@inproceedings{kim-etal-2021-query,
title = "Query Generation for Multimodal Documents",
author = "Kim, Kyungho and
Lee, Kyungjae and
Hwang, Seung-won and
Song, Young-In and
Lee, Seungwook",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-main.54",
doi = "10.18653/v1/2021.eacl-main.54",
pages = "659--668",
abstract = "This paper studies the problem of generatinglikely queries for multimodal documents withimages. Our application scenario is enablingefficient {``}first-stage retrieval{''} of relevant doc-uments, by attaching generated queries to doc-uments before indexing. We can then indexthis expanded text to efficiently narrow downto candidate matches using inverted index, sothat expensive reranking can follow. Our eval-uation results show that our proposed multi-modal representation meaningfully improvesrelevance ranking.More importantly, ourframework can achieve the state of the art inthe first stage retrieval scenarios",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-etal-2021-query">
<titleInfo>
<title>Query Generation for Multimodal Documents</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kyungho</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyungjae</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seung-won</namePart>
<namePart type="family">Hwang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Young-In</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seungwook</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-apr</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper studies the problem of generatinglikely queries for multimodal documents withimages. Our application scenario is enablingefficient “first-stage retrieval” of relevant doc-uments, by attaching generated queries to doc-uments before indexing. We can then indexthis expanded text to efficiently narrow downto candidate matches using inverted index, sothat expensive reranking can follow. Our eval-uation results show that our proposed multi-modal representation meaningfully improvesrelevance ranking.More importantly, ourframework can achieve the state of the art inthe first stage retrieval scenarios</abstract>
<identifier type="citekey">kim-etal-2021-query</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-main.54</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-main.54</url>
</location>
<part>
<date>2021-apr</date>
<extent unit="page">
<start>659</start>
<end>668</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Query Generation for Multimodal Documents
%A Kim, Kyungho
%A Lee, Kyungjae
%A Hwang, Seung-won
%A Song, Young-In
%A Lee, Seungwook
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
%D 2021
%8 apr
%I Association for Computational Linguistics
%C Online
%F kim-etal-2021-query
%X This paper studies the problem of generatinglikely queries for multimodal documents withimages. Our application scenario is enablingefficient “first-stage retrieval” of relevant doc-uments, by attaching generated queries to doc-uments before indexing. We can then indexthis expanded text to efficiently narrow downto candidate matches using inverted index, sothat expensive reranking can follow. Our eval-uation results show that our proposed multi-modal representation meaningfully improvesrelevance ranking.More importantly, ourframework can achieve the state of the art inthe first stage retrieval scenarios
%R 10.18653/v1/2021.eacl-main.54
%U https://aclanthology.org/2021.eacl-main.54
%U https://doi.org/10.18653/v1/2021.eacl-main.54
%P 659-668
Markdown (Informal)
[Query Generation for Multimodal Documents](https://aclanthology.org/2021.eacl-main.54) (Kim et al., EACL 2021)
ACL
- Kyungho Kim, Kyungjae Lee, Seung-won Hwang, Young-In Song, and Seungwook Lee. 2021. Query Generation for Multimodal Documents. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 659–668, Online. Association for Computational Linguistics.