an organic product as the customer probably prefers organic products based on the
shopping records.

Table 3: Positive examples in the data set. Candidates are listed in the order returned by our method. The number
before each candidate is the original ranking returned by QUARTS. In the candidate column, we highlight the
purchased products . In the history column, we highlight related records .

3.4 Qualitative Analysis

In Table 3 and Table 4, we show some positive and
negative examples in the data set. From Table 3
we can see that multiple sources of evidence in
the constructed heterogeneous knowledge graphs
are complimentary and the combination of them
successfully promotes various entities which match
customers’ interests.

Table 4 shows examples where our model fails to
return the correct item. In many cases, such as Ex-
ample #4, the purchased product and the top ranked
one only differ in packaging size. We also observe
that sometimes customers may not repurchase a
product even if it is in the candidate list.

To better understand the remaining errors, we
randomly sample 100 examples where our model
fails to predict the purchased items. As Figure 3
illustrates, we analyze these examples and classify
the possible reasons into the following categories.
Different size. The predicted product and ground
truth are the same product but differ in size. For
example, while our model predicts “Lipton Herbal

Similar Description
12%

Incomplete Description
4%

Attribute
5%

Brand
2%

Purchased
3%

Diff
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